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Abstract

We develop a performance model for Krylov subspace methods implemented on dis-
tributed memory parallel computers for which the underlying communication network is a
two-dimensional mesh. The model is based on the runtime of a single iteration or cycle of
iterations (for methods like GMRES(m)), because the iteration count is problem dependent.
Moreover, we intend to use the model only for parallel implementations that do not change
the mathematical properties of the method (significantly). The main purpose of this model
is a qualitative analysis of the performance; the model is not meant for very accurate
predictions.

We express the efficiency, speed-up, and runtime as functions of the number of
processors scaled by the number of processors that gives the minimal runtime for the given
problem size (P,,,). This provides a natural way to analyze the performance characteristics
for the range of the numbers of processors that can be used effectively. The approach is
particularly interesting because it turns out that the performance is characterized com-
pletely by the sequential runtime and P, .. The efficiency as a function of the number of
processors relative to P, . is independent of the problem size and parameters describing
the machine and solution method. Analogous relations can be obtained for the speed-up
and runtime. P_,, itself, of course, depends on N and the other parameters, and a simple
equation for P, is given.

The performance model is also used to evaluate the improvements in the performance if
we reduce the communication as described in [7,9,8]. Although the scope of the perfor-
mance model is limited by assumptions on the load balance and the processor grid, there
are several obvious generalizations. One important and straightforward generalization is to
higher dimensional meshes. We will discuss such generalizations at the end of this article.
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1. Introduction

For the solution of linear systems of equations where the matrix is (very) large
and sparse Krylov subspace methods [13,18,2] are among the most frequently and
most successfully used iterative solution methods. These methods are specifically
interesting for parallel computers, because most of the computations are easily
parallelized. Moreover, these methods are used in particular for very large prob-
lems, which in turn are often solved on parallel computers.

Krylov subspace methods basically consist of four major kernels: a matrix-vector
product, a preconditioner, a vector update, and an inner product (dot product).
For many problems, especially those arising from the discretization of a continuous
problem on a computational grid, parallel implementations are based on a domain
decomposition approach. In this approach, the communication in the matrix-vector
product involves only the exchange of data between neighbouring subdomains
leading to communication between nearby processors, whereas the communication
in the inner products is global (a reduction operation over all processors). The
communication in the preconditioner depends entirely on the choice of precondi-
tioner, so that we cannot make any statements about this. However, for obvious
reasons on parallel computers one tends to use preconditioners with modest
communication costs (e.g. comparable to the matrix-vector product). Since the
performance is dominated either by computation (for a small number of proces-
sors) or by global communication (for a large number of processors), as described
in [8], we will ignore the communication cost in the matrix-vector product and the
preconditioner. For problems where global communication is necessary in the
matrix-vector product, this communication will have the same kind of influence on
the performance as the global communication in the inner products.

This performance model will show the dramatic influence of global communica-
tion in inner products on the performance of Krylov subspace methods (see also
[6], where the first part of our performance model was introduced). The high
communication overhead in inner products has received much attention, and there
are several variants of Krylov subspace methods that might alleviate the problem
(some of them were proposed for different reasons) [7, 9, 8, 3, 5, 4, 17]. We will
model the standard implementations of GMRES(m) and CG and also the restruc-
tured versions proposed in [7, 9, 8], which aim for a reduction of the communica-
tion cost. Furthermore, this performance model also provides useful insight in the
scalability of Krylov subspace methods on parallel computers.

Although the measured results in this article are based on a 400-processor
Parsytec Supercluster, we believe this model or its extension to higher dimensional
meshes (tori) to be useful for more modern architectures as well. Among new
parallel computers that use a mesh or torus as their basic communication network
are the Intel Paragon (2D), the Cray-T3D (3D), and the Tera (3D) [11].
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2. The performance model

We will model the runtime of one iteration or one cycle of iterations of Krylov
subspace methods on a two-dimensional mesh- or torus-based processor grid using
the sum of the computation time and the communication time; see [8]. For P
processors and N unknowns we define T, , » to be the time spent in computa-
tion, which we approximate by

Tcomp,P= i(—r;ﬂ’ (1)

and we define T,,,,,, » to be the time spent in communication, which we approxi-
mate by

Tcamm,P = 0’ for P= 1, (2)
Tcomm,P=g(m)\/F, for P> 2. (3)

