ENUMERATION OF LATTÈS MAPS

WALTER PARRY

1. Introduction

These notes provide a simple and effective method for enumerating Lattès maps of small degree. Much of this is contained in [2].

2. Definitions and basic facts for Lattès maps

Following Milnor [4, Remark 3.5] (but not [5]), we define a Lattès map to be a rational function from the Riemann sphere $\widehat{\mathbb{C}}$ to itself such that its local degree at every critical point is 2 and there are exactly four postcritical points, none of which is also critical. Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a Lattès map.

As in Section 3.1 of [4], it follows that there exists an analytic branched cover $\wp: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ which is branched exactly over the postcritical points of f and the local degree of \wp at every branch point is 2 . (The function \wp is a Weierstrass \wp-function up to precomposing and postcomposing with analytic automorphisms.) Let Λ be the set of branch points of \wp. It is furthermore true that \wp is a regular branched cover, and its group of deck transformations Γ is generated by the set of all rotations of order 2 about the points of Λ. We refer to Γ as the orbifold fundamental group of f. Given rotations $z \mapsto 2 \lambda-z$ and $z \mapsto 2 \mu-z$ of order 2 about the points $\lambda, \mu \in \Lambda$, their composition, the second followed by the first, is the translation $z \mapsto z+2(\lambda-\mu)$. We may, and do, normalize so that $0 \in \Lambda$. So Γ contains a subgroup with index 2 consisting of translations of the form $z \mapsto z+2 \lambda$ with $\lambda \in \Lambda$. It follows that Λ is a lattice in \mathbb{C} and that the elements of Γ are the maps of the form $z \mapsto \pm z+2 \lambda$ for some $\lambda \in \Lambda$.

Douady and Hubbard show in [3, Proposition 9.3] that the map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ lifts to a map $\widetilde{f}: \mathbb{C} \rightarrow \mathbb{C}$ given by $\tilde{f}(z)=\alpha z+\beta$ for some imaginary quadratic algebraic integer α (possibly an element of \mathbb{Z}) such that $\alpha \Lambda \subseteq \Lambda$ and some $\beta \in \Lambda$. The following lemma is devoted to determining to what extent α, β and Λ are determined by the analytic conjugacy class of f.
Lemma 2.1. Let f_{0} be a Lattès map which is analytically conjugate to f. Let $\wp_{0}: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ be a branched cover for f_{0} corresponding to \wp. Let Λ_{0} be the set of branch points of \wp_{0}, and assume that $0 \in \Lambda_{0}$. Suppose that $f_{0}: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ lifts to a map $\widetilde{f}_{0}: \mathbb{C} \rightarrow \mathbb{C}$ given by $\widetilde{f}_{0}(z)=\alpha_{0} z+\beta_{0}$. Then the following hold.
(1) $\alpha_{0}= \pm \alpha$.
(2) $\beta_{0}=\gamma \beta+\delta$ where $\gamma \in \mathbb{C}^{\times}$and $\delta \in(\alpha+1) \Lambda_{0}+2 \Lambda_{0}$.
(3) $\Lambda_{0}=\gamma \Lambda$ with γ as in statement 2.

Conversely, if $\wp_{0}: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ is a branched cover as above, if Λ_{0} is the set of branch points of \wp_{0} with $0 \in \Lambda_{0}$ and if $\widetilde{f}_{0}(z)=\alpha_{0} z+\beta_{0}$ such that statements 1, 2 and 3 hold, then \widetilde{f}_{0} is the lift of a Lattès map which is analytically conjugate to f.
Proof. Let σ be a Möbius transformation such that $f_{0}=\sigma \circ f \circ \sigma^{-1}$. Just as for f and f_{0}, the map $\sigma: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ lifts to a map $\widetilde{\sigma}: \mathbb{C} \rightarrow \mathbb{C}$ given by $\widetilde{\sigma}(z)=\rho z+\nu$ for some $\rho \in \mathbb{C}^{\times}$and $\nu \in \mathbb{C}$. Since σ maps the postcritical set of f to the postcritical set of $f_{0}, \widetilde{\sigma}$ maps Λ to Λ_{0}, that is, $\rho \Lambda+\nu=\Lambda_{0}$. In other words, the coset $\rho \Lambda+\nu$ of the group $\rho \Lambda$ equals the group Λ_{0}. The only way that a coset can be a group is if it is the trivial coset, and so $\nu \in \Lambda_{0}$ and $\Lambda_{0}=\rho \Lambda$. Since \widetilde{f}_{0} and $\widetilde{\sigma} \circ \widetilde{f} \circ \widetilde{\sigma}^{-1}$ are both lifts of f_{0}, they differ by an element of Γ_{0}, the group of deck transformations of \wp_{0}. In other words, $\pm \widetilde{f}_{0}(z)+2 \lambda_{0}=\widetilde{\sigma} \circ \widetilde{f} \circ \widetilde{\sigma}^{-1}(z)$ for some $\lambda_{0} \in \Lambda_{0}$. So we have the following.

