PCMI 2018-Oscillations in Harmonic Analysis Problem Set \#3 on $7 / 5 / 2018$

P1) Consider the vector space $\ell^{p}(\mathbb{Z})$ of integer valued sequences $\left(a_{k}\right)_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}<\infty$.
(a) Verify that the function defined for a sequence $\mathbf{a}=\left(a_{k}\right)_{k=1}^{\infty}$ by

$$
\|\mathbf{a}\|_{p}=\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{p}\right)^{1 / p}
$$

is a norm on $\ell^{p}(\mathbb{Z})$ when $p \geq 1$. [Hint: Look up Minkowski's inequality for sums.]
(b) Show that the norm $\|\cdot\|_{p}$ from (a) comes from an inner product if and only if $p=2$. [Hint: If it comes from an inner product then the parallelogram equality holds true by problem P3 on Problem Set \#2. Plug some simple sequences into it and see what happens.]

P2) Let H_{n} denote the linear class of functions spanned by

$$
1, \cos (x), \cos (2 x), \ldots, \cos (n x), \sin (x), \sin (2 x), \ldots, \sin (n x) .
$$

a) What is the dimension of H_{n} ?
b) Is H_{n} a subspace of H_{n+1} ?
c) For what values of n is $\sin ^{2}(x)$ an element of H_{n} ?

P3) In this exercise we show how the symmetries of a function imply certain properties of its Fourier coefficients. Let f be a 2π-periodic integrable function defined on \mathbb{R}.
(a) Show that the Fourier series of the function f can be written as

$$
\widehat{f}(0)+\sum_{n \geq 1}[\widehat{f}(n)+\widehat{f}(-n)] \cos (n x)+i[\widehat{f}(n)-\widehat{f}(-n)] \sin (n x)
$$

(b) Prove that if f is even, then $\widehat{f}(n)=\widehat{f}(-n)$, and we get a cosine series.
(c) Prove that if f is odd, then $\widehat{f}(n)=-\widehat{f}(-n)$, and we get a sine series.
(d) Suppose that $f(x+\pi)=f(x)$ for all $x \in \mathbb{R}$. Show that $\widehat{f}(n)=0$ for all odd n.
(e) Show that a continuous function f is real-valued if and only if $\overline{\hat{f}(n)}=\widehat{f}(-n)$ for all n.