Here, f(m) and g(m) are functions that depend on the Krylov subspace method
used. The parameter m indicates the number of iterations within a cycle for
methods like GMRES(m); for methods like CG f(m) and g(m) are constant
functions. The factor YP in the communication time is derived from the diameter
of the graph underlying the processor grid, which for a two-dimensional mesh or
torus is O(YP). For a d-dimensional mesh or torus this would be O(P'/4), and for
more general topologies we could use a more general function d(P). The diameter
of the processor grid emerges inherently in the performance evaluation if global
communication of data is necessary. For examples of the derivation of expressions
for f(m) and g(m) see [6, 8]. In Table 1 we give the expressions for f(m) and
g(m) for CG [13, 10] (the expressions were derived from the latter reference), CGS
[19], BiCGSTAB [20], GMRES(m) [18], and ORTHOMIN(m) [12]. In these expres-
sions we assumed the preconditioner to be a local (M)ILU preconditioner.

We will now describe the performance model. From this model we will derive
several expressions, and we will discuss their implications. The model assumes
perfect load balance and a square processor grid. However, these restrictions are

Table 1

The functions f(m) and g(m) for different Krylov subspace methods. The parameter m indicates the
number of iterations within a cycle for methods like GMRES(m), n, is the average number of non-zero
coefficients per row of the matrix, ty is the average time for one double precision floating point

operation, ¢, is the start-up time for nearest neighbour communication, and t,, is the nearest neighbour
transfer time for one word

fim) g(m)
CG O+4n)ty 6(z, +31,)
CGS (20+8n )ty o(r, +31,)
BiCGSTAB (22+8n )ty 101, +31,)
GMRES(m) 2m* +3m+2n,(m + Dty (m? +3mXt, +3¢,)

ORTHOMIN(m) Am® +6m+2n (m+ DMy (m? +5mXt, +3t,)
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easily relieved by changing the number of unknowns into the number of processors
times the maximum number of unknowns over the processor grid and by changing
the factor VP to reflect the maximum distance over the processor graph more
accurately. Besides that, this model gives a lower bound on the performance of an
efficient implementation. For our analysis this is the most important.

_Assumption 1. For Krylov subspace methods on square processor grids we assume
that the runtime of one iteration or one cycle of m iterations for P processors and N
unknowns is given by

T,=f(m)N,
Tp=f(';)N+g(m)¢F, for P>2, (4)

where f(m) and g(m) depend on the specific Krylov method and are independent of
either N or P (see Table 1 for some examples).

Definition 1. We define the parallel speed-up S, for P processors as

T,
Sp= ?P’ (5)
and we define the parallel efficiency Ep for P processors as
T,
Er= o (6)

With the previous assumption and definitions we can state the following theorem.

Theorem 1. The number of processors P, for which T, is minimal, and hence for
which Sp is maximal, is given by

(2 (m)N )’
P“‘“"w( g(m) ) )

For P=aP,, =P, witha €[1/P,.,1], and E,=Ep,, S, =Sp, T, =Ty, we have
that the parallel efficiency, parallel speed-up, and parallel runtime are given by

1
= 8
“ 14 2a ®
: P, 9
a 1'1\‘2(1% max> ( )
1+2a N :
e el [ICOWICOLDR (10)

Proof. Eq. (7) can be derived by minimizing T, (4) for P. We can derive (8) by
first substituting for 7, in (6), and then substituting for P =aP,, =
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a(Qf(m)N)/g(m))*/*. We can now derive (9) from (5) and (6): S, = T, /T, = PE,
=aFE,P,,,. Finally, (10) is proved using (5): T, = T, /Sp; which implies T, = T, /S,,.
O

The definition of P, defines the range of the numbers of processors that can
be used effectively for a given number of unknowns. The introduction of the
parameter «, in fact a relative number of processors, leads to expressions for
runtime, efficiency, and speed-up that allow us to study the performance in a more
general way. Theorem 1 gives rise to some interesting observations.