$$
\begin{aligned}
\pm\left(\alpha_{0} z+\beta_{0}\right)+2 \lambda_{0} & = \pm \widetilde{f}_{0}(z)+2 \lambda_{0}=\widetilde{\sigma} \circ \tilde{f} \circ \tilde{\sigma}^{-1}(z)=\rho \widetilde{f}\left(\rho^{-1}(z-\nu)\right)+\nu \\
& =\rho\left(\alpha \rho^{-1}(z-\nu)+\beta\right)+\nu=\alpha z+\rho \beta+(1-\alpha) \nu
\end{aligned}
$$

[^0]Hence $\alpha_{0}= \pm \alpha$, which yields statement 1. Furthermore

$$
\pm \beta_{0}=\rho \beta+(1-\alpha) \nu-2 \lambda_{0} .
$$

We have seen that $\nu \in \Lambda_{0}$. So setting $\gamma= \pm \rho$ and $\delta= \pm\left((\alpha+1) \nu-2 \alpha \nu-2 \lambda_{0}\right)$, we have that $\beta_{0}=\gamma \beta+\delta$ with $\gamma \in \mathbb{C}^{\times}$and $\delta \in(\alpha+1) \Lambda_{0}+2 \Lambda_{0}$. We now have verified statements 1,2 and 3 .

For the converse, it is a straightforward matter to construct $\widetilde{\sigma}$ such that $\widetilde{\sigma}$ conjugates \tilde{f} to \widetilde{f}_{0} up to the action of Γ_{0}. One checks that $\widetilde{\sigma}$ descends to a rational map $\sigma: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ which has local degree 1 at every point of $\widehat{\mathbb{C}}$. So σ is a Möbius transformation. It follows that \widetilde{f}_{0} is the lift of an analytic conjugate of f.

This completes the proof of Lemma 2.1.

Lemma 2.1 implies that with an appropriate modification of β the lattice Λ may be replaced by $\gamma \Lambda$, where γ is any nonzero complex number, without changing the analytic conjugacy class of f. In Section 7 of Chapter 2 of the number theory book [1] by Borevich and Shafarevich, the lattices Λ and $\gamma \Lambda$ are said to be similar. Theorem 9 and the remark following it in Section 7 of Chapter 2 of [1] imply that every lattice in \mathbb{C} is similar to a lattice with a \mathbb{Z}-basis consisting of 1 and τ, where τ lies in the standard fundamental domain for the action of $\operatorname{SL}(2, \mathbb{Z})$ on the upper half complex plane. More precisely, τ satisfies the following inequalities.

$$
\begin{gather*}
\operatorname{Im}(\tau)>0 \\
-\frac{1}{2}<\operatorname{Re}(\tau) \leq \frac{1}{2} \tag{2.2}\\
|\tau| \geq 1 \text { and if }|\tau|=1, \text { then } \operatorname{Re}(\tau) \geq 0
\end{gather*}
$$

Moreover there is only one such τ which satisfies these inequalities. This and Lemma 2.1 imply that τ is uniquely determined by the analytic conjugacy class of f.

Corollary 2.3. Let $\widetilde{f}_{0}(z)=\alpha_{0} z+\beta_{0}$ be a \mathbb{C}-linear map such that $\widetilde{f}_{0}(\Lambda) \subseteq \Lambda$. Then \widetilde{f}_{0} descends via the branched cover $\wp: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ to a rational function which is analytically conjugate to f if and only if $\alpha_{0}= \pm \alpha$ and $\beta_{0}=\gamma \beta+\delta$ where $\gamma \Lambda=\Lambda$, $\gamma=e^{ \pm 2 \pi i / n}$ with $n \in\{1,2,3,4,6\}$ and $\delta \in(\alpha+1) \Lambda+2 \Lambda$.

