35th VTRMC, 2013, Solutions

1. Make the substitution t =2y, sodt =2dy. Then I = fg/z 6\/5—*Mc’szy)/2dy =

17—8cos2y
fg / 23&;{2—2&%@. Now make the substitution z = siny. Then dz =
dycosy and [ = 12fosmx/232+d#Z2 = tan”! %sinx/2. If tan] = 2/+/3, then

24/3 = 3 sinx/2 and we deduce that x = 27/3.

2. Without loss of generality we may assume that BC = 1, and then we set
x:=BD, so AD = 2x. Write 8 = ZCAD, y = AC and z = DC. The area of
ADC is both x and (yzsin)/2. Also y?> = 14 9x? and z?> = 1 +x. There-
fore 4x*> = (14 9x%)(1 4+ x?)sin* @. We need to maximize 6, equivalently
sin? @, which in turn is equivalent to minimizing (1 + 9x%)(1+x2)/(4x?).
Therefore we need to find x such that x~2 4 9x? is minimal. Differentiating,
we find —2x73 + 18x = 0, so x> = 1/3. It follows that sin” @ = 1/4 and we
deduce that the maximum value of ZCAD = 0 is 30°.

3. We need to show that a, is bounded, equivalently Ina, is bounded, i.e.
In2¥>_,In(14+n"3/2)is bounded. ButIn(1+n"3?2) <n=3/2 and ¥ n=3/
is convergent. It follows that (a,) is convergent.
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(b) Assume that 2013 is special. Then we have

4. (a) 25=50/2 =

X2 +y? =2013(u® +v?) (1)

for some positive integers x,y,u,v. Also, we assume that x> + y? is
minimal with this property. The prime factorization of 2013 1s3-11-
61. From (1) it follows 3|x> +y?. It is easy to check by looking to the
residues mod 3 that 3|x and 3|y, hence we have x = 3x; and y = 3y;.
Replacing in (1) we get

3(xF+y7) = 11-61(u* +v?), 2)

i.e. 3|u2 +v2. Tt follows u = 3u; and v = 3vy, and replacing in (2) we
get
X3 +y? =2013(u} +13).

Clearly, x3 +y} < x? +?, contradicting the minimality of x> +y?.



(c) Observe that 2014 =2-19-53 and 19 is a prime of the form 4k + 3. If
2014 is special, then we have,

X2 +y? =2014(u* +1?),

for some positive integers x,y,u,v. As in part (b), we may assume that
x%> +y? is minimal with this property. Now, we will use the fact that
if a prime p of the form 4k + 3 divides x> + y?, then it divides both x
and y. Indeed, if p does not divide x, then it does not divide y too. We

have x> = —y?> mod p implies (x*)"2 = (—y?)">" mod p. Because

p—1

Pl — 2k 4 1, the last relation is equivalent to ()2 = ()
mod p, hence x*~! = —y?~! mod p. According to the Fermat’s little
theorem, we obtain 1 = —1 mod p, that is p divides 2, which is not
possible.

Now continue exactly as in part (b) using the prime 19, and contradict

the minimality of x> + y.

5. Write x = tanA, y = tanB, z = tanC, where 0 < A,B,C < ©/2. Using the

formula tan(A + B) = {284+108 yice we see that

X+y+z—xyz
l—yz—zx—xy

tan(A+B+C) = =0

and therefore A+ B+C = 1. Now sinA = %5,

sinA + sinB + sinC < 3v/3 /2. However sinf is a concave function, so we
may apply Jensen’s inequality (or consider the tangent att = (A+B+C)/3)
to deduce that

so we need to prove that

sinA +sinB +sinC < sin(A+B+C)
3 - 3

=sin(/3) =V/3/2,

and the result follows.

6. LetC=X"14+ (' -X)~!. Observe that (Y ' —X) = (X —XYX)x 'y —!,
consequently (Y~! —X)~! =YX (X —XYX)~!. Therefore C(X —XYX)~ ! =
I—YX+YX =1 and we deduce that XY —BY = (X — X + XYXD)Y =

190 81 65
XYXY. Therefore we cantake M = XY = [ —49 64 —191
—56 74 86



7. For |q| < 1, we have Y7, ¢* = g/ (g — 1). Therefore for |gq| > 1,

n=1 q — n=1
—- Y Y@
n=1k=1
v (=D 'g"
n=1 1_q—n ,
n=1 qn+1 n=1 1+q—n
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It follows that — Z = Z

d 1 B —n
dxx"—1 x(x"/2 —x*’l/Z)2
d 1 —n

dxx"+1 - x(x/2 4 xn/2)

We deduce that

}’l 0 n

- Z n/2 g"/2)2 - Efl g(q"2 + g n/2)2

> n (—1)"n
Now set g = 4. We conclude that +
q r; (Zn + 2—n)2 <2n _ 2—n)2



