30th VTRMC, 2008, Solutions

1. Write \(f(x) = xy^3 + yz^3 + zx^3 - x^3y - y^3z - z^3x \). First we look for local maxima, so we need to solve \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0 \). Now \(\frac{\partial f}{\partial x} = y^3 + 3x^2z - z^3 - 3x^2y \). If \(y = z \), then \(f(x, y, z) = 0 \) and this is not a maximum. Thus we may divide by \(y - z \) and then \(\frac{\partial f}{\partial x} = 0 \) yields \(y^2 + yz + z^2 = 3x^2 \). Similarly \(x^2 + xz + z^2 = 3y^2 \) and \(x^2 + xy + y^2 = 3z^2 \). Adding these three equations, we obtain \((x-y)^2 + (y-z)^2 + (z-x)^2 = 0\), which yields \(x = y = z \). This does not give a maximum, because \(f = 0 \) in this case, and we conclude that the maximum of \(f \) must occur on the boundary of the region, so at least one of \(x, y, z \) is 0 or 1.

Let’s look at \(f \) on the side \(x = 0 \). Here \(f = yz^3 - y^3z \) and \(0 \leq y \leq 1, 0 \leq z \leq 1 \). To find local maxima, we solve \(\frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0 \). This yields \(y = z = 0 \) and \(f = 0 \), which is not a maximum, so the maximum occurs on the edges of the region considered. If \(y \) or \(z = 0 \), we get \(f = 0 \) which is not a maximum. If \(y = 1 \), then \(f = z^3 - z \leq 0 \), which won’t give a maximum. Finally if \(z = 1 \), then \(f = y - y^3 \). Since \(df/dy = 1 - 3y^2 \), we see that \(f \) has a maximum at \(y = 1/\sqrt{3} \). This gives that the maximum value of \(f \) on \(x = 0 \) is \(1/\sqrt{3} - 1/\sqrt{3}^3 = 2\sqrt{3}/9 \).

Similarly if \(y \) or \(z = 0 \), the maximum value of \(f \) is \(2\sqrt{3}/9 \). Now let’s look at \(f \) on the side \(x = 1 \). Here \(f = y^3 + yz^3 + z - y^3z - z^3 \). Again we first look for local maxima: \(\frac{\partial f}{\partial y} = 3y^2 + z^3 - 1 - 3y^2z \). Then \(\frac{\partial f}{\partial y} = 0 \) yields either \(z = 1 \) or \(3y^2 = z^2 + z + 1 \). If \(z = 1 \), then \(f = 0 \) which is not a maximum, so \(3y^2 = z^2 + z + 1 \). Similarly \(3z^2 = y^2 + y + 1 \). Adding these two equations, we find that \(y^2 - y/2 + z^2 - z/2 = 1 \). Thus \((y - 1/2)^2 + (z - 1/2)^2 = 3/2 \). This has no solution in the region considered \(0 \leq y \leq 1, 0 \leq z \leq 1 \). Thus \(f \) must have a maximum on one of the edges. If \(y \) or \(z \) is 0, then we are back in the previous case. On the other hand if \(y \) or \(z \) is 1, then \(f = 0 \), which is not a maximum.

We conclude that the maximum value of \(f \) on \(0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1 \) is \(2\sqrt{3}/9 \).

2. For each positive integer \(n \), let \(f(n) \) denote the number of sequences of 1’s and 3’s that sum to \(n \). Then \(f(n+3) = f(n+2) + f(n) \), and we have \(f(1) = 1, f(2) = 1, \) and \(f(3) = 2 \). Thus \(f(4) = f(3) + f(1) = 3, f(5) = f(4) + f(2) = 4, f(6) = 6, \ldots, f(15) = 189, f(16) = 277 \). Thus the number of sequences required is 277.
3. Let \(R \) denote the specified region, i.e. \(\{(x, y) \mid x^4 + y^4 \leq x^2 - x^2y^2 + y^2\} \). Then \(R \) can be described as the region inside the curve \(x^4 + x^2y^2 + y^4 = x^2 + y^2 \ ((x, y) \neq (0, 0)) \). This can be rewritten as
\[
(x^2 + y^2 - xy)(x^2 + y^2 + xy) = x^2 + y^2.
\]
Now change to polar coordinates: write \(x = r \cos \theta, \ y = r \sin \theta \); then the equation becomes \((r^2 - r^2 \cos \theta \sin \theta)(r^2 + r^2 \cos \theta \sin \theta) = r^2 \). Since \(r \neq 0 \) and \(2 \cos \theta \sin \theta = \sin 2\theta \), we now have \(r^2(1 - \frac{1}{2} \sin^2 2\theta) = 1 \). Therefore the area \(A \) of \(R \) is
\[
\int_R r \, dr \, d\theta = \int_0^{2\pi} \int_0^{(1 - \frac{1}{2} \sin^2 2\theta)^{-1/2}} r \, dr \, d\theta = \int_0^{2\pi} \frac{d\theta}{2(1 - \frac{1}{4} \sin^2 2\theta)}
\]
\[
= \int_0^{\pi/4} \frac{16 \, d\theta}{3 + \cos^2 2\theta} = \int_0^{\pi/4} \frac{16 \sec^2 2\theta \, d\theta}{4 + 3 \tan^2 2\theta}.
\]
Now make the substitution \(2z = \sqrt{3} \tan 2\theta \), so \(dz = \sqrt{3} \sec^2 2\theta \, d\theta \) and we obtain
\[
A = \frac{4}{\sqrt{3}} \int_0^\infty \frac{dz}{1 + z^2} = \frac{2\pi}{\sqrt{3}}.
\]