Expressions (7) and (10) describe the scalability of the algorithms. For increas-
ing problem size N the number of processors that minimizes the runtime, P,
increases only as O(N?/3), and so the minimum runtime increases necessarily as
O(N'/?). This means that for a sufficient increase in N the runtime increases as
well, irrespective of how many processors are used. Therefore, it is not possible to
keep the runtime constant for increasing N by increasing the number of proces-
sors P sufficiently, which is sometimes referred to as perfect scalability. However,
the algorithms scale well in the sense that the minimum runtime increases only
slowly as a function of the problem size. For a <1 it is possible to achieve an
additional reduction in runtime. For increasing N, we increase the number of
processors P more than proportional to P_,,; hence we increase « and so trade
efficiency against performance. However, this is possible only for a limited increase
in N. For a sufficient increase in N the situation o = 1 will be reached, and then
increasing P faster than P,, will actually yield a suboptimal performance (see
Figure 4).

Another observation is that E_ (cf. (8)) is independent of N, f(m), and g(m).
Moreover, the relative speed-up S,/P,, and the relative runtime 7,/7, as
functions of «, are independent of N, f(m), and g(m) as well. Therefore, the
performance is characterized completely by T, and P,,,. So, the behaviour of the
efficiency, relative speed-up, and relative runtime that is observed for increasing a,

1 T E=1
O'BF E
0.6t - §
fod .
E
0.2} ]
)

0 02 04 086 08 1
e
Fig. 1. The paraliel efficiency E .
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Fig. 2. The parallel speed-up §, compared with perfect speed-up S = P =aP,,.
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Fig. 4. Increasing runtimes for every fixed value of a.
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see Figs. 1-4, will be observed independent of the problem size and of f(m) and
g(m); that is, independent of the specific solver and of machine parameters.
Obviously, the same value of « indicates different numbers of processors for
different values of N, f(m), and g(m), because P,,, depends on these parame-
ters.

InFigs. 1,2 and 3, E_, §, and T, are given as functions of «. The units on the
dependent axis are given such that the figures are valid independent of the
parameters, N, f(m), and g(m).

Fig. 2 shows the deterioration of the speed-up for higher values of a. We sec
that for a = 0.6 we have almost reached the maximum attainable speed-up, which
itself is only (1/3)P,,,,. This disappointing performance is entirely attributable to
the global communication in the inner products, because this is the only source of
overhead considered in the model. However, if other parts of the algorithm also
need global communication, e.g. the matrix-vector product, this will have essen-
tially the same effect.

The loss of performance for higher values of « is also illustrated well in Fig. 3.
Since in our model all loss in efficiency is caused by global communication in the
inner products, the time spent in communication is given by (1 — E_)T,, and the
time spent in computation is £,7,. We see that for « larger than approximately
0.6 the runtime is dominated by the communication time. For « = 1 the global
communication accounts for 2 /3 of the runtime.

Fig. 4 illustrates the scalability of Krylov subspace methods. For increasing N
and fixed « the runtime increases slowly. We can keep the runtime fixed at 7 for
increasing N by increasing a as long as « < 1. However, we cannot achieve
runtimes below the curve a = 1, because increasing a further would increase the
runtime and decrease the speed-up.

Figs. 1-3 clearly indicate that the overhead in global communication for higher
values of a severely limits the performance. In the following section we will model
the improvements that can be obtained using the methods described in [7,9,8].

3. The effects of communication cost reduction

The performance model given in the previous section provides ample motiva-
tions for the reduction of the communication cost in Krylov subspace methods. In
our performance model we will consider two ways to reduce the communication
overhead. The first is to overlap communication with computation, and the second
is to reduce start-up times by the collective communication of multiple messages.
An important example of the latter is to replace the separate reductions and
broadcasts of a group of partial, i.e. local, inner products by the reduction and
broadcast of a vector of these partial inner products.

For CG we overlap the global communication in the inner products (a global
reduction and a broadcast) with other operations like preconditioning and vector
updates [9]. For GMRES(m) we first generate the basis vectors of the Krylov
subspace using some polynomial for stability. After generating the basis, we can
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stepwise orthogonalize groups of vectors on one single vector, while still using a
stable algorithm (modified Gram-Schmidt) [7]. This scheme offers the possibility to
group the reduction and broadcast of the partial (i.e. local) inner products into the
reduction and broadcast of a vector of partial inner products, which reduces the
total amount of time spent in start-ups. However, we can reduce the communica-
tion cost even further as follows. Instead of computing all local inner products in a
single group and do a reduction and broadcast once for the whole group, we split
each orthogonalization step of a group of vectors onto one vector into two blocks.
The overlap of communication with computation is then achieved by performing
the reduction and broadcast of the local inner products of the first group
concurrently with the computation of the local inner products of the second group
and performing the reduction and broadcast of the local inner products of the
second group concurrently with the vector updates of the first group [6].

