SH,

e (MacS) APPLIED
;g% <" NUMERICAL
) MATHEMATICS

ELSEVIER Applied Numerical Mathematics 19 (1995) 129-146

Incomplete block LU preconditioners on slightly overlapping
subdomains for a massively parallel computer

E. de Sturler ~
Interdisciplinary Project Center for Supercomputing (IPS-ETH Ziirich), ETH-Zentrum, CH-8092 Ziirich, Switzerland

Abstract

The ILU (Meijerink and van der Vorst, 1977; 1981) and MILU (Gustafsson, 1978) preconditioners have become
more or less the standard for preconditioning. On parallel computers, however, the inherent sequentiality of these
preconditioners precludes efficient implementation. Replacing (M)ILU by blocked variants may seem a good way to
improve the parallelism, but generally these blocked variants come with a penalty in the form of more iterations.

We will consider possibilities to improve the convergence of the block preconditioners by adapting ideas from
Radicati and Robert (1989) and Tang (1992). We will use as preconditioner(s) the incomplete factorizations of the
local systems of equations corresponding to slightly overlapping subdomains with certain parameterized algebraic
boundary conditions. Although the selection of the optimal parameters is still an open problem, numerical
experiments suggest that the iteration count can be almost constant when going from the sequential case to as much
as 400 subdomains. We will also give details on the performance on a 400-processor parallel computer.

Keywords: Preconditioners; Parallel computing; Distributed-memory computers

1. Introduction

The efficiency of iterative solvers on massively parallel computers depends on two factors.
The implementation must be efficient, and the increase in the number of iterations, compared
with the (best) sequential implementation, must be low. In this paper we will focus on the
GMRES(m) method [6] with ILU preconditioning. In [1] it has been shown how to implement
this method efficiently using only ILU factorization per subdomain. The good efficiencies in [1]
resulted from the reduction in the communication overhead for the inner products. However,
the increase in the number of iterations due to less effective preconditioners has not been
considered there. We will focus on this aspect here.

* E-mail:sturler@ips.id.ethz.ch. The author wishes to acknowledge Shell Research B.V. and STIPT for the financial
support of this research.

0168-9274 /95 /$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0168-9274(95)00077-1

130 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

We are concerned with preconditioners for massively parallel computers. These precondi-
tioners should preferably have the following characteristics:

® They should have a convergence rate close to that for the ILU factorization over the entire

domain.

® They should lead to only moderate communication cost at most.

® They should have a degree of parallelism that allows efficient implementation on a

massively parallel computer.

® They should allow for a (relatively) simple implementation.

Replacing the ILU factorization over the entire domain by block versions, where a block
corresponds to the equations for the unknowns in a subdomain, satisfies all of our requirements
except the first one. Therefore, we will try to improve the convergence of such localized ILU
preconditioners. We will refer to these preconditioners as Incomplete Block LU (IBLU)
preconditioners.

In [5] Radicati and Robert suggest to use incomplete factorizations of slightly overlapping
blocks of the matrix as a block preconditioner. For a small number of shared-memory
processors (and hence a small number of matrix blocks) they report good results. Their matrix
decomposition is based on the (possibly reordered) matrix itself and does not require any
information on the underlying problem or physical domain, since they aim at black box solvers
for sparse matrices with a general structure.

However, in a domain decomposition situation we can apply an analogous strategy using
incomplete factorizations of slightly overlapping subdomains. In this case, the physical meaning
of the overlap is known and can perhaps be exploited by using, for example, certain artificial
boundary conditions. This leads to (parameterized) matrix splittings, so-called generalized
Schwarz enhanced matrices (SEMs), of a form proposed by Tang in [9] for block Jacobi and
block Gauss—Seidel iterations. We will use these parameterized Schwarz enhanced matrices as
the basis for the IBLU preconditioners. In this case, there is no need for special regularity
requirements on the generalized Schwarz splitting, and we do not need exact solvers on the
subdomains. This gives us more freedom for the specification of the generalized Schwarz
enhanced matrix than in the approach in [9].

In Section 2 we will discuss the construction of the generalized SEM and the preconditioner.
We will show how the preconditioner can be used for a Krylov subspace method in Section 3.
Finally, in Section 4, we use series of experiments with different overlaps and different
parameter choices to gain some idea of the convergence behaviour when more subdomains
(blocks) are used. We will report results from experiments on a 400-processor parallel
computer (at the Koninklijke /Shell-Laboratorium in Amsterdam).

2. Construction of the preconditioner

In this section we discuss the construction of the generalized Schwarz enhanced matrix on
which the IBLU factorization is based. The IBLU factorization of this matrix is then defined by
the factorization of the diagonal blocks, which correspond to the subdomains. To simplify the
explanation we will first describe the one-dimensional decomposition in detail; after that, we
will describe the extension to higher-dimensional decompositions (as implemented on the
400-processor parallel computer) and to decompositions for more general meshes.

