ENUMERATION OF LATTES MAPS

WALTER PARRY

1. INTRODUCTION

These notes provide a simple and effective method for enumerating Lattes maps of small degree. Much
of this is contained in [2].

2. DEFINITIONS AND BASIC FACTS FOR LATTES MAPS

Following Milnor [4, Remark 3.5] (but not [5]), we define a Lattés map to be a rational function from the
Riemann sphere C to itself such that its local degree at every critical point is 2 and there are exactly four
postcritical points, none of which is also critical. Let f: C — C be a Lattes map.

As in Section 3.1 of [4], it follows that there exists an analytic branched cover p: C — C which is branched
exactly over the postcritical points of f and the local degree of g at every branch point is 2. (The function
p is a Weierstrass gp-function up to precomposing and postcomposing with analytic automorphlsms.) Let A
be the set of branch points of g. It is furthermore true that @ is a regular branched cover, and its group of
deck transformations I" is generated by the set of all rotations of order 2 about the points of A. We refer to
T" as the orbifold fundamental group of f. Given rotations z — 2\ — z and z — 2u — 2z of order 2 about
the points A, u € A, their composition, the second followed by the first, is the translation z — z 4+ 2(\ — p).
We may, and do, normalize so that 0 € A. So I' contains a subgroup with index 2 consisting of translations
of the form z — z + 2X\ with A € A. It follows that A is a lattice in C and that the elements of T are the
maps of the form z — £z + 2\ for some A € A. N

Douady and Hubbard show in [3, Proposition 9.3] that the map f: C — C lifts to a map f: C — C given
by f(z) = az + f for some imaginary quadratic algebraic integer o (possibly an element of Z) such that
al C A and some 3 € A. The following lemma is devoted to determining to what extent «, § and A are
determined by the analytic conjugacy class of f.

Lemma 2.1. Let fy be a Lattés map which is analytically conjugate to f. Let po: C — C be a branched
cover for fo correspondmg to . Let Ao be the set of branch points of oo, and assume that 0 € Ag. Suppose
that fo: C — C lifts to a map fo: C — C given by fo( ) = oz + Bo. Then the following hold.

(1) ap = ta.

(2) Bo =708+ 9 wherey € C* and § € (o + 1)Ag + 2A.

(3) Ao = vA with v as in statement 2.

Conversely, if po: C — C is a branched cover as above, if Ao is the set of branch points of po with 0 € Ay
and if fo(z) = apz + Po such that statements 1, 2 and 8 hold, then fq is the lift of a Lattés map which is
analytically conjugate to f.

~

Proof. Let ¢ be a Mdbius transformation such that fy = oo foo™!. Just as for f and fy, the map o: C—C
lifts to a map o: C — C given by o(2) = pz + v for some p € C* and v € C. Since o maps the postcritical
set of f to the postcritical set of fy, @ maps A to Ag, that is, pA + v = Ag. In other words, the coset pA + v
of the group pA equals the group AO; The only way that a coset can be a group is if it is the trivial coset,
and so v € Ag and Ay = pA. Since fy and Go f oo ! are both lifts of fy, they differ by an element of I'p,
the group of deck transformations of pg. In other words, +fo(2) +2X\g = 7 o f 0o 5 1(2) for some \g € Ag.
So we have the following.

(a0 + o) + 2% = £fo(2) + 2 =G 0 f o5 (2) = pf(p™ (2 V) + v
=plap tz =)+ B)+v=az+pB+ (1 —a)
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Hence ap = +a, which yields statement 1. Furthermore
+00 = pf+ (1 —a)v —2X.

We have seen that v € Ag. So setting v = +p and § = £((a + 1)v — 2av — 2)¢), we have that By =v8+ 4§
with v € C* and ¢ € (o + 1)Ag + 2Ag. We now have verified statements 1, 2 and 3.

For the converse, it is a straightforward matter to construct o such that o conjugates fto fo up to the
action of I'g. One checks that ¢ descends to a rational map o C — C which has local degree 1 at every
point of C. So o is a Mobius transformation. It follows that fo is the lift of an analytic conjugate of f.

This completes the proof of Lemma 2.1.

|

Lemma 2.1 implies that with an appropriate modification of § the lattice A may be replaced by <A,
where v is any nonzero complex number, without changing the analytic conjugacy class of f. In Section 7
of Chapter 2 of the number theory book [1] by Borevich and Shafarevich, the lattices A and yA are said to
be similar. Theorem 9 and the remark following it in Section 7 of Chapter 2 of [1] imply that every lattice
in C is similar to a lattice with a Z-basis consisting of 1 and 7, where 7 lies in the standard fundamental
domain for the action of SL(2,7Z) on the upper half complex plane. More precisely, T satisfies the following
inequalities.