Proof. In this situation $\Lambda_{0}=\Lambda$. So just as for \widetilde{f}, the containment $\gamma \Lambda \subseteq \Lambda$ implies that the complex number γ is in fact an imaginary quadratic algebraic integer. Because $\gamma \Lambda=\Lambda, \gamma$ is invertible, that is, it is a unit. But all imaginary quadratic units have the form $e^{ \pm 2 \pi i / n}$ with $n \in\{1,2,3,4,6\}$. This discussion and Lemma 2.1 prove Corollary 2.3.

In this paragraph we consider related effects of complex conjugation. By the complex conjugate of a rational map f, we mean the rational map gotten by applying complex conjugation to the coefficients of f. It is easy to see that the complex conjugate of a Lattès map is also a Lattès map. By applying complex conjugation to the Lattès map f, the branched cover \wp and the lift \widetilde{f} of f, we see that the complex conjugate of \widetilde{f} is a lift of the complex conjugate of f. The behavior of f is essentially the same as the behavior of \bar{f}, so when considering $\widetilde{f}(z)=\alpha z+\beta$, we assume that $\operatorname{Im}(\alpha) \geq 0$. Since \widetilde{f} and $-\widetilde{f}$ both lift f, we may also assume that $\operatorname{Re}(\alpha) \geq 0$. This shows that the restrictions put on α in the following lemma are reasonable.
Lemma 2.4. As above, let Λ be the inverse image in \mathbb{C} of the postcritical set of the Lattès map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$, and let $\widetilde{f}(z)=\alpha z+\beta$ be a lift of f. Suppose that 1 and τ form a \mathbb{Z}-basis of Λ. Multiplication by α determines an endomorphism of Λ. Let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be the matrix of this endomorphism with respect to the ordered \mathbb{Z}-basis $(1, \tau)$. Suppose that $\operatorname{Im}(\alpha)>0$. Then $\operatorname{Re}(\alpha) \geq 0$ and τ lies in the standard fundamental domain for the action of $S L(2, \mathbb{Z})$ on the upper half complex plane if and only if the following inequalities are satisfied.

$$
\begin{gathered}
c>0 \\
a \geq-\frac{c}{2} \\
\max \{a-c+1,-a\} \leq d \leq a+c \\
b \leq-c \text { and if } b=-c, \text { then } d \geq a
\end{gathered}
$$

Proof. From the first column of the matrix $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$ it follows that $\alpha=a+c \tau$. So $\tau=\frac{\alpha-a}{c}$. The matrix of the endomorphism determined by $\alpha-a$ is $\left[\begin{array}{cc}0 & b \\ c & d-a\end{array}\right]$. Because the eigenvalues of this matrix are $\alpha-a$ and $\overline{\alpha-a}$, its trace is twice the real part of $\alpha-a$ and its determinant is the square of the modulus of $\alpha-a$. So $\operatorname{Re}(\alpha-a)=\frac{d-a}{2}$ and $|\alpha-a|^{2}=-b c$. Hence $\operatorname{Re}(\tau)=\frac{d-a}{2 c}$ and $|\tau|^{2}=-\frac{b}{c}$. Similarly $\operatorname{Re}(\alpha)=\frac{a+d}{2}$.

Suppose that $\operatorname{Re}(\alpha) \geq 0$ and that the inequalities in line 2.2 hold. Since $\tau=\frac{\alpha-a}{c}$ and $\operatorname{Im}(\alpha)>0$, the inequality $\operatorname{Im}(\tau)>0$ implies that $c>0$, giving the first inequality in the statement of the lemma. For the second inequality, we combine $\operatorname{Re}(\alpha) \geq 0$ and $\operatorname{Re}(\tau) \leq \frac{1}{2}$ to obtain $a+d \geq 0$ and $d-a \leq c$, hence $a-d \geq-c$. So $a \geq-\frac{c}{2}$, giving the second inequality in the statement of the lemma. Combining $-\frac{1}{2}<\operatorname{Re}(\tau) \leq \frac{1}{2}$ and $\operatorname{Re}(\alpha) \geq 0$ obtains $-c<d-a \leq c$ and $a+d \geq 0$, which easily gives the third inequality in the statement of the lemma. The fourth inequality follows from the fact that $|\tau| \geq 1$ with equality only if $\operatorname{Re}(\tau) \geq 0$.

Proving the converse is straightforward.
This proves Lemma 2.4.