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 131

Q
Q
3
3 3a
r— --------- R
da .- L.__. 3a’_ .. (3a)
2
2
R e
2a 23
f .
: | l___._.2a_._.| (2a)
y +
| S e 1
Y

X -

Fig. 1. A one-dimensional decomposition of the domain.
2.1. One-dimensional decomposition

We assume a lexicographical ordering of the unknowns, a rectangular domain and the block
tridiagonal matrix which is derived by the well-known S-point discretization star for two-dimen-
sional Poisson-type problems.

We make a decomposition in the y-direction with slightly overlapping subdomains as in Fig.
1. The decomposition corresponds to matrices as shown in Figs. 2 and 3, which show the
original matrix and the matrix for the decomposed domain. The latter matrix is referred to as
the Schwarz enhanced matrix (SEM), see also [8], [9]. Fig. 5 gives a more detailed picture of the
matrix structure for the duplicated grid lines corresponding to an overlap as indicated in Fig. 4.

For a block relaxation iteration, where a block corresponds to a subdomain, we need an
approximation to the solution on the neighbouring grid lines of each subdomain (the exterior),
before we can solve the local equations. Usually, we take the approximate solution of a
previous iteration (Jacobi) or an intermediate approximation (Gauss—Seidel). This amounts to a
Dirichlet boundary condition; the solution on the boundary of the subdomain is given.

However, we can also define the boundary conditions on the artificial boundaries for each
subdomain in a more general way. Since the subdomains overlap, the artificial boundary of one

Al,l <41,2a
‘420.1 ‘42a,2a ‘42a,2
A2.2a 442,2 A2,3a

‘430.2 ~43a,30 ABa.B

A3,3a A3,3

Fig. 2. The matrix corresponding to the original domain in Fig. 1.

132 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

A A
‘420 1 A'Za‘2a A20,2
A?a 1 A’.’a,2a A?a,2
Az.2a A2,2 Az 3a
ASa,2 A30,3a A3a,3
Aﬂa 2 A3u,3a A3a,3 i

A3,3a A3,3

Fig. 3. The Schwarz enhanced matrix corresponding to the decomposition in Fig. 1.

subdomain is in the interior of another subdomain. The solution is obviously identical on each
of the two duplicate parts, so that any function of the solution defined on these duplicate parts
must give the same result on each part. We can select a function to define a relaxed consistency
condition on the duplicate parts of the subdomain. Instead of requiring that the solution is
equal on both parts, we require that this function of the solution is equal on both parts. Let the
solution in subdomain P be u” and in subdomain Q be u<. Then we have g(uf) =g(u?) for
arbitrary g on the overlap of the subdomains (more specifically, on the artificial boundaries).
For example, in [9] boundary conditions of the type
du® du?

Pr(l—w)— =owul+ (1 —w)—
wu’ + (1 —w) il L (1-w) ™

are used. For w =1 this results in a Dirichlet boundary condition, for w =0 in a Neumann
boundary condition, and for 0 <w < 1 in a mixed boundary condition. We can use such a
consistency condition to define boundary conditions on the artificial boundaries. The substitu-
tion of the discretized boundary conditions into the SEM leads to a so-called generalized
Schwarz splitting, which gives the generalized Schwarz enhanced matrix.

Since we will use the generalized SEM only for the construction of an IBLU preconditioner,
we may use arbitrary algebraic equations for defining artificial boundary conditions. The
objective is to find those algebraic conditions that lead to generalized Schwarz splittings which
yield good preconditioners. For example, consider the subdomains P and Q, as shown in Fig. 4,
where u, corresponds to the approximation on the kth grid line in the y-direction and we have
duplicated two grid lines, u, |, and u,; the small circles indicate that the grid line is not

p U B G u U

L]
1 °

|

!
i

o1

I r 1

Q Q Q Q Q
Uy Uy U Uy Uy

Fig. 4. Overlapping subdomains P and Q with an overlap of two grid lines. The small vertical lines u, indicate the
kth grid line in the original domain. The small circles indicate that the grid line is not included in the subdomain.

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 133

P Q

““, k2 k1l k[klk kel

k+1

Fig. 5. The part of the SEM corresponding to the overlap of the subdomains P and Q. The indices k —2,...,k +1,
indicate the grid lines in the original domain.

included in the subdomain. The equations for the kth grid line (except at the domain
boundaries) are

Apprtg A uy +Ap oy = by, (1)

and the associated part of the SEM is given in Fig. 5. We define the following two boundary
conditions for the two artificial boundaries:

alul:)"u/fqzalu/g'—“gﬂs (2)
. (3)

These boundary conditions give equations for the exterior grid lines u, ,, (for subdomain P)
and u, _, (for subdomain Q), which can be substituted into the SEM,

I o _ .0
ol | U r=QUp | —Up

o

P _ P_ 0,0

U Tl —aUg T Up, . (4)
e —,7 £ Q

UR 2= Uy — QU Tayup . (5)

