
ENUMERATION OF LATTÈS MAPS

WALTER PARRY

1. Introduction

These notes provide a simple and effective method for enumerating Lattès maps of small degree. Much
of this is contained in [2].

2. Definitions and basic facts for Lattès maps

Following Milnor [4, Remark 3.5] (but not [5]), we define a Lattès map to be a rational function from the
Riemann sphere Ĉ to itself such that its local degree at every critical point is 2 and there are exactly four
postcritical points, none of which is also critical. Let f : Ĉ→ Ĉ be a Lattès map.

As in Section 3.1 of [4], it follows that there exists an analytic branched cover ℘ : C→ Ĉ which is branched
exactly over the postcritical points of f and the local degree of ℘ at every branch point is 2. (The function
℘ is a Weierstrass ℘-function up to precomposing and postcomposing with analytic automorphisms.) Let Λ
be the set of branch points of ℘. It is furthermore true that ℘ is a regular branched cover, and its group of
deck transformations Γ is generated by the set of all rotations of order 2 about the points of Λ. We refer to
Γ as the orbifold fundamental group of f . Given rotations z 7→ 2λ− z and z 7→ 2µ− z of order 2 about
the points λ, µ ∈ Λ, their composition, the second followed by the first, is the translation z 7→ z + 2(λ− µ).
We may, and do, normalize so that 0 ∈ Λ. So Γ contains a subgroup with index 2 consisting of translations
of the form z 7→ z + 2λ with λ ∈ Λ. It follows that Λ is a lattice in C and that the elements of Γ are the
maps of the form z 7→ ±z + 2λ for some λ ∈ Λ.

Douady and Hubbard show in [3, Proposition 9.3] that the map f : Ĉ→ Ĉ lifts to a map f̃ : C→ C given
by f̃(z) = αz + β for some imaginary quadratic algebraic integer α (possibly an element of Z) such that
αΛ ⊆ Λ and some β ∈ Λ. The following lemma is devoted to determining to what extent α, β and Λ are
determined by the analytic conjugacy class of f .

Lemma 2.1. Let f0 be a Lattès map which is analytically conjugate to f . Let ℘0 : C → Ĉ be a branched
cover for f0 corresponding to ℘. Let Λ0 be the set of branch points of ℘0, and assume that 0 ∈ Λ0. Suppose
that f0 : Ĉ→ Ĉ lifts to a map f̃0 : C→ C given by f̃0(z) = α0z + β0. Then the following hold.

(1) α0 = ±α.
(2) β0 = γβ + δ where γ ∈ C× and δ ∈ (α + 1)Λ0 + 2Λ0.
(3) Λ0 = γΛ with γ as in statement 2.

Conversely, if ℘0 : C → Ĉ is a branched cover as above, if Λ0 is the set of branch points of ℘0 with 0 ∈ Λ0

and if f̃0(z) = α0z + β0 such that statements 1, 2 and 3 hold, then f̃0 is the lift of a Lattès map which is
analytically conjugate to f .

Proof. Let σ be a Möbius transformation such that f0 = σ ◦f ◦σ−1. Just as for f and f0, the map σ : Ĉ→ Ĉ
lifts to a map σ̃ : C→ C given by σ̃(z) = ρz + ν for some ρ ∈ C× and ν ∈ C. Since σ maps the postcritical
set of f to the postcritical set of f0, σ̃ maps Λ to Λ0, that is, ρΛ + ν = Λ0. In other words, the coset ρΛ + ν
of the group ρΛ equals the group Λ0. The only way that a coset can be a group is if it is the trivial coset,
and so ν ∈ Λ0 and Λ0 = ρΛ. Since f̃0 and σ̃ ◦ f̃ ◦ σ̃−1 are both lifts of f0, they differ by an element of Γ0,
the group of deck transformations of ℘0. In other words, ±f̃0(z) + 2λ0 = σ̃ ◦ f̃ ◦ σ̃−1(z) for some λ0 ∈ Λ0.
So we have the following.