Im(7) >0
1 1
2.2 _Z z
(2.2) 5 <Re(r) <5
|7| > 1 and if |7| = 1, then Re(7) >0

Moreover there is only one such 7 which satisfies these inequalities. This and Lemma 2.1 imply that 7 is
uniquely determined by the analytic conjugacy class of f.

Corollary 2.3. Let fo(z) = agz + By be a C-linear map such that fg(A) C A. Then fo descends via the
branched cover o: C — C to a rational function which is analytically conjugate to f if and only if g =
and o = yB + § where yA = A, v = e*2™/™ with n € {1,2,3,4,6} and 6 € (o + 1)A 4 2A.

Proof. In this situation Ag = A. So just as for f, the containment YA C A implies that the complex number
~ is in fact an imaginary quadratic algebraic integer. Because yA = A, « is invertible, that is, it is a unit. But
all imaginary quadratic units have the form e=27/" with n € {1,2,3,4,6}. This discussion and Lemma 2.1
prove Corollary 2.3.

|

In this paragraph we consider related effects of complex conjugation. By the complex conjugate of a
rational map f, we mean the rational map gotten by applying complex conjugation to the coefficients of f.
It is easy to see that the complex conjugate of a Lattes map is also a Lattes map. By applying complex
conjugation to the Lattes map f, the branched cover p and the lift fof f, we see that the complex conjugate
of f is a lift of the complex conjugate of f. The behavior of f is essentially the same as the behavior of 1,
so when considering f( ) = az + [, we assume that Im(«) > 0. Since f and f both lift f, we may also
assume that Re(a) > 0. This shows that the restrictions put on « in the following lemma are reasonable.

Lemma 2.4. As above, let A be the inverse image in C of the postcritical set of the Lattés map f: C— (E,
and let f(z) = az+ 0 be a lift of f. Suppose that 1 and T form a Z-basis of A. Multiplication by o determines
an endomorphism of A. Let [‘C‘ Z] be the matriz of this endomorphism with respect to the ordered Z-basis
(1,7). Suppose that Im(c) > 0. Then Re(a) > 0 and 7 lies in the standard fundamental domain for the
action of SL(2,7Z) on the upper half complex plane if and only if the following inequalities are satisfied.

c>0

S _¢
a>——
-2

max{a—c+1,—a} <d<a+c
b< —c andif b= —c, thend > a
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Proof. From the first column of the matrix [@ Z] it follows that « = a4 ¢7. So T =
the endomorphism determined by a —a is [2 ;*,]. Because the eigenvalues of this matrix are o — a and
o — a, its trace is twice the real part of @ — a and its determinant is the square of the modulus of a — a. So
Re(a — a) = 2 and |o — a|? = —be. Hence Re(7) = &2 and |7]? = —2. Similarly Re(a) = “£<4.

Suppose that Re(a) > 0 and that the inequalities in line 2.2 hold. Since 7 = =% and Im(a) > 0, the
inequality Im(7) > 0 implies that ¢ > 0, giving the first inequality in the statement of the lemma. For the
second inequality, we combine Re(a) > 0 and Re(7) < % to obtain a+d > 0 and d—a < ¢, hence a—d > —c.
So a > —3, giving the second inequality in the statement of the lemma. Combining —% < Re(r) < % and
Re(a)) > 0 obtains —¢ < d —a < ¢ and a + d > 0, which easily gives the third inequality in the statement of
the lemma. The fourth inequality follows from the fact that |7| > 1 with equality only if Re(7) > 0.

Proving the converse is straightforward.

This proves Lemma 2.4.

@=a2  The matrix of

O

Lemma 2.5. (1) In Corollary 2.3 the case v = %i occurs only when T = i, and the case v = +et27i/3

occurs only when T = e27/6,

2) Let [2 %] be as in Lemma 2.4, and let M be the reduction of [T ° | modulo 2. Then a complete list
cd c d+1

of distinct coset representatives of (o + 1)A + 2A in A is given by
0 iof rank(M) =2
0,1, 7,7+ 1 if rank(M) =0
0, if rank(M) =1,
where X is any element of A whose image in A/2A is not in the column space of M.