The substitution of (4) and (5) into the equations for uf and u@_, (1) gives
Ak.kllullz P (At alAk,A+l)ul[<D_alAkik+lqu +Ak,k+]qu+l =b,, (6)
Il
Ap g x2Up 2=y Ay :“f—l (A 40t azAk—m—z)“/g-l +Ak—],k”l? =bi_y.
(7)

This substitution for u},, and u{_ , leads to the generalized SEM of which the part
corresponding to the overlapping grid lines is given in Fig. 6. If we duplicate more than one
grid line, we can also define “higher-order” boundary conditions. The boundary conditions

P P P _
Bluk’1+aluk—uk+l—ﬁlqufl+alqu_qu+l* (8)

P P r)
Bauy tayuy —up 5= Bz“% +6'2“1%1 - “er—z- 9)

134 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

Ak-2,x-2 Ak_2k-1
Akt k-2 Ax-i k-1 Akt x
A k1 Ak k + o Ak k41 —ay Ak kg1 Ak ki1
Ax-1k-2 —02Ak_1 k-2 Ak—1,k—1 + 02 Ak k-2 Ak-1,k
Ax ko Ak k A k1
AH.],;, Ah+1,k+l

Fig. 6. The parameterized matrix splitting derived from the artificial boundary conditions given in (2) and (3).

Ag—2. k-2 A2, k-1
Ar—1 k-2 Akt k-1 Ax—1 ok
Ark—1 + S Aeksr Apk + a1 Ap kg =81 Ak k41 —ay Ak k41 Ak k41
Ap_1 k=2 —ay Ak k-2 —Bo Ak k=2 Akt k-1 +a2Ak_) k2 Ak—1k + B2Ak_1 k—2
Ak k-1 Ak Ak k41
Aggrk Akl k41

Fig. 7. The parameterized matrix splitting derived from the artificial boundary conditions given in (8) and (9).

lead to the generalized SEM of which the part corresponding to the overlapping grid lines is
given in Fig. 7. It is easily verified that the generalized SEMs are formed by a parameterized
splitting of the matrix blocks corresponding to the overlap.

2.2. Higher-dimensional decompositions and general meshes

It is complicated to work out the generalized SEM in the case of a two-dimensional
decomposition using the approach described above, not to mention further generalization to
three dimensions or general meshes. Therefore, instead of adapting the equations in the matrix
directly, we adapt the discretization star on the boundaries of the subdomain. This makes it
easier to work out the equations at any given grid point analogous to the approach for the
one-dimensional decomposition.

Consider a two-dimensional decomposition ¢s given in Fig. 8, where we have duplicated a
number of grid lines in the x-direction as well as in the y-direction. Note that for some grid
points duplicates exist on four subdomains. To keep the explanation simple we only give an
example on a regular grid; however, the approach can be followed in the same way for an
irregular grid.

Let the point (i, j) be on the east boundary of subdomain P, and let Q be the neighbouring
subdomain in the east. The equation for point (i, j) is given by

su twu, o teu, teu . Hnug,, =b (10)

1,y—1 i+1.7

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 135

Q
Q T
1
o
: !
! I
N S b J
: —_—
"""" Lo Al T
: -
1]
! 1
T 1 %]
i 1
y : T .
— y 1

X —_
X
Fig. 8. A two-dimensional decomposition of the domain.

which is the standard 5-point discretization star, as shown in Fig. 9. On the artificial boundaries
of the subdomain the discretization star is changed by the decomposition of the domain and the
duplication of the grid lines as indicated in Fig. 9; the new discretization star includes the
duplicates of the grid points to which it refers. We use a boundary condition like (8) for exterior
points at the eastern boundary. This leads to

P P P _
Bui—l,j+aui.1—ui+1.j—Buinl.j+augj_uiQ+I,j’ (11)
or
P _p, P P
ui+1.j_Buirl.j+aui.j——BuiQ—l,j_augj-i-uzQJrl,/' (12)
P | Q
e i+
e j
e C el
2 e J-2

-3 12 11 1 AT R T & 2 T 5 2

Fig. 9. The original discretization star on the artificial domain boundaries with two duplicated grid lines.

136 E. de Swurler / Applied Numerical Mathematics 19 (1995) 129-146

P Q
i+ @l
j -
il @ el
2 @ 2

-3 -2 01 -1 1 1+l 2

Fig. 10. The adapted discretization star on the artificial domain boundaries with two duplicated grid lines.

