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Abstract. In this paper, we give distance-` colorings of the hypercube using nonlinear
binary codes which are images of codes which exhibit linear structure over more general
rings; specifically, we employ images of Z2Z4-additive codes. This is an extension of the work
of Fu, Ling, and Xing (Discrete Appl. Math. 161 (2013)) where the authors demonstrate
that distance-` colorings may be obtained from nonlinear codes which are binary images of
codes that have a linear structure over Z4.

1. Introduction

In this paper, we give distance-` colorings of the hypercube using nonlinear binary codes
which are images of codes which exhibit linear structure over more general rings; specifically,
we employ images of Z

2

Z
4

-additive codes. A distance-` coloring of a graph is a coloring of the
vertices so that any two vertices at distance ` or less from one another receive di↵erent colors.
These colorings were introduced in the context of the scalability of optical networks [14] and
have been considered by many researchers (see, for instance, [11, 12, 13]). Binary linear
codes are a standard tool to provide a distance-` coloring of an n-dimensional hypercube, as
the vertices of this graph are labeled with binary words of length n ([15, 16]). Although a
nonlinear binary code may have better parameters than comparable binary ones (for instance,
those length and same minimum distance can have many more codewords), nonlinear codes
lack the structure that lends itself so nicely to the hypercube coloring problem. Recently,
Fu et. al. [6] demonstrated that distance-` colorings may be obtained from nonlinear codes
which are binary images of codes that have a linear structure over Z

4

. In this paper, we
consider extensions of their work.

This paper is organized as follows. Section 2 contains background information on distance-
` colorings, in particular those coming from binary linear codes. Section 3 details colorings
from codes which are nonlinear as binary codes but are images of subgroups of Z↵

2

⇥Z�
4

and
provides examples illustrating our results. Closing comments are found in Section 4.

2. Preliminaries

A binary code C of length n is a subset of Fn
2

, where F
2

:= {0, 1} is the finite field with two
elements. Elements of C are called codewords. The Hamming distance between w,w0 2 Fn

2

is
d (w,w0) := | {i : wi 6= w0

i} |. Note that d (w,w0) = wt(w�w0), the weight of the word w�w0,
meaning its number of nonzero entries. The quality of a code C is often measured by ratios
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of the following parameters: n, the length of the code C; M := |C|, the size of the code
C; and d := min {d(c, c0) : c, c0 2 C, c 6= c0}, the minimum distance of C. For instance, one
might wish to fix the length and cardinality (meaning the rate M

2

n ) and attempt to maximize
the minimum distance; alternatively, one might fix the length and minimum distance and
attempt to maximize the cardinality of the code. A code C with these parameters is called
an (n,M, d) code. A binary code C of length n is linear if and only if C is a subspace of Fn

2

.
Binary linear codes provide a known construction for a distance-` colorings of hypercubes.

A distance-` coloring of a graph G with L colors is a labelling f : V (G) ! {1, . . . , L} of the
vertex set V (G) such that

f(u) 6= f(v) if d(u, v) 6 `,

where d(u, v) 6 ` means that there is a path with at most ` edges containing vertices u and
v. The distance-` chromatic number of G is

�`(G) := min {L : 9 distance-` coloring of G with L colors} .

In this note, we restrict our attention to distance-` colorings of hypercubes. Such colorings
are considered in [11, 12, 13, 17, 18]. The n-dimensional hypercube Hn has V (Hn) = Fn

2

as
its set of vertices and edge set

E(Hn) = {uv : u, v 2 Fn
2

, d(u, v) = 1} .

As is standard, we set
�`(n) := �`(Hn),

the distance-` chromatic number of the n-dimensional hypercube Hn.
Let C ✓ Fn

2

be a binary linear (n, 2k, d) code. Consider the set of cosets of C in Fn
2

,
Fn
2

/C = {u+ C : u 2 Fn
2

}, and label its elements C
1

, . . . , C
2

n�k . Notice that if u+ c, u+ c0 2
u+ C, then

d(u+ c, u+ c0) = wt(u+ c� (u+ c0)) = wt(c� c0) > d,

because C is a linear code and c, c0 2 C. Define a coloring of the vertices of the hypercube
Hn by f : V (Hn) ! {1, . . . , 2n�k} where

f(v) = i if and only if v 2 Ci.

Then f is a distance-(d� 1) coloring of Hn with 2n�k colors. Hence,

(1) �d�1

(n) 6 2n�k.

This demonstrates how one may use an (n, 2k, d) binary linear code to define a distance-(d�1)
coloring of the hypercube Hn.