±(α0z + β0) + 2λ0 = ±f̃0(z) + 2λ0 = σ̃ ◦ f̃ ◦ σ̃−1(z) = ρf̃(ρ−1(z − ν)) + ν

= ρ(αρ−1(z − ν) + β) + ν = αz + ρβ + (1− α)ν
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Hence α0 = ±α, which yields statement 1. Furthermore

±β0 = ρβ + (1− α)ν − 2λ0.

We have seen that ν ∈ Λ0. So setting γ = ±ρ and δ = ±((α + 1)ν − 2αν − 2λ0), we have that β0 = γβ + δ
with γ ∈ C× and δ ∈ (α + 1)Λ0 + 2Λ0. We now have verified statements 1, 2 and 3.

For the converse, it is a straightforward matter to construct σ̃ such that σ̃ conjugates f̃ to f̃0 up to the
action of Γ0. One checks that σ̃ descends to a rational map σ : Ĉ → Ĉ which has local degree 1 at every
point of Ĉ. So σ is a Möbius transformation. It follows that f̃0 is the lift of an analytic conjugate of f .

This completes the proof of Lemma 2.1.
¤

Lemma 2.1 implies that with an appropriate modification of β the lattice Λ may be replaced by γΛ,
where γ is any nonzero complex number, without changing the analytic conjugacy class of f . In Section 7
of Chapter 2 of the number theory book [1] by Borevich and Shafarevich, the lattices Λ and γΛ are said to
be similar. Theorem 9 and the remark following it in Section 7 of Chapter 2 of [1] imply that every lattice
in C is similar to a lattice with a Z-basis consisting of 1 and τ , where τ lies in the standard fundamental
domain for the action of SL(2,Z) on the upper half complex plane. More precisely, τ satisfies the following
inequalities.

(2.2)

Im(τ) > 0

−1
2

< Re(τ) ≤ 1
2

|τ | ≥ 1 and if |τ | = 1, then Re(τ) ≥ 0

Moreover there is only one such τ which satisfies these inequalities. This and Lemma 2.1 imply that τ is
uniquely determined by the analytic conjugacy class of f .

Corollary 2.3. Let f̃0(z) = α0z + β0 be a C-linear map such that f̃0(Λ) ⊆ Λ. Then f̃0 descends via the
branched cover ℘ : C→ Ĉ to a rational function which is analytically conjugate to f if and only if α0 = ±α
and β0 = γβ + δ where γΛ = Λ, γ = e±2πi/n with n ∈ {1, 2, 3, 4, 6} and δ ∈ (α + 1)Λ + 2Λ.

Proof. In this situation Λ0 = Λ. So just as for f̃ , the containment γΛ ⊆ Λ implies that the complex number
γ is in fact an imaginary quadratic algebraic integer. Because γΛ = Λ, γ is invertible, that is, it is a unit. But
all imaginary quadratic units have the form e±2πi/n with n ∈ {1, 2, 3, 4, 6}. This discussion and Lemma 2.1
prove Corollary 2.3.

¤

In this paragraph we consider related effects of complex conjugation. By the complex conjugate of a
rational map f , we mean the rational map gotten by applying complex conjugation to the coefficients of f .
It is easy to see that the complex conjugate of a Lattès map is also a Lattès map. By applying complex
conjugation to the Lattès map f , the branched cover ℘ and the lift f̃ of f , we see that the complex conjugate
of f̃ is a lift of the complex conjugate of f . The behavior of f is essentially the same as the behavior of f ,
so when considering f̃(z) = αz + β, we assume that Im(α) ≥ 0. Since f̃ and −f̃ both lift f , we may also
assume that Re(α) ≥ 0. This shows that the restrictions put on α in the following lemma are reasonable.

