PCMI 2018 - Oscillations in Harmonic Analysis Problem Set #8 on 7/13/2018

P1) Consider

$$z^2 - x^2 + 2xyz - y^2 = 0.$$

Can z be solved as a function of x and y near the point (1,0,1)? [Hint: Use the Implicit Function Theorem]

P2) Inverse Function Theorem Let $A \subset \mathbb{R}^n$ be an open set and let $f : A \to \mathbb{R}^n$ be of class C^1 . Let $x_0 \in A$ and suppose $|Df(x_0)| \neq 0$. Then there is a neighborhood U of x_0 in A and an open neighborhood W of $f(x_0)$ such that f(U) = W and f has a C^1 inverse $f^{-1} : W \to U$. Moreover for $y \in W$, $x = f^{-1}(y)$ we have

$$Df^{-1}(y) = [Df(x)]^{-1}$$

If f is of class C^p , $p \ge 1$, then so is f^{-1} .

The goal of this problem is for you to explore the proof of this fact in small steps.

(a) Recall the proof of the theorem in in \mathbb{R} which you may have seen in a calculus or real analysis class. Show in particular

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}.$$

If you can't recall the proof then look it up online.

- (b) In the proof above did you get an inverse on an entire open neighborhood (as opposed to just getting the formula)? Make sure you understand that.
- (c) Can you show that if the original function was of class C^p then the inverse you found is also of the same class?
- (d) Can you generalize your proof to \mathbb{R}^n ?