We start with modeling the overlap of communication with computation. We
assume that a fraction y of the computations (in time) can be used to overlap
communication. This leads to the following approximation for the runtime of a
single iteration or cycle of m iterations.

Assumption 2. For Krylov subspace methods on square processor grids, using a
fraction y of the computation time for overlapping communication time, we assume
that the runtime of one iteration or one cycle of m iterations for P processors and N
unknowns is given by

T, =f(m)N,
(1—y)f( N + max f( ) ———— g(m)VP|, forP=>2, (11)

where f(m) and g(m) depend on the speciﬁ'c Krylov method and are independent of
either N or P (see Table 1 for some examples).

Definition 2. We define the parallel speed-up S p for P processors with overlapped
communication as

S i 12
p"j\_'P, ( )

and we define the parallel efficiency E p for P processors with overlapped communica-
tion as

B, - 13)
P pr . (

From the previous assumption on the runtime we can derive the number of
processors for which the computation time used for overlap equals the communica-
tion time. We will refer to this number of processors as P, ;:

o [

(m) (14)
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As long as the number of processors is smaller than P,,,, we have linear speed-up
(in the model), because all communication is assumed to be overlapped; see Figs.
5-7. In order to compare the performance with overlap of communication with the
performance without overlap of communication, we derive equations for the
runtime, efficiency, and speed-up for numbers of processors relative to P, (7).

Theorem 2. The number of processors P,
which § » Is maximal, is given by

(ﬂl—y)ﬂnﬂN)B 2
, fory=<s,
. g(m)
Proax ; (15)
(vﬂﬂONy
g(m) |~
For P=aP,, =P, with a€[1/Py,1], and E,=Ep,, S,=Sp, T, =T, we

a

have that the parallel efficiency, parallel speed-up, and parallel runtime are given by

 ax Jor which T, is minimal, and hence for

for y > .

2/3
L, foras(—;—) ,
Ea= 1 y\2/3 (16)
T3 227y fora> (3]
2/3
aPmax’ foras(%) s
S, = . e an
mpmax’ fora>(§) )
1 1/3 y\2/3
(22/3a)(g(’")2f(’")N) ) foras(i) ,

P
H

(18)

1—vy)+2a’? 1/3 2/3
(i—};—/;a———-)(g(m)zf(m)N)/, fora>(%) .

Proof. This proof largely follows the proof of Theorem 1. Eq (15) is derived by

mmlmlzmg T (11) for P. For y>2/3 we have P_,, =P, The efficiency,
=T /PTP, is given by

R f(m)N

Ep=———————"ro=1, forP<P,,

" P(f(m)N/P) !

5 f(m)N f(m)N

P = L]
f( 1—9)f(m)N +g(m)P*?

(1o fOIN E) G Im N g(m)

for P>P, .
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Substitution of P =aP,,, for the case P> P, gives
A 1

a=m, fOfP>P0U[

Furthermore, we can derive from (7) and (14) that P,,, = (y/2)*/°P,,,,. This proves
(16). We can derive (17) from $,=PE,=aE,P,,,. Eq. (18)for T, can be derived
from T T /S O

We see from (15) that Pmax <P_,.; in fact, PAmax can be considerably smaller
than P, as is indicated by the following equation that also shows the values of «
that correspond to P,

(1= )" Ppa, for y<(2/3),

Pox=1{ (7 \¥* (19)
(—2—) Proaxs for y> (2/3).

Moreover, the speed-up fa improves significantly when the communication is
(partly) overlapped (17). This has two important consequences. The first and most
obvious one is that we can solve problems faster. The second one, which is at least
as important, is that problems that require a certain minimal performance to be
tractable in practice can be solved on significantly fewer processors if the commu-
nication is overlapped. In short, with overlapping we can solve the same problem
faster with fewer processors; see Figs. 5-7.
The efficiency, speed-up, and runtime for P,, processors are given by

1
£ éa——)-, for y<2/3, (20)
};max= -7
1, for y>2/3,
1
1/3Pmax’ for Y= 2/3a
s _)3-v)
Sto =\ 28 (21)
(5) Prax> for y>2/3,
1/3,4-2/3 1/3 2 1/3
7 AT TR (& (m)f(mN) T, for y <273, )
Pmax—
Y32 (m) f(m)N)"”, for y>2/3.