Lemma 2.4. As above, let Λ be the inverse image in C of the postcritical set of the Lattès map f : Ĉ→ Ĉ,
and let f̃(z) = αz+β be a lift of f . Suppose that 1 and τ form a Z-basis of Λ. Multiplication by α determines
an endomorphism of Λ. Let

[
a b
c d

]
be the matrix of this endomorphism with respect to the ordered Z-basis

(1, τ). Suppose that Im(α) > 0. Then Re(α) ≥ 0 and τ lies in the standard fundamental domain for the
action of SL(2,Z) on the upper half complex plane if and only if the following inequalities are satisfied.

c > 0

a ≥ − c

2
max{a− c + 1,−a} ≤ d ≤ a + c

b ≤ −c and if b = −c, then d ≥ a
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Proof. From the first column of the matrix
[

a b
c d

]
it follows that α = a + cτ . So τ = α−a

c . The matrix of
the endomorphism determined by α − a is

[
0 b
c d−a

]
. Because the eigenvalues of this matrix are α − a and

α− a, its trace is twice the real part of α− a and its determinant is the square of the modulus of α− a. So
Re(α− a) = d−a

2 and |α− a|2 = −bc. Hence Re(τ) = d−a
2c and |τ |2 = − b

c . Similarly Re(α) = a+d
2 .

Suppose that Re(α) ≥ 0 and that the inequalities in line 2.2 hold. Since τ = α−a
c and Im(α) > 0, the

inequality Im(τ) > 0 implies that c > 0, giving the first inequality in the statement of the lemma. For the
second inequality, we combine Re(α) ≥ 0 and Re(τ) ≤ 1

2 to obtain a+d ≥ 0 and d−a ≤ c, hence a−d ≥ −c.
So a ≥ − c

2 , giving the second inequality in the statement of the lemma. Combining − 1
2 < Re(τ) ≤ 1

2 and
Re(α) ≥ 0 obtains −c < d− a ≤ c and a + d ≥ 0, which easily gives the third inequality in the statement of
the lemma. The fourth inequality follows from the fact that |τ | ≥ 1 with equality only if Re(τ) ≥ 0.

Proving the converse is straightforward.
This proves Lemma 2.4.

¤

Lemma 2.5. (1) In Corollary 2.3 the case γ = ±i occurs only when τ = i, and the case γ = ±e±2πi/3

occurs only when τ = e2πi/6.
(2) Let

[
a b
c d

]
be as in Lemma 2.4, and let M be the reduction of

[
a+1 b

c d+1

]
modulo 2. Then a complete list

of distinct coset representatives of (α + 1)Λ + 2Λ in Λ is given by

0 if rank(M) = 2

0, 1, τ, τ + 1 if rank(M) = 0

0, λ if rank(M) = 1,

where λ is any element of Λ whose image in Λ/2Λ is not in the column space of M .

Proof. If γ = ±i, then i ∈ Λ because γΛ ⊆ Λ. But then i is an integral linear combination of 1 and τ with
τ in the standard fundamental domain for the action of SL(2,Z) on the upper half complex plane. This
implies that τ = i. A similar argument applies when γ = ±e±2πi/3. This proves statement 1.

Statement 2 is clear.
¤

Since the elements of the orbifold fundamental group are Euclidean isometries, f̃ multiplies areas uniformly
by the factor deg(f). Translation by β does not change areas. Multiplication by α multiplies lengths by |α|
and areas by |α|2 = αα. Multiplication by α also corresponds to multiplication by the matrix

[
a b
c d

]
, and

this multiplies areas by its determinant. Therefore deg(f) = αα = ad− bc.

Lemma 2.6. If a, b, c and d satisfy the inequalities of Lemma 2.4, then ad− bc ≥ 3c2/4. If equality holds,
then a = −d and b = −c.

Proof. The inequalities of Lemma 2.4 imply that |a− d| ≤ c. Hence c2 ≥ (a−d)2 ≥ (a−d)2−(a+d)2 = −4ad.
Since b ≤ −c and c > 0, it follows that ad− bc ≥ −c2/4 + c2 = 3c2/4. This gives the inequality of the first
statement of the lemma. The second statement is now clear.