4. Ceva’s theorem applied to the triangle \(ABC \) shows that \(\frac{AP}{PB} \cdot \frac{BM}{MC} \cdot \frac{CN}{NA} = 1 \).

Since \(BM = MC \), we see that \(\frac{AP}{PB} = \frac{AN}{NC} \) and we deduce that \(PN \) is parallel to \(BC \). Therefore \(\angle NPX = \angle PCB = \angle NAX \) and we conclude that \(APXN \) is a cyclic quadrilateral. Since that opposite angles of a cyclic quadrilateral sum to 180°, we see that \(\angle APX + \angle XNA = 180° \), and the result follows.

5. Let \(\mathcal{T} = \{a_n \mid n \in \mathbb{N}\} \) and for \(t \) a positive number, let \(A_t = \{n \in \mathbb{N} \mid a_n \geq t\} \).
Since \(\sum a_n = 1 \) and \(a_n \geq 0 \) for all \(n \), we that if \(\delta > 0 \), then there are only finitely many numbers in \(\mathcal{T} \) greater than \(\delta \), and also \(A_t \) is finite. Thus we may label the nonzero elements of \(\mathcal{T} \) as \(t_1, t_2, t_3, \ldots \), where \(t_1 > t_2 > t_3 > \cdots > 0 \). We shall use the notation \(X \triangle Y \) to indicate the symmetric difference \(\{X \setminus Y \cup Y \setminus X\} \) of two subsets \(X, Y \).

Consider the sum
\[
\sum_{i \geq 1} (t_i - t_{i+1}) \mid A_{t_i} \triangle \pi^{-1} A_{t_i} \mid.
\]
Note that \(n \in A_t \setminus \pi^{-1} A_t \) if and only if \(a_n \geq t > a_{t_n} \), and \(n \in \pi^{-1} A_t \setminus A_t \) if and only if \(a_n < t \leq a_{t_n} \). Write \(a_n = t_p \) and \(a_{t_n} = t_q \). We have three cases to examine:
(a) $a_n = a_{\pi n}$. Then n does not appear in the above sum.

(b) $a_n > a_{\pi n}$. Then $p < q$ and n is in $A_r \setminus \pi^{-1}A_r$ whenever $t_p \geq t_r > t_q$, that is $q > r \geq p$ and we get a contribution $(t_p - t_{p+1}) + (t_{p+1} - t_{p+2}) + \cdots + (t_{q-1} - t_q) = t_p - t_q = a_n - a_{\pi n} = |a_n - a_{\pi n}|$.

(c) $a_n < a_{\pi n}$. Then $p > q$ and n is in $\pi^{-1}A_r \setminus A_r$ whenever $t_q \geq t_r > t_p$, that is $p > r \geq q$ and we get a contribution $(t_q - t_{q+1}) + (t_{q+1} - t_{q+2}) + \cdots + (t_{p-1} - t_p) = t_q - t_p = a_{\pi n} - a_n = |a_n - a_{\pi n}|$.

We conclude that
\[
\sum_{n=1}^{\infty} |a_n - a_{\pi n}| = \sum_{i \geq 1} (t_i - t_{i+1}) |A_{t_i} \triangle \pi A_{t_i}|,
\]
because $|A_{t_i} \triangle \pi^{-1}A_{t_i}| = |A_{t_i} \triangle \pi A_{t_i}|$. Similarly
\[
\sum_{n=1}^{\infty} |a_n - a_{\rho n}| = \sum_{i \geq 1} (t_i - t_{i+1}) |A_{t_i} \triangle \rho A_{t_i}|,
\]
and we deduce that
\[
\sum_{n=1}^{\infty} (|a_n - a_{\pi n}| + |a_n - a_{\rho n}|) = \sum_{i \geq 1} (t_i - t_{i+1}) (|A_{t_i} \triangle \pi A_{t_i}| + |A_{t_i} \triangle \rho A_{t_i}|).
\]
Therefore $\sum_{i \geq 1} (t_i - t_{i+1}) (|A_{t_i} \triangle \pi A_{t_i}| + |A_{t_i} \triangle \rho A_{t_i}|) < \varepsilon$. We also have $\sum_{i \geq 1} (t_i - t_{i+1}) |A_{t_i}| = 1$. Therefore for some i, we must have $|A_{t_i} \triangle \pi A_{t_i}| + |A_{t_i} \triangle \rho A_{t_i}| < \varepsilon |A_{t_i}|$ and the result follows.