Lemma 2.5. (1) In Corollary 2.3 the case $\gamma= \pm i$ occurs only when $\tau=i$, and the case $\gamma= \pm e^{ \pm 2 \pi i / 3}$ occurs only when $\tau=e^{2 \pi i / 6}$.
(2) Let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be as in Lemma 2.4, and let M be the reduction of $\left[\begin{array}{cc}a+1 & b \\ c & d+1\end{array}\right]$ modulo 2. Then a complete list of distinct coset representatives of $(\alpha+1) \Lambda+2 \Lambda$ in Λ is given by

$$
\begin{gathered}
0 \text { if } \operatorname{rank}(M)=2 \\
0,1, \tau, \tau+1 \text { if } \operatorname{rank}(M)=0 \\
0, \lambda \text { if } \operatorname{rank}(M)=1,
\end{gathered}
$$

where λ is any element of Λ whose image in $\Lambda / 2 \Lambda$ is not in the column space of M.
Proof. If $\gamma= \pm i$, then $i \in \Lambda$ because $\gamma \Lambda \subseteq \Lambda$. But then i is an integral linear combination of 1 and τ with τ in the standard fundamental domain for the action of $\mathrm{SL}(2, \mathbb{Z})$ on the upper half complex plane. This implies that $\tau=i$. A similar argument applies when $\gamma= \pm e^{ \pm 2 \pi i / 3}$. This proves statement 1 .

Statement 2 is clear.

Since the elements of the orbifold fundamental group are Euclidean isometries, \tilde{f} multiplies areas uniformly by the factor $\operatorname{deg}(f)$. Translation by β does not change areas. Multiplication by α multiplies lengths by $|\alpha|$ and areas by $|\alpha|^{2}=\alpha \bar{\alpha}$. Multiplication by α also corresponds to multiplication by the matrix $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$, and this multiplies areas by its determinant. Therefore $\operatorname{deg}(f)=\alpha \bar{\alpha}=a d-b c$.
Lemma 2.6. If a, b, c and d satisfy the inequalities of Lemma 2.4, then $a d-b c \geq 3 c^{2} / 4$. If equality holds, then $a=-d$ and $b=-c$.

Proof. The inequalities of Lemma 2.4 imply that $|a-d| \leq c$. Hence $c^{2} \geq(a-d)^{2} \geq(a-d)^{2}-(a+d)^{2}=-4 a d$. Since $b \leq-c$ and $c>0$, it follows that $a d-b c \geq-c^{2} / 4+c^{2}=3 c^{2} / 4$. This gives the inequality of the first statement of the lemma. The second statement is now clear.

Let f be a Lattès map with lift $\widetilde{f}(z)=\alpha z+\beta$ and lattice Λ as above. We say that f is flexible if $\alpha \in \mathbb{R}$, equivalently, $\alpha \in \mathbb{Z}$. We say that f is rigid if $\alpha \notin \mathbb{R}$. If f is flexible, then since multiplication by an integer stabilizes every lattice in \mathbb{C}, Λ can be arbitrary. There are uncountably many analytic conjugacy classes of Lattès maps for every integer $\alpha \geq 2$. On the other hand, there are only finitely many analytic conjugacy classes of rigid Lattès maps with a given degree. To see why, first note that Lemma 2.6 and the paragraph before it imply that in the rigid case a bound on $\operatorname{deg}(f)=a d-b c$ puts a bound on c. We may assume that $\operatorname{Im}(\alpha)>0$. The inequalities of Lemma 2.4 imply that a bound on c puts a lower bound on a and d. Because $b \leq-c, c>0$ and $|a-d| \leq c$, a bound on $a d-b c$ puts an upper bound on both a and d. So a bound on $a d-b c$ puts a bound on c, a, d and therefore b. So if $\operatorname{deg}(f)$ is bounded, then there are only finitely many possibilities for a, b, c and d. These values determine α in the upper half plane and τ. Given α and τ, there are always at most four possibilities for β up to equivalence. So if f is rigid and $\operatorname{deg}(f)$ is bounded, then there are only finitely many possibilities for the analytic conjugacy class of f.

