PCMI 2018-Oscillations in Harmonic Analysis Problem Set \#5 on 7/9/2018

P1) Show that $|\sin (x)| \geq\left|\frac{x}{\pi / 2}\right|$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
[Hint: Think about convexity and concavity of the two different functions and their geometry.]
P2) Consider the Dirichlet kernel

$$
D_{N}(x)=\sum_{n=-N}^{N} e^{i n x}
$$

Show the following properties.
(a) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1$ for all N
(b) $D_{N}(x)=\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin (x / 2)}$
[Hint: Multiply $D_{N}(x)$ by $\sin (x / 2)=\frac{1}{2 i} e^{i x / 2}-\frac{1}{2 i} e^{-i x / 2}$ and exploit a telescoping sum.]
(c) There exists a constant $C>0$ such that

$$
\left|D_{N}(x)\right| \leq C \min \left\{N, \frac{1}{|x|}\right\}
$$

if $x \in[-\pi, \pi]$ and $N \geq 1$.
[Hint: Use the definition for the first bound, while the second bound can be obtained by using part (b) and P1).]

P3) Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a family of good kernels, which we recall implies the following conditions.
(i) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(x) d x=1$ for all $n \geq 1$.
(ii) There exists $M>0$ such that

$$
\int_{-\pi}^{\pi}\left|K_{n}(x)\right| d x \leq M \quad \text { for all } n \geq 1
$$

(iii) For every $\delta>0$

$$
\int_{\delta \leq|x| \leq \pi}\left|K_{n}(x)\right| d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Show that if f is a bounded and integrable function on the circle then

$$
\lim _{n \rightarrow \infty}\left(f * K_{n}\right)(x)=f(x)
$$

whenever f is continuous at x. If f is continuous everywhere then show the limit is uniform.
[Hint: Let $\epsilon>0$ be given. By continuity of f at x choose $\delta>0$ such that $|y|<\delta$ implies $|f(x-y)-f(x)|<\epsilon$. Your goal is to make $\left|\left(f * K_{n}\right)(x)-f(x)\right|$ small. First show it can be written as $\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) K_{n}(y) d y\right|$. Then break this integral up into two parts, one being an integral over $|y|<\delta$ and use the continuity of f, the other being $\delta \leq|y| \leq \pi$ where you will have to use the boundedness of f along with the properties of the good kernel.]

P4) Recall that the Fejér kernel is given by

$$
F_{N}(x)=\frac{D_{0}(x)+\ldots+D_{N-1}(x)}{N}
$$

where $D_{k}(x)$ is the Dirichlet kernel from P2). Show the following properties of the Fejér kernel.
(a) $F_{N}(x)=\frac{1}{N} \frac{\sin ^{2}(N x / 2)}{\sin ^{2}(x / 2)}$
[Hint: If $\omega=e^{i x}$ we have $N F_{N}(x)=\sum_{n=0}^{N-1} \frac{\omega^{-n}-\omega^{n+1}}{1-\omega}$.]
(b) F_{N} is a good kernel.
[Hint: Note that (a) shows that $F_{N}(x) \geq 0$.]

