32nd Annual Virginia Tech Regional Mathematics Contest
From 9:00 a.m. to 11:30 a.m., October 30, 2010

Fill out the individual registration form

1. Let \(d \) be a positive integer and let \(A \) be a \(d \times d \) matrix with integer entries. Suppose \(I + A + A^2 + \cdots + A^{100} = 0 \) (where \(I \) denotes the identity \(d \times d \) matrix, so \(I \) has 1’s on the main diagonal, and 0 denotes the zero matrix, which has all entries 0). Determine the positive integers \(n \leq 100 \) for which \(A^n + A^{n+1} + \cdots + A^{100} \) has determinant \(\pm 1 \).

2. For \(n \) a positive integer, define \(f_1(n) = n \) and then for \(i \) a positive integer, define \(f_{i+1}(n) = f_i(n)^{f_i(n)} \). Determine \(f_{100}(75) \mod 17 \) (i.e. determine the remainder after dividing \(f_{100}(75) \) by 17, an integer between 0 and 16). Justify your answer.

3. Prove that \(\cos(\pi/7) \) is a root of the equation \(8x^3 - 4x^2 - 4x + 1 = 0 \), and find the other two roots.

4. Let \(\triangle ABC \) be a triangle with sides \(a, b, c \) and corresponding angles \(A, B, C \) (so \(a = BC \) and \(A = \angle BAC \) etc.). Suppose that \(4A + 3C = 540^\circ \). Prove that \((a - b)^2(a + b) = bc^2 \).

5. Let \(A, B \) be two circles in the plane with \(B \) inside \(A \). Assume that \(A \) has radius 3, \(B \) has radius 1, \(P \) is a point on \(A, Q \) is a point on \(B \), and \(A \) and \(B \) touch so that \(P \) and \(Q \) are the same point. Suppose that \(A \) is kept fixed and \(B \) is rolled once round the inside of \(A \) so that \(Q \) traces out a curve starting and finishing at \(P \). What is the area enclosed by this curve?

(Please turn over)
6. Define a sequence by \(a_1 = 1, \) \(a_2 = 1/2, \) and \(a_{n+2} = a_{n+1} - \frac{a_n a_{n+1}}{2} \) for \(n \) a positive integer. Find \(\lim_{n \to \infty} na_n. \)

7. Let \(\sum_{n=1}^{\infty} a_n \) be a convergent series of positive terms (so \(a_i > 0 \) for all \(i \)) and set \(b_n = \frac{1}{na_n^2} \) for \(n \geq 1. \) Prove that \(\sum_{n=1}^{\infty} \frac{n}{b_1 + b_2 + \cdots + b_n} \) is convergent.