24th Annual
Virginia Tech Regional Mathematics Contest
From 8:30 a.m. to 11:00 a.m., October 26, 2002

Fill out the individual registration form

1. Let a, b be positive constants. Find the volume (in the first octant) which lies above the region in the xy-plane bounded by $x = 0, x = \pi/2, y = 0, y\sqrt{b^2 \cos^2 x + a^2 \sin^2 x} = 1$, and below the plane $z = y$.

2. Find rational numbers a, b, c, d, e such that
\[
\sqrt{7 + \sqrt{40}} = a + b\sqrt{2} + c\sqrt{5} + d\sqrt{7} + e\sqrt{10}.
\]

3. Let A and B be nonempty subsets of $S = \{1, 2, \ldots, 99\}$ (integers from 1 to 99 inclusive). Let a and b denote the number of elements in A and B respectively, and suppose $a + b = 100$. Prove that for each integer s in S, there are integers x in A and y in B such that $x + y = s$ or $s + 99$.

4. Let $\{1, 2, 3, 4\}$ be a set of abstract symbols on which the associative binary operation $*$ is defined by the following operation table (associative means $(a * b) * c = a * (b * c)$):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

If the operation $*$ is represented by juxtaposition, e.g., $2 * 3$ is written as 23 etc., then it is easy to see from the table that of the four possible “words” of length two that can be formed using only 2 and 3, i.e., 22, 23, 32 and 33, exactly two, 22 and 33, are equal to 1. Find a formula for the number $A(n)$ of words of length n, formed by using only 2 and 3, that equal 1. From the table and the example just given for words of length two, it is clear that $A(1) = 0$ and $A(2) = 2$. Use the formula to find $A(12)$.

(Please turn over)
5. Let \(n \) be a positive integer. A bit string of length \(n \) is a sequence of \(n \) numbers consisting of 0’s and 1’s. Let \(f(n) \) denote the number of bit strings of length \(n \) in which every 0 is surrounded by 1’s. (Thus for \(n = 5 \), 11101 is allowed, but 10011 and 10110 are not allowed, and we have \(f(3) = 2 \), \(f(4) = 3 \).) Prove that \(f(n) < (1.7)^n \) for all \(n \).

6. Let \(S \) be a set of \(2 \times 2 \) matrices with complex numbers as entries, and let \(T \) be the subset of \(S \) consisting of matrices whose eigenvalues are \(\pm 1 \) (so the eigenvalues for each matrix in \(T \) are \(\{1,1\} \) or \(\{1,-1\} \) or \(\{-1,-1\} \)). Suppose there are exactly three matrices in \(T \). Prove that there are matrices \(A, B \) in \(S \) such that \(AB \) is not a matrix in \(S \) (\(A = B \) is allowed).

7. Let \(\{a_n\}_{n \geq 1} \) be an infinite sequence with \(a_n \geq 0 \) for all \(n \). For \(n \geq 1 \), let \(b_n \) denote the geometric mean of \(a_1, \ldots, a_n \), that is \((a_1 \ldots a_n)^{1/n} \). Suppose \(\sum_{n=1}^{\infty} a_n \) is convergent. Prove that \(\sum_{n=1}^{\infty} b_n^2 \) is also convergent.