If we take B = 0, then we get a boundary condition similar to (2). We substitute u/, ; (given by
(12)) into (10), and this gives
sul,_ +(w+Beul |+ (ct+ae)u —Beul |, —aeul; +eul | +nul; ,=b, . (13)
Eq. (13) is equivalent to the discretization star given in Fig. 10. Obviously, we can make more
than one such adaptation to the discretization star at the same time (e.g. if it is also in the
south boundary). The approach amounts to making corrections to the discretization star for
duplicate grid points. The idea is that the “weights” in the discretization star are redistributed
over entries that refer to the same grid point in the original domain (a set of duplicate grid
points). Note that the redistribution of the weights in the discretization star follows directly
from the choice of an artificial boundary condition. Furthermore, this permits artificial
boundary conditions that change the entries also in directions non-orthogonal to the boundary
(the entries for “n”, point (i, j + 1); *s”, point (i, j — 1); and their duplicates). Such a change
of the discretization star reflects (physical) boundary conditions that are non-orthogonal to the
boundary, e.g., tangential derivatives. Although we will not pursue this further, the approach
might lead to better results; see [7].
After the construction of the generalized SEM, we compute ILUs for the local equations of
each subdomain, that is for the diagonal blocks corresponding to the subdomains. Since this

does not involve the off-diagonal blocks, we may avoid their computation in the generalized
SEM.

3. Preconditioning with overlapping subdomains

Similar to our exposition in the previous section, we will first discuss the one-dimensional
decomposition and then discuss the generalization to higher-dimensional decompositions and
more general meshes.

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 137

3.1. One-dimensional decomposition

We will introduce some notation using the example in the previous section. The generaliza-
tion to more strips is straightforward. Let the vector x be defined on the original domain (2 as
shown in Fig. 1. Then x can be written as

T
x =Xy, Xogs X5, X3, X3) (14)
where the segments of x are vectors defined on the subdomains of (2. Let x be a vector
defined on (2. Then X can be written as
— T
X= (X1, Xag, Koy Xas X35 X345 X3) (15)

where the segments of x are vectors defined on the subdomains of 0. The operators S: 42— 0
and J_ : 2 — (2 are defined by

1 0 0 0 O
0O I 0 0 O
oI 0 0 O
s=lo o 1 o0 o, (16)
0O 0 0 I O
0O 0 0 I O
0O 0 0 0 I
I O 0 0 0 0] 0
0 wl (1-w)l O O 0 0
JI,=lo o 0 I 0 0 ol. (17)
0O 0 0 O wl (1-w) O
0O O 0 0 0 10 I

where the matrix blocks correspond to the segments in x and x. Note that S and J, are
determined completely by the decomposition and the size of the overlap(s) except for the
choice of w. Using § and J, we construct the following two operators.

® J, §5:0-(is the 1dent1ty operator: J,$ = I.

° SJ (21— Q is the identity operator on grid points that do not have a duplicate; it

computes a weighted average over duplicate grid points.

Let A be a generalized SEM derived from A. From the definition of § and the definition of

the generalized SEM in Section 2 we can derive that

AS = SA. (18)

We will now define the preconditioner K. In the previous section we have described the
construction of the generalized SEM A from A. From 4 we can compute the (block) factors
L D and U which are all operators over Q. We will assume throughout this paper that these
factors are nonsingular. Note_that this can easily be verified by inspection of the diagonal
elements of the matrices L, D and U. We define operators over {2 using S and J:J L~ 1S,
J, DS, and J, U~'S. We now define the preconditioner as

K:Q—Q=J,0'S],DSI,L'S. (19)

138 F. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

This preconditioner requires four boundary exchanges. A boundary exchange is the exchange of
data that are allocated to one processor and necessary on other processors (in the matrix—vec-
tor product or preconditioner). In the case of a domain decomposition this generally amounts
to exchanging data that are defined on the boundaries of the subdomains. Note that SJ,

requires only one boundary exchange to compute the average over duplicate subdomains. We
can remove one boundary exchange if we make D such that DS = SD for some D:Q— (.

This is not difficult because Disa diagonal matrix. Hence, we only need to average the entries
of D corresponding to duplicate grid points. If DS = SD we have

SJ, DS =SJ,SD =SD = DS,

so that K can be written as
K:Q-0Q=J,U 'DSI,L"'S. (20)

Although K is defined over (2, we need intermediate vectors defined on O in the
preconditioner. This means that either we have to change the data representation in order to
expand the vectors, or we have to work with vectors that are not contiguous. This may be
cumbersome, and it requires at least more complicated programs. Therefore, it may be
attractive to work entirely on the larger subdomain (2 and to use simpler data structures and
programs at the cost of some computational overhead. This overhead will not be that important
for large problems, because we consider small overlaps only.

We can define a Krylov subspace iteration over Q that is completely equivalent to the one
over {2. Let K : £ — () be defined as

K=SJ,U 'DSJ L . (21)

Note that KS = SK. Let A be the generalized SEM constructed from A, so that AS =SA.
Then the operator KA : 2 — (2 satisfies

(RA) S =S(KA)'. n=0,1,2,.... (22)

So there is a one-to-one correspondence between the vectors of the Krylov subspace
span{Sr, KASr, (KA)*Sr,...} = K(KA. Sr) and the vectors of K(KA, r). We only need to
specify an adapted inner product on K(KA, Sr) in order to solve the same minimization
problem on K(KA, Sr) as on K(KA, r). This inner product is defined by

(%,), =(J % J,7), %5E€K(KA, Sr). (23)

Whether it is more suitable to iterate with K4 or to iterate with KA depends on the
following consequences of using KA:

® The matrix—vector product and the vector update require more computational work.

