PCMI 2018 - Oscillations in Harmonic Analysis Problem Set \#6 on $7 / 10 / 2018$

P1) Suppose f is a Schwartz function supported on an interval $[-M, M]$.
(a) Fix L with $L / 2>M$ and show that $f(x)=\sum a_{n}(L) e^{2 \pi i n x / L}$ where

$$
a_{n}(L)=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) e^{-2 \pi i n x / L} d x=\frac{1}{L} \widehat{f}(n / L)
$$

Alternatively we may write $f(x)=\delta \sum_{n=-\infty}^{\infty} \widehat{f}(n \delta) e^{2 \pi i n \delta x}$ with $\delta=1 / L$.
[Hint: Note that the Fourier series of f on $[-L / 2, L / 2]$ converges absolutely.]
(b) Prove that if F is a Schwartz function then

$$
\int_{\infty}^{\infty} F(\xi) d \xi=\lim _{\substack{\delta \rightarrow 0 \\ \delta>0}} \delta \sum_{n=-\infty}^{\infty} F(\delta n)
$$

[Hint: Approximate the first integral by $\int_{-N}^{N} F$ and the sum by $\delta \sum_{|n| \leq N / \delta} F(n \delta)$. Then approximate the second integral by Riemann sums.]
(c) Conclude that $f(x)=\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi$.

P2) Show the following properties of the Fourier transform for a Schwartz function f.
(i) The Fourier transform of $f(x+h)$ is $e^{2 \pi i h \xi} \widehat{f}(\xi)$.
(ii) The Fourier transform of $f(x) e^{-2 \pi i x h}$ is $\widehat{f}(\xi+h)$.
(iii) The Fourier transform of $f(\delta x)$ is $\delta^{-1} \widehat{f}\left(\delta^{-1} \xi\right)$ when $\delta>0$.
(iv) The Fourier transform of $f^{\prime}(x)$ is $2 \pi i \xi \widehat{f}(\xi)$.
(v) The Fourier transform of $-2 \pi i x f(x)$ is $\frac{d}{d \xi} \widehat{f}(\xi)$.
[Hint: Show that $\left|\frac{\widehat{f}(\xi+h)-\widehat{f}(\xi)}{h}-\widehat{2 \pi i x} f(\xi)\right|$ is small. When writing out those integrals, say using the variable x, then use that $f(x)$ decays rapidly if x is large, while if x is bounded then you can make $\left|\frac{e^{-2 \pi i x h}-1}{h}+2 \pi i x\right|$ small if h is small enough.]

P3) Consider the sequence of functions

$$
S_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

(a) Show that as $n \rightarrow \infty$ we have $S_{n}(x) \rightarrow 0$ for every x.
(b) Show that for every $n>0$ there exist numbers (possibly depending on n) x_{+}and x_{-}such that $S_{n}\left(x_{+}\right)=\frac{1}{2}$ and $S_{n}\left(x_{-}\right)=-\frac{1}{2}$. This is an example of the so-called Gibbs phenomenon.

P4) Let $B_{n}(t)$ be defined in $-\pi<x<\pi$ to be equal to πn in the interval $-\frac{1}{n}<x<\frac{1}{n}$ and zero elsewhere in the interval, and to be periodic with period 2π.
(a) If f is continuously differentiable and of period 2π show

$$
\lim _{n \rightarrow \infty}\left(f * B_{n}\right)(x)=f(x)
$$

(b) Does the Gibbs phenomenon occur here?

P5) Let D_{N} denote the Dirichlet kernel

$$
D_{N}(x)=\sum_{k=-N}^{N} e^{i k x}=\frac{\sin ((N+1 / 2) x)}{\sin (x / 2)}
$$

and define

$$
L_{N}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{N}(x)\right| d x
$$

(a) Prove that

$$
L_{N} \geq c \log (N)
$$

for some constant $c>0$.
[Hint: Show that $\left|D_{N}(x)\right| \geq c \frac{\sin ((N+1 / 2) x)}{|x|}$, change variables, and prove that

$$
L_{N} \geq c \int_{\pi}^{N \pi} \frac{|\sin (x)|}{|x|} d x+O(1)
$$

Write the integral as a sum $\sum_{k=1}^{N-1} \int_{k \pi}^{(k+1) \pi}$. To conclude, use the fact that $\sum_{k=1}^{n} \frac{1}{k} \geq$ $c \log (n)$.]
(b) Prove the following as a consequence: for each $n \geq 1$, there exists a continuous function f_{n} such that $\left|f_{n}\right| \leq 1$ and $\left|S_{n}\left(f_{n}\right)(0)\right| \geq c^{\prime} \log (n)$.
[Hint: The function g_{n} which is equal to 1 when D_{n} is positive and -1 when D_{n} is negative has the desired property but is not continuous. Approximate g_{n} in the integral norm by continuous functions h_{k} satisfying $\left|h_{k}\right| \leq 1$ which you may take as a given that this is possible.]