$\operatorname{deg}(f)$	a	b	c	d	α	β	τ	real
2	0	-2	1	0	$\sqrt{-2}$	0	$\sqrt{-2}$	yes
2	0	-2	1	1	$\frac{1+\sqrt{-7}}{2}$	0	$\frac{1+\sqrt{-7}}{2}$	no
2	0	-2	1	1	$\frac{1+\sqrt{-7}}{2}$	1	$\frac{1+\sqrt{-7}}{2}$	no
2	1	-1	1	1	$1+\sqrt{-1}$	0	$\sqrt{-1}$	no
3	0	-3	1	0	$\sqrt{-3}$	0	$\sqrt{-3}$	yes
3	0	-3	1	0	$\sqrt{-3}$	1	$\sqrt{-3}$	yes
3	0	-3	1	1	$\frac{1+\sqrt{-11}}{2}$	0	$\frac{1+\sqrt{-11}}{2}$	no
3	1	-2	1	1	$1+\sqrt{-2}$	0	$\sqrt{-2}$	no
3	1	-2	1	1	$1+\sqrt{-2}$	1	$\sqrt{-2}$	no
3	1	-1	1	2	$\frac{3+\sqrt{-3}}{2}$	0	$\frac{1+\sqrt{-3}}{2}$	no
3	-1	-2	2	1	$\sqrt{-3}$	0	$\frac{1+\sqrt{-3}}{2}$	yes
3	-1	-2	2	1	$\sqrt{-3}$	1	$\frac{1+\sqrt{-3}}{2}$	yes

TABLE 1. All Lattès maps with degrees 2 or 3 up to complex conjugation.

3. Lattès maps with degrees 2 OR 3

In this section we enumerate all Lattès maps with degrees 2 or 3 up to analytic conjugacy.
As in Section 2, let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a Lattès map, let Λ be a lift of the postcritical set of f to \mathbb{C} and let $\tilde{f}(z)=\alpha z+\beta$ be a lift of f. If $\alpha \in \mathbb{Z}$, then the degree of f is α^{2}, which is not 2 or 3 . So as in the paragraph before Lemma 2.4, replacing f by \bar{f} if necessary, we may assume that $\operatorname{Re}(\alpha) \geq 0$ and $\operatorname{Im}(\alpha)>0$. We have seen that f uniquely determines a complex number τ which lies in the standard fundamental domain for the action of $\mathrm{SL}(2, \mathbb{Z})$ on the upper half complex plane. Multiplication by α determines an endomorphism of Λ. Let $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]$ be the matrix of this endomorphism with respect to the ordered \mathbb{Z}-basis $(1, \tau)$ of Λ. Using Lemma 2.4 we see that giving α and τ is equivalent to giving integers a, b, c, d which satisfy the inequalities of Lemma 2.4. The degree of f is $|\alpha|^{2}=a d-b c$.

Table 1 enumerates all Lattès maps with degrees 2 or 3 up to complex conjugation and analytic conjugacy. The next two paragraphs show how to determine these values of a, b, c, and d. Having $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we obtain α as its eigenvalue in the upper half plane. The equation $\alpha=a+c \tau$ then gives τ. The value of β comes from Lemma 2.5. The case in which $\gamma= \pm i$ in statement 1 of Lemma 2.5 is not needed, and the other case in statement 1 is needed only for the last row of Table 1. The last column in Table 1 deals with whether $f=\bar{f}$. This can be determined using Lemma 2.1 and the paragraph preceding Lemma 2.4. The word "yes" in this column means that $f=\bar{f}$, that is, the coefficients of this rational function are real numbers. The word "no" means that f is not analytically conjugate to a rational function which equals its complex conjugate. Up to analytic conjugacy, there are 7 Lattès maps with degree 2 and 12 Lattès maps with degree 3 .

In this paragraph we determine the values of a, b, c and d in Table 1 for $\operatorname{deg}(f)=2$. Since $\operatorname{deg}(f)=a d-b c$, Lemma 2.6 implies that $c=1$. Now Lemma 2.4 implies that $0 \leq a \leq d \leq a+1$ and $b \leq-1$. So $a d$ and $-b c$ are nonnegative integers whose sum is 2 . One easily checks that the possibilities for (a, b, c, d) are $(0,-2,1,0)$, $(0,-2,1,1)$ and $(1,-1,1,1)$. This determines the values of a, b, c, and d in Table 1 for $\operatorname{deg}(f)=2$.