® We have one boundary exchange less; this means less communication on distributed-mem-
ory computers.

® We work only in one subspace, so we have simpler data structures, and we do not have to
switch between representations.

® [n some cases, ¢.g., in the case of the 5-point discretization star, we do not need to store
the preconditioner separately except for the diagonal matrix D, so we can save on storage.

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 139

Obviously, not all points are valid in all cases. If we run the program on a shared-memory
computer, there is no communication. On the other hand, complex data structures may affect
the performance of (multi) vector processors. _

There is another point of concern. Since we project from {2 to {2 the preconditioner may be
singular, even though the operators U, D, and L are assumed to be nonsingular. However, for
a one-dimensional decomposition where the equations for different overlaps are not coupled
we can construct, with a few small modifications, a (provably) nonsingular preconditioner. For
higher dimensional decompositions with overlap it will be more difficult to avoid the coupling
of the equations of different overlaps. B

For the example decomposition given in Fig. 1, we will construct a modified J,L~'S that
cannot be singular if L ! is not singular. Provably nonsingular versions of the other factors of
the preconditioner can then be constructed in the same way. We will assume, without loss of
generality, that @ = 5, and we use J, , =J.

The matrix JL 'S is singular if and only if

Ax # 0, x € such that JL " 'Sx = 0. (24)

This is equivalent to

y=L""8x,
3x # 0, x €2 such that (25)

T
yz(o’_y2a’ Yaa» O’—y.?a’ Yias 0) .

Furthermore, L~ 'Sx = y e Sx = Ly. This gives for our example decomposition in Fig. 1

iu 0
I:I,Za’ l:za',za’ _32a —szu',za'yza
[‘Ea.Zu Vs, L:Za,Zay2a
[42 2a [42,2 0 = L;saY2a
0 1:3,1',2 Ly s Y3 - ~3a’,3a')’3.a
1:3a 3a y(;a 1:~3a,3a Y3a
[‘3,3“ li” L33,Y34
(26)
The equation Sx = I:y can hold only if
Loy saV2e=LoazaVa: (27)
—‘Z’3a‘ 30 Y30 = I:w 3a¥3a (28)

If this holds for some vector y such that not both Yaa = 0 and y,, = 0, then an x satisfying (25)
can be constructed and hence the operator JL ~'S is singular. However, with

LZa"Za' = l‘:Za,Za ’ (29)
Z‘3’:a',3a’ = l:3a,3a’ (30)

140 F. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

it follows from (27) and (28) that both y,, =0 and y;, =0, so that this condition insures
nonsingularity.

In the case of an IBLU(0) preconditioner this does not pose any problems, because L,y 24
and L,, ,a» €tc. have pairwise the same sparsity structure, so that we can satisfy (29) and (30)
with few modifications. Moreover, since we consider only small overlaps, these matrix blocks
(L,, 24 and LZa 24> €tC.) are also small, and we can give corresponding entries the same value
without too much work. In the case of incomplete (block) factorizations of the form (L +
D)D YD + U_), where L and U are the strictly lower and upper triangular parts of the block
diagonal of A4, we only have to make the elements of the diagonal matrix D equal for the
overlap regions. Note that this is the same as we suggested for the elimination of one
communication in Section 3.

3.2. Higher-dimensional decompositions and more general meshes

Also for higher dimensional decompositions and more general meshes the operators S and
J, are determined by the decomposition into subdomains and the choice of the overlaps, except
for the choice of the weight parameters w. Note that w can be varied for each overlap. Given S
and J_, the algebraic definition of the preconditioner and the Krylov subspace iteration are
generally applicable. Therefore, the extension to higher-dimensional decompositions and /or
general meshes is straightforward.

4. Experimental results

With respect to the parallel performance, we will only consider the additional overhead
introduced by the preconditioner. This has three components:

(1) The potential increase in the number of iterations.

(2) The computational overhead due to the duplication of grid points.

(3) The communication overhead due to the communication in the preconditioner.

The communication overhead in the IBLU preconditioners is relatively small because they
only require communication of a processor with a few nearby processors. Also, if the number of
local grid points is sufficiently large the computational overhead of one or two extra grid lines
will be small. The increase in iterations is by far the most important factor, since any increase
in the number of iterations gives a proportional decrease in efficiency (including the overhead
in communication). We will therefore focus on the iteration count, and we will discuss the
computational overhead and the resulting loss in efficiency only briefly at the end of this
section.

We will begin with a discussion of the increase in the iteration count when we use only local
preconditioning for an increasing number of subdomains. Then, we consider the improvement
by preconditioners defined on (slightly) overlapping subdomains, and after that we consider the
reduction of the iteration count when using overlapping subdomains and adapting the artificial
boundary conditions, as described in Section 2.

