Papers
-
J. W. Cannon, W. J. Floyd, and W. R. Parry,
Lattès maps and finite subdivision rules,
Conform. Geom. Dyn. 14 (2010), 113-140 (electronic).
-
J. W. Cannon, W. J. Floyd, W. R. Parry, and K. M. Pilgrim,
Nearly Euclidean Thurston maps,
Conform. Geom. Dyn. 14 (2012), 209-255 (electronic).
NET maps were introduced in this paper, and the half-space theorem is proved
here.
-
Edgar Arturo Saenz Maldonado,
On Nearly Euclidean Thurston Maps
- Walter Parry, Enumeration of Lattès maps
-
W. Floyd, G. Kelsey, S. Koch, R. Lodge, W. Parry, K. M. Pilgrim, E. Saenz,
Origami, affine maps, and complex dynamics,
Arnold Math J. 3 (2017),365-395.
-
W. J. Floyd, W. R. Parry and K. M. Pilgrim, Presentations of NET maps,
Fundamenta Math. 244 (2019), 49-72.
-
W. J. Floyd, W. R. Parry and K. M. Pilgrim, Modular groups, Hurwitz classes
and dynamic portraits of NET maps,
Groups, Geometry, and Dynamics 13 (2019), 47-88.
-
Walter Parry, NET map slope functions
-
Gregory Kelsey and Russell Lodge, Quadratic Thurston maps
with few postcritical points,
Geom. Dedicata 201 (2019), 33-55.
-
Edgar A. Saenz, On NET maps: Examples and nonexisitence results,
Conform. Geom. Dyn. 23 (2019), 147-163.