Now we proceed as in the previous paragraph for $\operatorname{deg}(f)=3$. In this case Lemma 2.6 gives that either $c=1$ or $c=2$ and $b=-2$. If $c=1$, then as in the previous paragraph, $a d$ and $-b c$ are nonnegative integers whose sum is 3 . One easily checks that in this case the possibilities for (a, b, c, d) are $(0,-3,1,0),(0,-3,1,1)$, $(1,-2,1,1)$ and $(1,-1,1,2)$. If $c=2$, then since $b=-2$ and $a d-b c=3$, we have that $a d=-1$. This and the inequality $\max \{a-c+1,-a\} \leq d$ from Lemma 2.4 imply that $a=-1$ and $d=1$. This determines the values of a, b, c and d in Table 1 for $\operatorname{deg}(f)=3$.

4. NET MAP PRESENTATIONS

In this section we indicate how to transform Lattès map presentations as in Table 1 into Euclidean NET map presentations.

The lattice Λ which appears in Section 2 is the preimage in the plane of the postcritical set of our Lattès map. We identify Λ with Λ_{1} in the usual NET map notation. Since our affine map is given by $z \mapsto \alpha z+\beta$ with $\beta \in \Lambda_{1}$, we take $\Lambda_{2}=\alpha^{-1} \Lambda_{1}$. Our \mathbb{Z}-basis of $\Lambda_{1}=\Lambda$ consists of $\lambda_{1}=1$ and $\lambda_{2}=\tau$, so we take α^{-1} and $\alpha^{-1} \tau$ as our \mathbb{Z}-basis of Λ_{2}. We have the following.

$$
\begin{aligned}
& \lambda_{1}=1=\alpha \alpha^{-1}=\alpha^{-1}(\alpha \cdot 1)=\alpha^{-1}(a+c \tau)=a \alpha^{-1}+c \alpha^{-1} \tau \\
& \lambda_{2}=\tau=\alpha\left(\alpha^{-1} \tau\right)=\alpha^{-1}(\alpha \cdot \tau)=\alpha^{-1}(b+d \tau)=b \alpha^{-1}+d \alpha^{-1} \tau
\end{aligned}
$$

This shows that the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the matrix of the multiplication map $z \mapsto \alpha z$ with respect to the ordered \mathbb{Z}-basis $\left(\alpha^{-1}, \alpha^{-1} \tau\right)$ of Λ_{2} and that the coordinates of λ_{1} form its first column and the coordinates of λ_{2} form its second column. Hence A is the usual matrix which appears in the affine map $x \mapsto A x+b$ for NET map presentations. (This b is not to be confused with the previous b.) The column b consists of the coordinates of β with respect to α^{-1} and $\alpha^{-1} \tau$. For example, if $\beta=1$, then $b=\left[\begin{array}{c}a \\ c\end{array}\right]$ because $1=\lambda_{1}=a \alpha^{-1}+c \alpha^{-1} \tau$. Of course, the entries of b are determined only modulo 2 . Taking the line segments which appear in NET map presentations to be trivial, we obtain a NET map presentation for our Lattès map.

In this paragraph we discuss NET map presentations for conjugate Lattès maps. If the affine map $z \mapsto \alpha z+\beta$ determines a given Lattès map, then $z \mapsto \bar{\alpha} z+\bar{\beta}$ determines the conjugate Lattès map. To obtain a NET map presentation for the conjugate Lattès map, we use the same lattices and bases. Because the eigenvalues of A are α and $\bar{\alpha}$, by considering the trace of A, we see that $\alpha+\bar{\alpha}=a+d$. So multiplication by $\bar{\alpha}$ is the same as multiplication by $a+d-\alpha$. So our new matrix is $(a+d) I-A=\left[\begin{array}{cc}d & -b \\ -c\end{array}\right]$. Because the $\operatorname{map} z \mapsto-z$ is a deck transformation, we may multiply this matrix by -1 to obtain $\left[\begin{array}{cc}-d & b \\ c & -a\end{array}\right]$. (The case in which α is purely imaginary corresponds to the case in which $a+d=0$, in which case our new matrix equals our old matrix.) To obtain a NET map presentation for the conjugate Lattès map, all that remains to do is to express $\bar{\beta}$ in terms of α^{-1} and $\alpha^{-1} \tau$.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York and London, 1966.
[2] J. W. Cannon, W. J. Floyd and W. R. Parry, Lattès maps and finite subdivision rules, Conform. Geom. Dyn. 14 (2010), 113-140.
[3] A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math. 171 (1993), 263-297.
[4] J. Milnor, Pasting together Julia sets: a worked out example of mating, Experimental Math. 13 (2004), 55-92.
[5] J. Milnor, On Lattès maps, in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, (2006), 9-43.

[^0]: Date: August 2, 2013.

