Fourier Series Meets Linear Algebra
 Part 4: The Dirichlet kernel

P1) Simplify

$$
\sin (x)+\sin (3 x)+\ldots+\sin ((2 n-1) x)
$$

[Hint: Multiply this by a trig function and simplify in a similar manner as we did with the Dirchlet kernel.]

P2) Consider the sequence of functions

$$
S_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

a) Show that as $n \rightarrow \infty$ we have $S_{n}(x) \rightarrow 0$ for every x.
b) Show that for every $n>0$ there exist numbers (possibly depending on n) x_{+}and x_{-}such that $S_{n}\left(x_{+}\right)=\frac{1}{2}$ and $S_{n}\left(x_{-}\right)=-\frac{1}{2}$. This is an example of the so-called Gibbs phenomenon.
c) Look up online information about the Gibbs phenomenon for Fourier series.

P3) Let $B_{n}(t)$ be defined in $-\pi<x<\pi$ to be equal to $\frac{n}{2}$ in the interval $-\frac{1}{n}<x<\frac{1}{n}$ and zero elsewhere in the interval, and to be periodic with period 2π.
a) If f is continuously differentiable and of period 2π show

$$
\lim _{n \rightarrow \infty}\left(f * B_{n}\right)(x)=f(x)
$$

b) Does the Gibbs phenomenon occur here?
c) Discuss the difference between B_{n} and the Dirichlet kernel D_{n}. You are highly encouraged to formulate hypothesis on why they sometimes have similar behavior and why they sometimes have different behavior.

