PCMI 2018 - Oscillations in Harmonic Analysis Problem Set \#4 on $7 / 6 / 2018$

P1) Let f be the function defined on $[-\pi, \pi]$ by $f(x)=|x|$.
(a) Draw the graph of f.
(b) Calculate the Fourier coefficients of f, and show that

$$
\widehat{f}(n)=\left\{\begin{array}{cc}
\frac{\pi}{2} & \text { if } n=0 \\
\frac{-1+(-1)^{n}}{\pi n^{2}} & \text { if } n \neq 0
\end{array}\right.
$$

(c) What is the Fourier series of f in terms of sines and cosines?
(d) Taking $x=0$, prove that $\sum_{n \text { odd } \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$

P2) Show that if the function f is integrable and bounded on $[-\pi, \pi]$ with $\widehat{f}(n)=0$ for all $n \in \mathbb{Z}$ then $f\left(x_{0}\right)=0$ whenever f is continuous at x_{0}.
[Hint: Start by assuming that f is real valued. For contradiction assume $f\left(x_{0}\right) \neq 0$. Without loss of generality you may then assume $x_{0}=0$ and $f(0)>0$. By continuity at 0 you can choose $0<\delta \leq \frac{\pi}{2}$ such that $f(x)>\frac{f(0)}{2}$ when $|x|<\delta$. Next introduce a new function $p(x)=\epsilon+\cos (x)$ where $\epsilon>0$ is chosen so small that $|p(x)|<1-\frac{\epsilon}{2}$ whenever $\delta \leq|x| \leq \pi$. Then choose $0<\eta<\delta$ such that $p(x) \geq 1+\frac{\epsilon}{2}$ for $|x|<\eta$. Define $p_{k}(x)=(p(x))^{k}$. Sketch a little cartoon of what p_{k} looks like as k gets large. Why does $\widehat{f}(n)=0$ imply that $\int_{-\pi}^{\pi} f(x) \cos (n x) d x=0$ for all $n \in \mathbb{Z}$ and similarly with $\sin (n x)$? How does that imply $\int_{-\pi}^{\pi} f(x) p_{k}(x) d x=0$ for all k ? In order to reach a contradiction break the integral $\int_{-\pi}^{\pi} f(x) p_{k}(x) d x=0$ up into the three parts $|x|<\eta$, $\eta \leq|x|<\delta$ and $\delta \leq|x| \leq \pi$. Show that the integral on the first region tends to infinity, is non-negative on the second region and tends to 0 on the third region. To complete the proof note that if f is complex valued you can write it as $f(x)=u(x)+i v(x)$ where u, v real valued and note $u(x)=\frac{f(x)+\bar{f}(x)}{2}$ and something similar for v. Show that $\widehat{f}(n)=0$ implies $\widehat{u}(n)=0$ and $\widehat{v}(n)=0$ and use the previous result on the real and imaginary parts.]

P3) Given 2π periodic, integrable functions f and g on \mathbb{R} show the following properties for their convolution.
(a) $f * g=g * f$
(b) $\widehat{f * g}(n)=\widehat{f}(n) \widehat{g}(n)$