We have done a number of experiments to see how the choice of parameters influences the
convergence and to look at the potential of the described preconditioners. The experiments

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 141

with one-dimensional decompositions (all in the y-direction) were done on a single processor
and we will only study the increase in the number of iterations. We give iteration counts as the
number of complete cycles plus the number of iterations in the last cycle, because for
GMRES(m) the cost of an iteration increases within a cycle. The experiments with two-dimen-
sional decompositions (as described in Section 2) were done on a distributed-memory parallel
computer, a 400-processor Parsytec Supercluster at the Koninklijke /Shell-Laboratorium in
Amsterdam, and we will discuss the performance and parallel efficiency of this implementation
in more detail at the end of this section.
Our model problem comes from the discretization of

—(u,, +u,)+bu, +cu,=0

on [0, 1] x [0, 4], with

10, for0<y <1,
—-10, forl1<y <2,
b(x, v) = 10, for 2 <y <3,
—10, for3<y<4,

and ¢ = 10. The boundary conditions are u =1 on y=0, u=0on y =4, and du/on =0 for
x=0and x = 1; see Fig. 11. We have discretized this problem over a 100 X 200 grid and over a
200 x 400 grid by the finite volume method.

We have chosen relatively small model problems since the parallelization on 400 processors
then causes a rather extreme ‘“‘decomposition” of the mesh, and it will be interesting to see how
well the preconditioners can deal with this. Another reason is to show that the computational
overhead has only a relatively small influence on the performance, even though for such large
numbers of subdomains for a relatively small problem the computational overhead will be
large.

We have solved the model problem for two grid sizes to see how much this influences the
convergence behaviour for different decompositions. Table 1 gives the results for several
decompositions without overlap. We see for the 100 X 200 grid that there is only little increase
in the iteration count going from one subdomain to as many as 200. For the 20 X 20
decomposition we see a substantial increase in the iteration count. It is also interesting to see
that the iteration count may be better for small decompositions (1 X 5) than for the sequential

au _
an’o
T1
u=// \ / \ u=20
X
0
0 1 2 du_ 3 4
an_o

Fig. 11. The model problem.

142 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

Table 1

Iteration counts for several decompositions with strictly local preconditioning

Decomposition 100 x 200 200 %400
1x1 11 x50+7 18 X 50 + 40
1X5 10x50+35 21 x50+ 27
1x10 11x50+33 21 xX50+37
1x20 12x50+10 20X 50+45
1020 13%x50+29 21x50+19

20 <20 19 x50+ 40 24 %50+ 44

implementation. For the 200 X 400 problem we see that the iteration count increases slowly
with the number of subdomains, and even for 20 X 20 subdomains the iteration count is only
about one-third higher than for the sequential case.

We will further restrict the discussion of the convergence for several one-dimensional
decompositions with overlapping grid lines and adapted boundary conditions to the problem on
the 100 X 200 grid. We will come back to the 200 X 400 problem in the discussion of the
two-dimensional decompositions.

In Table 2 we have given the iteration counts for several decompositions with one or two
overlapping grid lines. The number of iterations is more or less constant going from the
sequential algorithm to the algorithm based on the 1 X 20 decomposition. Note that even the
iteration count for the 1 X 20 decomposition is smaller than for the sequential case. Obviously
we can use the same preconditioner also in a sequential algorithm.

In Table 3 we have shown the iteration counts for several decompositions with overlapping
grid lines and adapted, artificial boundary conditions. We have taken the parameters a and 8
from the set {0.0, 0.1, 0.2,..., 1.0}. There seems to be a trend that the optimal « increases if the
number of subdomains increases, but this is not always so. In any case, the convergence does
not seem to depend too critically on the choice of a. The results suggest that there is a rather
large interval around the optimal value from which all values give comparable convergence.

It is clear that adapting the boundary conditions can improve the convergence even further.
The convergence for the 1 X 20 decomposition with two overlapping grid lines when using both
a and B is much better than for the sequential algorithm. Since we could also use an IBLU
preconditioner based on some domain decomposition for the sequential algorithm, it is
important that the difference between the best iteration count in Table 3, (9 X 50 + 15), and
the best iteration count observed for the 1 X 20 decomposition, (9 X 50 + 47), is small.

Table 2

Iteration counts for several decompositions with overlapping grid lines without adapted boundary conditions
Decomposition ovl=0 ovl=1 ovl=2

1x1 11X50+7 — —

1X5 10X 50+ 35 9x50+15 10x50+17

1x10 11 x50+ 33 11x50+44 11x50+11

1Xx20 12%X50+10 10x50+22 10X 50+ 28

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 143

Table 3

Iteration counts for several decompositions with overlapping grid lines and adapted boundary conditions. The given
values for « identify a range of values giving good (comparable) iteration counts; the optimum is boid. For the 1X20
decomposition we also give the optimal parameters with 8 # 0