For P < P,,, there is no loss of efficiency through communication, which results
in linear speed-up and efficiency equal to one. In practice one cannot achieve this,
but the comparison with experimental data in the next section shows that we can
stay close to linear speed-up for a relatively large number of processors. Egs. (14)
and (15) show that ﬁmx and P, get closer and closer for increasing vy, and for
y>=(2/3) we have P,,,=P,, and hence ‘optimal’ efficiency for the entire range
of useful numbers of processors.
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Fig. 5. The parallel efficiency Ifa for several values of y in the case of overlapped communication.

The scalability of Krylov methods is not improved by overlapping the communi-
cation. The number of processors that minimizes the runtime, P,., increases as
O(N?/%), so that the runtime still increases as O(N1/3).

The efficiency, speed-up, and runtime as functions of « and vy are given in Figs.
5-7. Fig. 5 gives the efficiency as a function of a for different values of y. The
efficiencies for P, as a function of y are indicated through the thick dotted line.
We see that for @ <(y/2)*® (P<P,,) the efficiency is optimal, but that for
larger a the efficiency decreases rapidly. For a =1 the efficiencies for the
different values of y differ only slightly.

This behaviour is also illustrated in Fig. 6 for the speed-up as a function of «a
and y. As soon as the communication cannot be entirely overlapped (P > P,,,) the
speed-up hardly increases further, and for y=>2/3 (P =P,,») the speed-up
decreases immediately. The thick dotted line gives the maximum speed-ups for the
different values of y; see (21). The values of a that correspond to P, as a

'Pmax
! S=P
ceneeees Smad(y) =
0.8} ]
Y=1
0.6} y=5/6 ]
y=2/3
b odl y=1/2 L
Y=1/3
s
0.2} =16 ]
y=0
)

0 02 04 06 08 1
s

Fig. 6. The parallel speed-up §a for several values of vy in the case of overlapped communication.
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Fig. 7. The parallel runtime f“ﬂ for several values of y in the case of overlapped communication.

function of y can be derived from (19). Fig. 6 shows clearly the increase of the
maximum speed-up for a decreasing ISmaX if y<2/3 and the communication is
overlapped. Ismax increases again for y > 2 /3, but the speed-up remains optimal.
This figure also shows that the maximum speed-up without overlap of communica-
tion (y =0) can be achieved with much fewer processors for even a moderate
amount of overlap (e.g. y=1/3).

Finally, Fig. 7 gives the runtime for different values of y and «. The thick
dotted line gives the minimum runtimes for the different values of y.

The second way of communication cost reduction that we consider is to reduce
the communication time; that is, to make the function g(m) smaller. An example
of this is the collective accumulation of multiple inner products in GMRES(m)
discussed in [7,8]. A smaller g(yn) does not change the model, so the effects of
overlap remain the same if we combine the two approaches. Egs. (7)-(10) indicate

o — N a
0 0.2 04 06 0.8 1
Ol

Fig. 8. The parallel speed-up in the case of overlapped communication for reduced g(m), the thick
lines, and for original g(m), the thin lines, for several values of y and a.
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that P ., increases for decreasing g(m), and that for a fixed value of « the
speed-up increases proportionally with P_ . .

In Fig. 8 the thick lines represent the speed-up curves for different values of y
for an implementation with reduced g(m) combined with overlapped communica-
tion, and for comparison the thin lines represent the speed-up curves for the
original g(m). The model parameters are derived from the GMRES(50) example
in the next section. The two sets of curves have different numbers of processors
corresponding to the same value of «, because the values for P, differ. The ratio

of the values of P, gives the ratio of the numbers of processors for the two sets
of curves.