¤

Let f be a Lattès map with lift f̃(z) = αz + β and lattice Λ as above. We say that f is flexible if α ∈ R,
equivalently, α ∈ Z. We say that f is rigid if α /∈ R. If f is flexible, then since multiplication by an integer
stabilizes every lattice in C, Λ can be arbitrary. There are uncountably many analytic conjugacy classes of
Lattès maps for every integer α ≥ 2. On the other hand, there are only finitely many analytic conjugacy
classes of rigid Lattès maps with a given degree. To see why, first note that Lemma 2.6 and the paragraph
before it imply that in the rigid case a bound on deg(f) = ad− bc puts a bound on c. We may assume that
Im(α) > 0. The inequalities of Lemma 2.4 imply that a bound on c puts a lower bound on a and d. Because
b ≤ −c, c > 0 and |a− d| ≤ c, a bound on ad − bc puts an upper bound on both a and d. So a bound on
ad− bc puts a bound on c, a, d and therefore b. So if deg(f) is bounded, then there are only finitely many
possibilities for a, b, c and d. These values determine α in the upper half plane and τ . Given α and τ , there
are always at most four possibilities for β up to equivalence. So if f is rigid and deg(f) is bounded, then
there are only finitely many possibilities for the analytic conjugacy class of f .
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deg(f) a b c d α β τ real
2 0 −2 1 0

√−2 0
√−2 yes

2 0 −2 1 1 1+
√−7
2 0 1+

√−7
2 no

2 0 −2 1 1 1+
√−7
2 1 1+

√−7
2 no

2 1 −1 1 1 1 +
√−1 0

√−1 no
3 0 −3 1 0

√−3 0
√−3 yes

3 0 −3 1 0
√−3 1

√−3 yes
3 0 −3 1 1 1+

√−11
2 0 1+

√−11
2 no

3 1 −2 1 1 1 +
√−2 0

√−2 no
3 1 −2 1 1 1 +

√−2 1
√−2 no

3 1 −1 1 2 3+
√−3
2 0 1+

√−3
2 no

3 −1 −2 2 1
√−3 0 1+

√−3
2 yes

3 −1 −2 2 1
√−3 1 1+

√−3
2 yes

Table 1. All Lattès maps with degrees 2 or 3 up to complex conjugation.

3. Lattès maps with degrees 2 or 3

In this section we enumerate all Lattès maps with degrees 2 or 3 up to analytic conjugacy.
As in Section 2, let f : Ĉ → Ĉ be a Lattès map, let Λ be a lift of the postcritical set of f to C and let

f̃(z) = αz + β be a lift of f . If α ∈ Z, then the degree of f is α2, which is not 2 or 3. So as in the paragraph
before Lemma 2.4, replacing f by f if necessary, we may assume that Re(α) ≥ 0 and Im(α) > 0. We have
seen that f uniquely determines a complex number τ which lies in the standard fundamental domain for
the action of SL(2,Z) on the upper half complex plane. Multiplication by α determines an endomorphism
of Λ. Let

[
a b
c d

]
be the matrix of this endomorphism with respect to the ordered Z-basis (1, τ) of Λ. Using

Lemma 2.4 we see that giving α and τ is equivalent to giving integers a, b, c, d which satisfy the inequalities
of Lemma 2.4. The degree of f is |α|2 = ad− bc.

Table 1 enumerates all Lattès maps with degrees 2 or 3 up to complex conjugation and analytic conjugacy.
The next two paragraphs show how to determine these values of a, b, c, and d. Having

[
a b
c d

]
, we obtain α

as its eigenvalue in the upper half plane. The equation α = a + cτ then gives τ . The value of β comes from
Lemma 2.5. The case in which γ = ±i in statement 1 of Lemma 2.5 is not needed, and the other case in
statement 1 is needed only for the last row of Table 1. The last column in Table 1 deals with whether f = f .
This can be determined using Lemma 2.1 and the paragraph preceding Lemma 2.4. The word “yes” in this
column means that f = f , that is, the coefficients of this rational function are real numbers. The word “no”
means that f is not analytically conjugate to a rational function which equals its complex conjugate. Up to
analytic conjugacy, there are 7 Lattès maps with degree 2 and 12 Lattès maps with degree 3.

