Fourier Series Meets Linear Algebra Part 2: Orthogonality

- P1) Prove that, if nonzero vectors f and g are orthogonal, neither can be a scalar multiple of the other.
- P2) Is $1, x, x^2, x^3, \ldots$ an orthogonal sequence in C[0, 1]?
- P3) Let f and g be elements of C[0, 1] defined by f(x) = 1 and g(x) = x. Find the projection of f in the direction of g.
- P4) Using the Gram-Schmidt process, find an orthonormal basis for the threedimensional subspace of C[-1, 1] spanned by $1, x, x^2$.
- P5) Let W_n be a subspace with an orthonormal basis ϕ_1, \ldots, ϕ_n . If $g = \operatorname{proj}_{W_n}(f)$ then what is $\operatorname{proj}_{W_n}(g)$?