6. Multiply $a^4 - 3a^2 + 1$ by b and subtract $(a^3 - 3a)(ab - 1)$ to obtain $a^3 - 3a + b$. Now multiply by b and subtract $a^2(ab - 1)$ to obtain $a^2 - 3ab + b^2$. Thus we want to know when $ab - 1$ divides $(a - b)^2 - 1$, where a, b are positive integers. We cannot have $a = b$, because $a^2 - 1$ does not divide -1. We now assume that $a > b$.

Suppose $ab - 1$ does divide $(a - b)^2 - 1$ where a, b are positive integers. Write $(a - b)^2 - 1 = k(ab - 1)$, where k is an integer. Since $(a - b)^2 - 1 \geq 0$, we see that k is nonnegative. If $k = 0$, then we have $(a - b)^2 = 1$, so $a - b = \pm 1$. In this case, $ab - 1$ does divide $a^4 - 3a^2 + 1$, because $a^4 - 3a^2 + 1 = (a^2 + a - 1)(a^2 - a - 1)$. We now assume that $k \geq 1$.

Now fix k and choose a, b with b as small as possible. Then we have $a^2 + a(-2b - kb) + b^2 + k - 1 = 0$. Consider the quadratic equation $x^2 + x(-2b - k) + 1$.
\(kb + b^2 + k - 1 = 0 \). This has an integer root \(x = a \). Let \(v \) be its other root. Since the sum of the roots is \(2b + kb \), we see that \(v \) is also an integer. Also \(av = b^2 + k - 1 \). Since \(b, k \geq 1 \), we see that \(v \) is also positive. We want to show that \(v < b \); if this was not the case, then we would have \(b^2 + k - 1 \geq ab \), that is \(k \geq ab - b^2 + 1 \). We now obtain

\[(a-b)^2 - 1 \geq (ab - b^2 + 1)(ab-1).
\]

This simplifies to \(a^2 - ab \geq (ab - b^2 + 1)ab \), that is \(a - b \geq (ab - b^2 + 1)b \) and we obtain \((a-b)(b^2 - 1) + b \leq 0 \), which is not the case. Thus \(v < b \) and we have \(v^2 + v(-2b-k) + b^2 + k - 1 = 0 \). Set \(u = b \). Then we have \((u-v)^2 - 1 = k(uv - 1)\), where \(u, v \) are positive and \(v < b \). By minimality of \(b \), we conclude that there are no \(a, b \) such that \((a-b)^2 - 1 = k(ab-1)\).

Putting this altogether, the positive integers required are all \(a, b \) such that \(b = a \pm 1 \).

7. Note that for fixed \(x > 1 \), the sequence \(1/f_n(x) \) is decreasing with respect to \(n \) and positive, so the given limit exists which means that \(g \) is well-defined. Next we show that \(g(e^{1/e}) \geq 1/e \), equivalently \(\lim_{n \to \infty} f_n(e^{1/e}) \leq e \). To do this, we show by induction that \(f_n(e^{1/e}) \leq e \) for all positive integers \(n \). Certainly \(f_1(e^{1/e}) = e^{1/e} \leq e \). Now if \(f_n(e^{1/e}) \leq e \), then

\[f_{n+1}(e^{1/e}) = (e^{1/e})f_n(e^{1/e}) \leq (e^{1/e})e = e, \]

so the induction step passes and we have proven that \(g(e^{1/e}) \geq 1/e \).

We now prove that \(g(x) = 0 \) for all \(x > e^{1/e} \); this will show that \(g \) is discontinuous at \(x = e^{1/e} \). We need to prove that \(\lim_{n \to \infty} f_n(x) = \infty \). If this is not the case, then we may write \(\lim_{n \to \infty} f_n(x) = y \) where \(y \) is a positive number \(> 1 \). We now have

\[y = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_{n+1}(x) = x^{\lim_{n \to \infty} f_n(x)} = x^y. \]

Therefore \(\ln y = y \ln x \) and \(x = y^{1/y} \). Since \((dx/dy)/x = (1 - \ln y)/y^2 \), we see by considering the graph of \(y^{1/y} \) that it reaches its maximum when \(y = e \), and we deduce that \(x \leq e^{1/e} \). This is a contradiction and we conclude that \(\lim_{n \to \infty} f_n(x) = 0 \). Thus we have shown that \(g(x) \) is discontinuous at \(x = e^{1/e} \).