Decomposition ovl=0 ovl=1 ovl =2
1x1 11X50+7 — —
1X5 10 x50+ 35 a =100 9x50+15 a=0.3 10x50+22
a=0.1 9x50+41 a=04 9Xx50+45
a=0.2 9x50+45 a=0.5 9x50+47
a=03 10x50+37 a=056 10X 50+7
1x10 11 x50+ 33 a=03 10x50+10 a=0.1 10X 50+29
a=04 10xX50+1 a=02 9X50+47
a=05 10x50+5 a =03 9x50+41
a=0.6 10x50+9 a=04 10x50+10
1x20 12Xx50+ 10 a=03 10x50+23 a=04 10X 50+7
a=04 10X50+8 a=0.5 10x50+25
a=05 10X50+8 a = 0.6 10X50+1
a=0.6 10x50+21 a=0.7 11x50+40
{a=0.6 9x50+47
B=0.1

We will now discuss the convergence for preconditioners derived from two-dimensional
decompositions of our model problem. We will give results for the 20 X 20 decomposition of
the 100 X 200 grid and the 200 X 400 grid using GMRES(50). The number of potential
parameters is now very large. We can choose parameters w, and w, for each overlap to define
the projector J,,, and we can choose « and 8 different in each direction on each subdomain.
Further, we can take the overlap size different in x- and y-direction. For simplicity we have
taken w, =w, = 1. For the experiments described here we use the same overlap size in each
direction, and also for a« and B (when appropriate) we use for all directions the same value.
However, for completeness we mention that for some experiments not described here it was
useful to have different parameters for different directions.

In Table 4 we give the iteration counts for the 20 X 20 decomposition. We used an overlap
size of one grid line for both problems. For the 200 X 400 grid we also used an overlap size of
three grid lines; for the smaller problem this is too expensive. For both problems an overlap
size of two grid lines resulted in a very poor convergence (or none at all) irrespective of the
chosen parameters. This might be due to (near) singularity; see the discussion in Section 3. For
the 100 X 200 problem it seems that the parameter choice for two-dimensional decompositions
is more sensitive than that for one-dimensional decompositions. For both grid sizes we are able
to stay very close to the iteration count of the sequential algorithm, although for the 200 X 400
grid this requires an overlap size of three grid lines. These convergence results indicate that we
can go from the sequential algorithm to an algorithm based on a decomposition into as much as
400 subdomains with only a small increase in the iteration count, provided that we can find the
right parameters (which is an open problem yet).

144 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

Table 4

Iteration counts for the 100X 200 and 200X 400 problems with a 20X 20 decomposition and adapted, artificial
boundary conditions.

100 200 200 x 400

Overlap « Iteration count Overlap « B Iteration count
1 0.1 15Xx50+10 1 0.4 — 22X 50+ 36

1 0.2 13 x50+ 41 1 0.6 — 22x50+14

| 0.4 16 X50+25 3 0.1 0.3 19 x50+ 37

Finally, we will discuss some performance and efficiency issues. Since we want to study the
efficiency and performance of the preconditioners, we must try to separate these from the
efficiency and performance of the Krylov subspace methods using these preconditioners. We
will proceed as follows. We compare the measured performance of the preconditioned
GMRES(m) iterations with the performance of a virtual, preconditioned GMRES(m) algo-
rithm. The runtime of a single cycle of this virtual, preconditioned GMRES(m) algorithm is
defined as the runtime of a GMRES(m) cycle with a strictly local preconditioner, as shown in
Table 5, and the iteration count of this virtual, preconditioned GMRES(m) algorithm is
defined as the iteration count of the sequential, preconditioned GMRES(m). This models a
(virtual) preconditioned GMRES(m) with a “perfect” speed-up for the preconditioner: there is
no computational overhead, no communication overhead, and the iteration count remains the
same as for the sequential algorithm. The overhead of the preconditioners is measured by the
relative increase in the runtime of a cycle and the relative increase (or decrease) in the number
of iterations. The product of these two gives approximately the relative increase of the total
solution time with respect to the solution time of the virtual, preconditioned GMRES(m)
iteration. This relative increase in the solution time is the inverse of the efficiency, because the
virtual GMRES(m) has an assumed efficiency of one (considering only the preconditioner).
The true efficiency of the preconditioned GMRES(m) iterations can be estimated by the
product of the derived efficiency and the efficiency of a single cycle of a GMRES(m) with a
strictly local preconditioner (see for example [1]).

Table 5

Performance results on a 20 X 20 processor grid: measured runtimes for a single cycle, the number of iterations, and
the measured total solution time for 100X 200 and 200 X 400 discretizations. In version (a) we use the duplicated grid
lines only for the preconditioner. In version (b) we use the duplicated grid lines in the preconditioner, the matrix
vector product and the vector update.

Overlap 100 X 200 200 X 400

(x/y) Cycle Iteration Solution Cycle Iteration Solution
time (s) count time (s) time (s) count time (s)

0 2.21 19%x 50+ 40 43.3 4.81 24 x50+ 44 119.