In this paragraph we determine the values of a, b, c and d in Table 1 for deg(f) = 2. Since deg(f) = ad−bc,
Lemma 2.6 implies that c = 1. Now Lemma 2.4 implies that 0 ≤ a ≤ d ≤ a + 1 and b ≤ −1. So ad and −bc
are nonnegative integers whose sum is 2. One easily checks that the possibilities for (a, b, c, d) are (0,−2, 1, 0),
(0,−2, 1, 1) and (1,−1, 1, 1). This determines the values of a, b, c, and d in Table 1 for deg(f) = 2.

Now we proceed as in the previous paragraph for deg(f) = 3. In this case Lemma 2.6 gives that either
c = 1 or c = 2 and b = −2. If c = 1, then as in the previous paragraph, ad and −bc are nonnegative integers
whose sum is 3. One easily checks that in this case the possibilities for (a, b, c, d) are (0,−3, 1, 0), (0,−3, 1, 1),
(1,−2, 1, 1) and (1,−1, 1, 2). If c = 2, then since b = −2 and ad− bc = 3, we have that ad = −1. This and
the inequality max{a− c + 1,−a} ≤ d from Lemma 2.4 imply that a = −1 and d = 1. This determines the
values of a, b, c and d in Table 1 for deg(f) = 3.

4. NET map presentations

In this section we indicate how to transform Lattès map presentations as in Table 1 into Euclidean NET
map presentations.
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The lattice Λ which appears in Section 2 is the preimage in the plane of the postcritical set of our Lattès
map. We identify Λ with Λ1 in the usual NET map notation. Since our affine map is given by z 7→ αz + β
with β ∈ Λ1, we take Λ2 = α−1Λ1. Our Z-basis of Λ1 = Λ consists of λ1 = 1 and λ2 = τ , so we take α−1

and α−1τ as our Z-basis of Λ2. We have the following.

λ1 = 1 = αα−1 = α−1(α · 1) = α−1(a + cτ) = aα−1 + cα−1τ

λ2 = τ = α(α−1τ) = α−1(α · τ) = α−1(b + dτ) = bα−1 + dα−1τ

This shows that the matrix A =
[

a b
c d

]
is the matrix of the multiplication map z 7→ αz with respect to the

ordered Z-basis (α−1, α−1τ) of Λ2 and that the coordinates of λ1 form its first column and the coordinates
of λ2 form its second column. Hence A is the usual matrix which appears in the affine map x 7→ Ax + b
for NET map presentations. (This b is not to be confused with the previous b.) The column b consists
of the coordinates of β with respect to α−1 and α−1τ . For example, if β = 1, then b = [ a

c ] because
1 = λ1 = aα−1 + cα−1τ . Of course, the entries of b are determined only modulo 2. Taking the line segments
which appear in NET map presentations to be trivial, we obtain a NET map presentation for our Lattès
map.

In this paragraph we discuss NET map presentations for conjugate Lattès maps. If the affine map
z 7→ αz + β determines a given Lattès map, then z 7→ αz + β determines the conjugate Lattès map. To
obtain a NET map presentation for the conjugate Lattès map, we use the same lattices and bases. Because
the eigenvalues of A are α and α, by considering the trace of A, we see that α+α = a+d. So multiplication
by α is the same as multiplication by a + d− α. So our new matrix is (a + d)I −A =

[
d −b
−c a

]
. Because the

map z 7→ −z is a deck transformation, we may multiply this matrix by −1 to obtain
[−d b

c −a

]
. (The case

in which α is purely imaginary corresponds to the case in which a + d = 0, in which case our new matrix
equals our old matrix.) To obtain a NET map presentation for the conjugate Lattès map, all that remains
to do is to express β in terms of α−1 and α−1τ .
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