Fourier Series Meets Linear Algebra Part 3: Fourier series

- P1) Let H_n denote the linear class of functions spanned by $1, \cos(x), \cos(2x), \ldots, \cos(nx), \sin(x), \sin(2x), \ldots, \sin(nx)$.
 - a) What is the dimension of H_n ?
 - b) Is H_n a subspace of H_{n+1} ?
 - c) For what values of n is $\sin^2(x)$ an element of H_n ?
- P2) Show that $\frac{\sin(x)}{\sqrt{\pi/2}}, \frac{\sin(2x)}{\sqrt{\pi/2}}, \frac{\sin(3x)}{\sqrt{\pi/2}}, \dots$ is an orthonormal sequence on $[0, \pi]$. [Show all calculations, do not just cite results from the slides.]
- P3) a) Sketch the period 2π extension of the function defined in the interval $0 \le x < 2\pi$ by

$$f(x) = \begin{cases} 1 & \text{if } x \le \pi \\ -1 & x > \pi \end{cases}$$

- b) Find the Fourier series of f(x).
- c) Does the Fourier series converge to f(x)?
- P4) a) Sketch the period 2L extension of the function defined in the interval $-L \le x < L$ by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < L \\ -1 & \text{if } -L \le x < 0 \end{cases}$$

- b) Find the Fourier series of f(x).
- c) Does the Fourier series converge to f(x)?