1(a) 2.31 13X 50+ 41 31.8 5.00 2250+ 14 111.

3(a) not avail. not avail. not avail. 5.14 19x50+37 102.

1(b) 2.46 13X 50+ 41 33.7 517 22x50+14 114,

3(b) not avail. not avail. not avail. 6.25 19%x 50+ 37 123.

E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146 145

Table 6

Relative performance on a 20 X 20 processor grid: the overhead for the runtime of a cycle, for the iteration count,
and for the entire runtime to compute the solution, and the efficiency of the parallel preconditioner.

Overlap 100x 200 200 % 400

(version) - : - — : ; ; —
Runtime Iteration Runtime Efficiency Runtime Iteration Runtime Efficiency
cycle count solution (%) cycle count solution (%)

0 1.00 1.78 1.78 56.3 1.00 1.32 1.32 75.6

1(a) 1.05 1.24 1.30 77.1 1.04 1.19 1.23 81.2

3(a) not avail. notavail. notavail. not avail. 1.07 1.05 1.12 89.1

1(b) 1.11 1.24 1.38 723 1.07 1.19 1.27 78.5

3(b) not avail. not avail. not avail. not avail. 1.30 1.05 1.36 73.3

For both versions of our problem we have selected the tests with the best iteration counts,
because we want to look at the potential of the preconditioners. For these tests we have
measured the runtime of a single GMRES(/m) cycle and the runtime to compute the solution.
The results are presented in Table 5. For comparison we have also included the data for the
20 X 20 decomposition with (strictly) local preconditioning. From Table 5 we can compute the
relative increases in cycle time, iteration count, and solution time. These results are given in
Table 6. We have implemented two versions of the preconditioned GMRES(m) iterations.
Version (a) uses the extra unknowns from duplicated grid lines only in the preconditioner.
Version (b) works entirely on the domain with duplicated grid lines.

We see that, except for one case where we used the enlarged problem for the whole
iteration, the communication and computation overhead is always outweighed by the reduction
in iterations. For the 200 X 400 case (version a) it is even worth while to have an overlap size of
three grid lines instead of one due to the lower number of iterations. We can see from the
results in Table 6 that very high efficiencies can be attained: 77% and 89%.

5. Conclusions

We have proposed a type of preconditioners that is based on a domain decomposition with
subdomains that have only a small overlap. The construction of these preconditioners is
straightforward and efficient; it does not introduce any significant parallel overhead.

Our results indicate that we may keep the increase in the iteration count quite small going
from the sequential algorithm to a parallel algorithm on as much as 400 subdomains. For
moderate numbers of subdomains we may keep the iteration count even constant and
sometimes we may improve it compared with the sequential algorithm. Moreover, the overhead
introduced by the duplication of grid lines results in only a small increase in the runtime of a
single cycle. Therefore, as far as the preconditioner is concerned efficient implementations on
(massively) parallel computers are possible.

Our examples indicate that the reduction in the iteration count is very important even at the
cost of additional computation. This is due to the following two facts. On the one hand, on
large parallel computers for Krylov subspace methods the communication cost of the inner

146 E. de Sturler / Applied Numerical Mathematics 19 (1995) 129-146

products dominates the performance, and this makes extra iterations very expensive. On the
other hand, the runtime increase by additional computation is relatively small because of the
communication cost of the inner products.

The a priori choice of good parameters is still an open problem, and future research in this
direction is necessary. Some analyses have already been carried out in the case of block
relaxation methods with exact solvers on the subdomains [7,9], and this has to be extended to
incomplete solvers and Krylov subspace methods.

References

{1] E. de Sturler and H.A. van der Vorst, Reducing the effect of global communication in GMRES() and CG on
parallel distributed memory computers, Technical Report 832, Mathematical Institute, University of Utrecht,
Netherlands (1993).

[2] 1. Gustafsson, A class of first order factorization methods, BIT 18 (1978) 142—156.

[3] J.A. Meijerink and H.A. van der Vorst, An iterative solution method for linear equations systems of which the
coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977) 148-162.

[4] J.A. Meijerink and H.A. van der Vorst, Guidelines for the usage of incomplete decompositions in solving sets of
linear equations as they occur in practical problems, J. Comput. Phys. (1981) 134-155.

[5] G. Radicati di Brozolo and Y. Robert, Parallel conjugate gradient-like algorithms for solving sparse nonsymmet-
ric linear systems on a vector multiprocessor, Parallel Comput. 11 (1989) 223-239.

[6] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.

[7]1 K.H. Tan and M.J.A. Borsboom, Problem-dependent optimization of flexible couplings in domain decomposition
methods, with an application to advection-dominated problems, Technical Report 830, Mathematical Institute,
University of Utrecht, Netherlands (1993).

[8] W.P. Tang, Schwarz splitting and template operators, Ph.D. Thesis, Stanford University, CA (1987).

[9] W.P. Tang, Generalized Schwarz splittings, SIAM J. Sci. Statist. Comput. 13 (1992) 573-595.