Proof. If v = +i, then ¢ € A because YA C A. But then 7 is an integral linear combination of 1 and 7 with
7 in the standard fundamental domain for the action of SL(2,Z) on the upper half complex plane. This
implies that 7 = i. A similar argument applies when v = +e*27%/3_ This proves statement 1.
Statement 2 is clear.
|

Since the elements of the orbifold fundamental group are Euclidean isometries, fmultiplies areas uniformly
by the factor deg(f). Translation by  does not change areas. Multiplication by a multiplies lengths by |«]
and areas by |0¢|2 = aa. Multiplication by « also corresponds to multiplication by the matrix [‘j Z}, and
this multiplies areas by its determinant. Therefore deg(f) = aa = ad — be.

Lemma 2.6. Ifa, b, c and d satisfy the inequalities of Lemma 2.4, then ad — bc > 3c? /4. If equality holds,
then a = —d and b = —c.

Proof. The inequalities of Lemma 2.4 imply that |a — d| < ¢. Hence ¢ > (a—d)? > (a—d)?—(a+d)* = —4ad.
Since b < —c and ¢ > 0, it follows that ad — bc > —c?/4 + ¢® = 3¢?/4. This gives the inequality of the first
statement of the lemma. The second statement is now clear.

O

Let f be a Lattes map with lift f(z) = az + § and lattice A as above. We say that f is flexible if a € R,
equivalently, o € Z. We say that f is rigid if o ¢ R. If f is flexible, then since multiplication by an integer
stabilizes every lattice in C, A can be arbitrary. There are uncountably many analytic conjugacy classes of
Lattes maps for every integer a@ > 2. On the other hand, there are only finitely many analytic conjugacy
classes of rigid Lattes maps with a given degree. To see why, first note that Lemma 2.6 and the paragraph
before it imply that in the rigid case a bound on deg(f) = ad — be puts a bound on ¢. We may assume that
Im(«) > 0. The inequalities of Lemma 2.4 imply that a bound on ¢ puts a lower bound on a and d. Because
b< —c¢,¢>0and |a—d| <c¢ abound on ad — bc puts an upper bound on both a and d. So a bound on
ad — be puts a bound on ¢, a, d and therefore b. So if deg(f) is bounded, then there are only finitely many
possibilities for a, b, ¢ and d. These values determine « in the upper half plane and 7. Given « and 7, there
are always at most four possibilities for 8 up to equivalence. So if f is rigid and deg(f) is bounded, then
there are only finitely many possibilities for the analytic conjugacy class of f.
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deg(f)| a | b |c|d a ¢ T real
2 o |-2[1]0] v=2 0| V=2 |yes
2 |0 |-—2[1]1] LT T T o
2 o |—2[1]1] LT 1] AT o
2 |1 |-1(1]1|1+v=1]0| V=1 |nmo
3 |0 ]-3/1]0] V=3 |0]| V=3 |yes
3 |0 ]-3/1]0] V=3 |1]| V=3 |yes
3 0 |-3|1]1| =t 1| =t |0
3 |1 |-2[1]1]1+v=2]0] V=2 |no
3 | 1| -2[1]1|1+v=2]1] V=2 |no
3 |1 |-1f1]2] 3 To| 5 o
3 |-1]-2|2]1| v=3 |0| L2 yes
3 | -1]-2]2]1] V=3 |1| 5 lyes

TABLE 1. All Lattes maps with degrees 2 or 3 up to complex conjugation.

3. LATTES MAPS WITH DEGREES 2 OR 3

In this section we enumerate all Lattes maps with degrees 2 or 3 up to analytic conjugacy.

As in Section 2, let f: C — C be a Lattes map, let A be a lift of the postcritical set of f to C and let
fv(z) = az+ f be alift of f. If a € Z, then the degree of f is o, which is not 2 or 3. So as in the paragraph
before Lemma 2.4, replacing f by f if necessary, we may assume that Re(a) > 0 and Im(a) > 0. We have
seen that f uniquely determines a complex number 7 which lies in the standard fundamental domain for
the action of SL(2,Z) on the upper half complex plane. Multiplication by « determines an endomorphism
of A. Let [‘Z Z] be the matrix of this endomorphism with respect to the ordered Z-basis (1,7) of A. Using
Lemma 2.4 we see that giving a and 7 is equivalent to giving integers a, b, ¢, d which satisfy the inequalities
of Lemma 2.4. The degree of f is |a|? = ad — be.

