Fourier Series Meets Linear Algebra
 Part 1: Inner products and norms

P1) Show from the definition of an inner product that

$$
\left\langle\alpha_{1} f_{1}+\beta_{1} g_{1}, \alpha_{2} f_{2}+\beta_{2} g_{2}\right\rangle=\alpha_{1} \overline{\alpha_{2}}\left\langle f_{1}, f_{2}\right\rangle+\alpha_{1} \overline{\beta_{2}}\left\langle f_{1}, g_{2}\right\rangle+\beta_{1} \overline{\alpha_{2}}\left\langle g_{1}, f_{2}\right\rangle+\beta_{1} \overline{\beta_{2}}\left\langle g_{1}, g_{2}\right\rangle
$$

P2) Find the inner product $\langle f, g\rangle$ where f, g are functions on $[-\pi, \pi]$ such that f is odd and g is even.

P3) Prove the parallelogram equality

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}
$$

P4) a) Complete the proof of the Cauchy-Schwarz inequality.
b) Prove in detail that if equality holds in the Cauchy-Schwarz inequality one of the vectors is a scalar multiple of the other.

