Fourier Series Meets Linear Algebra
 Part 3: Fourier series

P1) Let H_{n} denote the linear class of functions spanned by $1, \cos (x), \cos (2 x), \ldots, \cos (n x)$, $\sin (x), \sin (2 x), \ldots, \sin (n x)$.
a) What is the dimension of H_{n} ?
b) Is H_{n} a subspace of H_{n+1} ?
c) For what values of n is $\sin ^{2}(x)$ an element of H_{n} ?

P2) Show that $\frac{\sin (x)}{\sqrt{\pi / 2}}, \frac{\sin (2 x)}{\sqrt{\pi / 2}}, \frac{\sin (3 x)}{\sqrt{\pi / 2}}, \ldots$ is an orthonormal sequence on $[0, \pi]$. [Show all calculations, do not just cite results from the slides.]

P3) a) Sketch the period 2π extension of the function defined in the interval $0 \leq x<2 \pi$ by

$$
f(x)=\left\{\begin{array}{rl}
1 & \text { if } x \leq \pi \\
-1 & x>\pi
\end{array}\right.
$$

b) Find the Fourier series of $f(x)$.
c) Does the Fourier series converge to $f(x)$?

P4) a) Sketch the period $2 L$ extension of the function defined in the interval $-L \leq x<L$ by

$$
f(x)=\left\{\begin{aligned}
1 & \text { if } 0 \leq x<L \\
-1 & \text { if }-L \leq x<0
\end{aligned}\right.
$$

b) Find the Fourier series of $f(x)$.
c) Does the Fourier series converge to $f(x)$?

