Fourier Series Meets Linear Algebra
 Part 2: Orthogonality

P1) Prove that, if nonzero vectors f and g are orthogonal, neither can be a scalar multiple of the other.

P2) Is $1, x, x^{2}, x^{3}, \ldots$ an orthogonal sequence in $C[0,1]$?
P3) Let f and g be elements of $C[0,1]$ defined by $f(x)=1$ and $g(x)=x$. Find the projection of f in the direction of g.

P4) Using the Gram-Schmidt process, find an orthonormal basis for the threedimensional subspace of $C[-1,1]$ spanned by $1, x, x^{2}$.

P5) Let W_{n} be a subspace with an orthonormal basis $\phi_{1}, \ldots, \phi_{n}$. If $g=$ $\operatorname{proj}_{W_{n}}(f)$ then what is $\operatorname{proj}_{W_{n}}(g)$?

