16th Annual
Virginia Tech Regional Mathematics Contest
From 9:00 a.m. to 11:30 a.m., October 29, 1994

Fill out the individual registration form

1. Evaluate \(\int_0^1 \int_0^x \int_0^{1-x^2} e^{(1-z)^2} \, dz \, dy \, dx \).

2. Let \(f \) be continuous real function, strictly increasing in an interval \([0,a]\) such that \(f(0) = 0 \). Let \(g \) be the inverse of \(f \), i.e., \(g(f(x)) = x \) for all \(x \) in \([0,a]\). Show that for \(0 \leq x \leq a, 0 \leq y \leq f(a) \), we have
\[
xy \leq \int_0^x f(t) \, dt + \int_0^y g(t) \, dt.
\]

3. Find all continuously differentiable solutions \(f(x) \) for
\[
f(x)^2 = \int_0^x \left(f(t)^2 - f(t)^4 + (f'(t))^2 \right) \, dt + 100
\]
where \(f(0)^2 = 100 \).

4. Consider the polynomial equation \(ax^4 + bx^3 + x^2 + bx + a = 0 \), where \(a \) and \(b \) are real numbers, and \(a > 1/2 \). Find the maximum possible value of \(a + b \) for which there is at least one positive real root of the above equation.

5. Let \(f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R} \) be a function which satisfies \(f(0,0) = 1 \) and
\[
f(m,n) + f(m+1,n) + f(m,n+1) + f(m+1,n+1) = 0
\]
for all \(m,n \in \mathbb{Z} \) (where \(\mathbb{Z} \) and \(\mathbb{R} \) denote the set of all integers and all real numbers, respectively). Prove that \(|f(m,n)| \geq 1/3 \), for infinitely many pairs of integers \((m,n)\).

6. Let \(A \) be an \(n \times n \) matrix and let \(\alpha \) be an \(n \)-dimensional vector such that \(A\alpha = \alpha \). Suppose that all the entries of \(A \) and \(\alpha \) are positive real numbers. Prove that \(\alpha \) is the only linearly independent eigenvector of \(A \) corresponding to the eigenvalue 1. Hint: if \(\beta \) is another eigenvector, consider the minimum of \(\alpha_i/|\beta_i|, i = 1, \ldots, n \), where the \(\alpha_i \)'s and \(\beta_i \)'s are the components of \(\alpha \) and \(\beta \), respectively.
7. Define $f(1) = 1$ and $f(n + 1) = 2\sqrt{f(n)^2 + n}$ for $n \geq 1$. If $N \geq 1$ is an integer, find $\sum_{n=1}^{N} f(n)^2$.

8. Let a sequence $\{x_n\}_{n=0}^{\infty}$ of rational numbers be defined by $x_0 = 10, x_1 = 29$ and $x_{n+2} = \frac{19x_{n+1}}{94x_n}$ for $n \geq 0$. Find $\sum_{n=0}^{\infty} \frac{x_{6n}}{2^n}$.