Table 1 enumerates all Lattes maps with degrees 2 or 3 up to complex conjugation and analytic conjugacy.
The next two paragraphs show how to determine these values of a, b, ¢, and d. Having [‘; 2}, we obtain «
as its eigenvalue in the upper half plane. The equation o« = a + ¢7 then gives 7. The value of 3 comes from
Lemma 2.5. The case in which v = %4 in statement 1 of Lemma 2.5 is not needed, and the other case in
statement 1 is needed only for the last row of Table 1. The last column in Table 1 deals with whether f = f.
This can be determined using Lemma 2.1 and the paragraph preceding Lemma 2.4. The word “yes” in this
column means that f = f, that is, the coefficients of this rational function are real numbers. The word “no”
means that f is not analytically conjugate to a rational function which equals its complex conjugate. Up to
analytic conjugacy, there are 7 Latteés maps with degree 2 and 12 Lattes maps with degree 3.

In this paragraph we determine the values of a, b, ¢ and d in Table 1 for deg(f) = 2. Since deg(f) = ad—bc,
Lemma 2.6 implies that ¢ = 1. Now Lemma 2.4 implies that 0 <a <d<a+1and b < —1. So ad and —bc
are nonnegative integers whose sum is 2. One easily checks that the possibilities for (a, b, ¢, d) are (0, —2,1,0),
(0,—2,1,1) and (1,—1,1,1). This determines the values of a, b, ¢, and d in Table 1 for deg(f) = 2.

Now we proceed as in the previous paragraph for deg(f) = 3. In this case Lemma 2.6 gives that either
c=1lorc=2and b= —2. If c =1, then as in the previous paragraph, ad and —bc are nonnegative integers
whose sum is 3. One easily checks that in this case the possibilities for (a, b, ¢, d) are (0,—3,1,0), (0,—3,1,1),
(1,—-2,1,1) and (1,-1,1,2). If ¢ = 2, then since b = —2 and ad — bc = 3, we have that ad = —1. This and
the inequality max{a —c+ 1, —a} < d from Lemma 2.4 imply that « = —1 and d = 1. This determines the
values of a, b, ¢ and d in Table 1 for deg(f) = 3.

4. NET MAP PRESENTATIONS

In this section we indicate how to transform Lattés map presentations as in Table 1 into Euclidean NET
map presentations.
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The lattice A which appears in Section 2 is the preimage in the plane of the postcritical set of our Lattes
map. We identify A with A; in the usual NET map notation. Since our affine map is given by z — az + 3
with B € A1, we take Ay = o 'A;. Our Z-basis of A; = A consists of A\; = 1 and Ay = 7, so we take a™!
and o~ '7 as our Z-basis of Ay. We have the following.

M=l=act'=aYa-1)=aa+ecr)=aa" +ca '
M=T=ala'T)=aa-7)=a(b+dr)=ba" ' +da'r

This shows that the matrix A = [‘; 2] is the matrix of the multiplication map z — az with respect to the
ordered Z-basis (a~!,a~!7) of Ay and that the coordinates of A; form its first column and the coordinates
of Ay form its second column. Hence A is the usual matrix which appears in the affine map = — Ax + b
for NET map presentations. (This b is not to be confused with the previous b.) The column b consists
of the coordinates of 8 with respect to =t and a~'7. For example, if 3 = 1, then b = [%] because
1=\ =aa"t+ca 7. Of course, the entries of b are determined only modulo 2. Taking the line segments
which appear in NET map presentations to be trivial, we obtain a NET map presentation for our Lattes
map.

In this paragraph we discuss NET map presentations for conjugate Lattes maps. If the affine map
2z — oz + 3 determines a given Lattés map, then z — @z + § determines the conjugate Lattes map. To
obtain a NET map presentation for the conjugate Lattes map, we use the same lattices and bases. Because
the eigenvalues of A are « and @, by considering the trace of A, we see that o +@ = a + d. So multiplication
by @ is the same as multiplication by a + d — . So our new matrix is (a +d)I — A = [_dc _ab]. Because the

map z — —z is a deck transformation, we may multiply this matrix by —1 to obtain [;d f’a}. (The case
in which « is purely imaginary corresponds to the case in which a + d = 0, in which case our new matrix
equals our old matrix.) To obtain a NET map presentation for the conjugate Lattés map, all that remains

to do is to express 3 in terms of @~ and o~ 17,
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