4. Comparing the model with timings

In this section, we will compare the estimates from the model with measured
performance values taken from [8]. This comparison seems to indicate that the
model adequately predicts the performance. Moreover, especially for GMRES(50)
the model seems relatively accurate. The measured results are derived from the
solution of two model problems: a convection-diffusion problem solved with
GMRES(50) [18] and a diffusion problem solved with CG [13]. The adapted
versions of the algorithms are discussed in [7,9,8]. We solved both problems using
local ILU(0) preconditioning [16,1,10] on a 400 processor, parallel distributed
memory computer (a Parsytec Supercluster at the Koninklijke /Shell-Laboratorium
Amsterdam). The values for the different parameters of the performance model
are given in Table 2.

Table 3 shows the results of GMRES(50) for a standard implementation and for
an implementation with reduced communication time and overlapped communica-
tion. The function g(m) for the reduced communication cost is given by [8],

g(m) =4mt + (2m*+ 10m)t,,,
and the part of the computation time that can be overlapped with communication
is given by ([8)),

(m?>+2m)t ,iv—.
'p

Table 2

The values of the parameters and their meaning

Parameter Value Meaning

t, 4.80 us Communication transfer time for one word

t, 5.30 us Communication start-up time

Ly 3.00 us Average time for one double precision floating point operation
N 10000 Total number of unknowns

n, 5 Average number of non-zero elements per row in the matrix
m 50 Size of the Krylov space over which GMRES(m) minimizes
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Table 3
Comparison of estimated runtimes and measured runtimes for GMRES(50)
Processor Standard implementation Reduced g(m) and
grid Estimated Measured overlapped communication
(s) (s) Estimated Measured
(s) s)
10X 10 2.42 2.47 1.90 1.93
14x14 1.70 1.90 0.967 1.05
17%x17 1.54 1.66 0.854 0.891
20x 20 1.52 1.75 0.829 0.851

Using the parameters in Table 2, we find y =0.41, P, = 375 for the standard
implementation, P,,, = 576 for the implementation with reduced g(m), and P,,,
= 201. The sequential runtime T} = 190 s was obtained through estimation, since
the problem did not fit on a single processor. The comparison of estimated and
measured values for this particular example indicates that the model gives rela-
tively good estimates if the assumptions with respect to the load balance and the
processor grid (diameter = vP) are fulfilled. For a qualitative analysis this is more
than sufficient. We see that for the standard implementation the runtime reduc-
tion stagnates quickly. For 100 processors the speed-up is about 77, for 196
processors it is only about 100, and for P > 196 processors (a > 0.5) the runtime
hardly decreases. For the implementation with overlapped communication we see
an almost perfect speed-up going to 196 processors, which is to be expected
because P <P,,,. For P> P, , the runtime hardly decreases any further.

Table 4 shows the results for CG for a standard implementation and for an
implementation with overlapped communication. The part of the computation
time that can be overlapped with communication is given by [8],

2n t,—.
”zﬂP

Using the parameters in Table 2, we find y = 0.34, P,,, = 600, and P, , = 186. The

measured sequential runtime is given by 7, = 0.788s. In this case the model is not
as accurate as for GMRES(50). The reason for this is probably the costs that have

Table 4

Comparison of estimated runtimes and measured runtimes for CG

Processor Standard implementation Overlapped communication

grid Estimated Measured Estimated Measured
(ms) (ms) (ms) (ms)

10x10 9.88 10.7 8.70 10.2

14x 14 6.09 6.90 4.58 5.84

17x17 5.02 6.09 3.99 529

20x20 4.54 5.59 3.80 5.04
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been neglected, like the explicit implementation of (global) communication and
perhaps the communication cost of the matrix-vector product. These, in principle,
small costs do not show up so clearly in the GMRES(m) timings because that
algorithm is much more expensive. This is also indicated by the fact that for both
the standard implementation and overlapped implementation there is an almost
constant difference between the measured and the estimated values.

However, the qualitative behaviour is modeled adequately. For the standard
implementation we see that the reduction of the runtime stagnates for larger
numbers of processors. Going from 100 to 196 processors we gain only some forty
percent, and going from from 100 to 400 processors we reduce the runtime by
about a factor of two. For the overlapped communication implementation we see
that going from 100 to 196 processors the runtime reduction is almost optimal,
which means that the efficiency is almost constant over this range. So, the increase
of the communication cost has no influence, which is to be expected because
P <P, ;. The fact that the efficiency for 100 processors is about 90% and for 196
processors it is still about 90% indicates that some fixed overhead plays a role in
the initial loss of efficiency. These costs seem to come mainly from the explicit
implementation of the (global) communication. For the larger processor grids we
have P> P, ,, and the runtime reduction stagnates.

5. Other performance models

The model described in Section 2 (no overlap) could be represented within the
framework of the model described by Hockney and Jesshope in [14] Section 1.3
with some changes in the interpretation of their parameters.

Let s be the total amount of work ' (s =Nf(k)/t;), m the total amount of
communication (m =g(k)/2(¢,+ 3t,)), t,(P) the average time for one floating
point operation on a P-processor machine (¢ (P) = tf,/P), and ¢(P) be the time
for one global communication on a P-processor machine (¢ ,(P) = 2(¢, + 31,)P'/?).
Then we can express the Hockney and Jesshope parameters for describing the
performance as follows: the ideal computation rate 7(P)=1t, '(P), the computa-
tional intensity (here better referred to as software granularity) f=s/m, and the
half performance intensity (granularity) f, ,, =¢.(P)/t,(P). The parameters 7.(P),
fi/2, t(P), and t(P) describe the machine, and the parameters f, s, and m
describe the program. We can express the sequential runtime as T, =s/Ff(P) =5 -
t,(P) and the parallel runtime on P processors as Tp=st(P)+m-t(P). It is
interesting to see that f, ,,=0(P*/?) and f= O(N), which indicates that the
problem size has to increase proportional to P3/? to keep the efficiency constant:
E =pipe(f/f, ,,)=Q +f, ,/f)7" (cf. the equation for P, (7).

' We use f(k) and g(k) here instead of f(m) and g(m) to avoid confusion with the total amount of
communication m in the Hockney and Jesshope model. Also, our function f(k) should not be confused
with the computational intensity f.
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The advantage of the model derived from [14] is that the performance model is
separated in machine dependent properties, e.g. f, /2=0(P3/ %), and program
dependent properties, e.g. f= O(N). However, there are several disadvantages.
The model does not provide a clear insight in the relations between the perfor-
mance, the problem size, and the number of processors, which is very important
for our purposes. Furthermore, the extensions used for modeling overlap in [14]
are not applicable to the type of overlap described in Section 3; indeed, the type of
overlap that we want to model is not easily expressed in the model in [14]. The
parameter P, , and the efficiency, runtime, and speed-up for a relative number of

max’
processors P =aP, , are important concepts introduced in this paper (and partly
in [6]). Especially the fact that the performance is completely characterized by the
sequential runtime 7, and P,_,, is important for the generality of our model. These
concepts can be expressed in a model derived from [14], but the resulting
expressions are not very insightful. We realize, of course, that the model in [14]
was not proposed in particular for the algorithms and machines that we consider in
this article.

There are some links of the model proposed here with the performance metrics
discussed in [15] Chapter 4. However, there the main focus is on scalability and
cost-optimality (isoefficiency), not on maximum speed-up as a function of the
problem size. Also the concept of performance for a relative number of processors
P=aP,,, is not considered there. It is interesting to note that the fixed « curves
in Fig. 4 are isoefficiency curves, because the efficiency £, depends only on a.
However, this is a coincidence; for another architecture, say a hypercube, this

would not be the case.

6. Conclusions

We have presented a simple performance model by concentrating on the main
properties of the algorithms and architecture only. This limits the scope of the
model, but it simplifies the analysis and helps to focus on the most important
properties. Moreover, our test examples indicate that the qualitative behaviour of
the performance is predicted adequately. Furthermore, the model is applicable to
Krylov subspace methods in general, and it permits an analysis of the performance
for varying numbers of processors that is independent of the problem size. In fact,
the qualitative behaviour is completely characterized by the sequential runtime
and the maximum number of processors that can be used effectively.

Several extensions of the model that would make it more general are straight-
forward. One such extension is to apply the model to parallel computers based on
higher dimensional meshes or tori, which leads to essentially the same type of
expressions. The runtime for P> 1 on a d-dimensional mesh could be approxi-
mated by

_fomN

T
£ P

+g(m)P4,
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which would lead to a maximum number of processors of O(N4/@*D) and a
minimum runtime of O(N'/¢“*D)_ This could be extended further to more general
architectures by using a more general distance function for the maximum distance
over the processor graph.
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