Furthermore, given a distance-` coloring f of the hypercube Hn with L colors and i 2
f (V (Hn)) = {1, . . . , L}, notice that Ci := {v 2 Fn

2

: f(v) = i} is a code of length n and
minimum distance `� 1. In this way, we can see that a distance-` coloring of the hypercube
Hn gives rise to a partition Fn

2

= C
1

[ · · · [ CL where each Ci is a code of length n and
minimum distance at least `�1. More on the connection between binary codes and colorings
of hypercubes may be found in [13] where it is stated that the distance-` chromatic number
of the hypercube Hn is the “smallest number of binary codes with minimum distance ` + 1
that form a partition” of Fn

2

.
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A number of bounds on the distance-` chromatic number have been specified, beginning
with the works of [11, 12, 17]. These bounds are generalized and improved in [12, Theorem
1] to obtain
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3. Nonlinear codes and colorings

It has long been known that nonlinear codes can have better parameters than their compa-
rable linear counterparts, meaning it is possible for a nonlinear code to have more codewords
than any linear code of the same length and minimum distance. The most famous example is
the Nordstrom-Robinson code which is a member of a family of nonlinear (2r+1, 22

r+1�2r�2, 6)
binary codes, where r > 3 is odd. In [6], the authors exploit the Z

4

-linearity of these codes to
give colorings of the hypercube. In this section, we generalize their construction and obtain
further examples of distance-` colorings of the hypercube from nonlinear binary codes which
are images of Z

2

Z
4

-additive codes.
We begin by detailing a distance-` coloring using a Z

2

Z
4

-linear code. References on Z
2

Z
4

-
linear codes include [2, 3]. Here, Z

2

refers to the finite field F
2

whereas Z
4

= {0, 1, 2, 3}
denotes the ring of integers modulo 4. We consider Z

4

equipped with the Lee weight, which
is given by wtL(0) = 0, wtL(1) = 1, wtL(2) = 2, wtL(3) = 1. Recall that the Gray map
� : Z

4

! Z2

2

is given by
0 7! 00
1 7! 01
2 7! 11
3 7! 10

and extends to an isometry (Zn
4

, dL) ! (Z2n
2

, d) where d denotes the Hamming distance and
dL(w,w0) =

Pn
i=1

wtL(wi � w0
i) for w,w

0 2 Zn
4

.
Let C be a subgroup of Z↵

2

⇥ Z�
4

, where ↵ and � are non-negative integers. Define

� : Z↵
2

⇥ Z�
4

! Zn
2

(x
1

, . . . , x↵, y1, . . . , y�) 7! (x
1

, . . . , x↵,�(y1), . . . ,�(y�))

where n = ↵ + 2� and � denotes the Gray map as above. The Lee distance between
w,w0 2 Z↵

2

⇥ Z�
4

is defined as

dL (w,w
0) :=

↵X

i=1

wt(wi � w0
i) +

↵+�X

i=↵+1

wtL(wi � w0
i).
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Clearly, � gives an isometry
⇣
Z↵

2

⇥ Z�
4

, dL

⌘
! (Zn

2

, d) . As a result, �(C) is a binary code of

length n, minimum distance d, and |�(C)| = |C|. One may note that the minimum distance
of �(C) is equal to that of C, which is defined as min {dL(c, c0) : c, c0 2 C, c 6= c0}.

Definition. A binary code C of length n is Z
2

Z
4

-linear if C = �(C) for some subgroup C of
Z↵

2

⇥ Z�
4

where n = ↵ + 2�. In this case, we say that C is a Z
2

Z
4

-additive code.

Notice that if C is a Z
2

Z
4

-additive code, then C ⇠= Z�
2

⇥Z�
4

for some non-negative integers
� and �. The code �(C) is then called a Z

2

Z
4

-linear code of type (↵, �; �, �).
The next result demonstrates that Z

2

Z
4

-linear codes may be used to provide distance-`
colorings of the hypercube.

Theorem 3.1. If C is a Z
2

Z
4

-linear code of type (↵, �; �, �) and minimum distance d, then

�d�1

(n) 6 2n�(�+2�)

where n = ↵ + 2�.

Proof. Let C be a Z
2

Z
4

-linear code C of type (↵, �; �, �) and minimum distance d. Then
there exists a Z

2

Z
4

-additive code C such that C = �(C). Since C ⇠= Z�
2

⇥ Z�
4

, |C| = 2�+2�.

Consider the coset space Z↵
2

⇥ Z�
4

/C , which has cardinality 2

n

2

�+2� = 2n�(�+2�). Label the

cosets of C in Z↵
2

⇥ Z�
4

as C
1

, . . . , Cn���2�, meaning

Z↵
2

⇥ Z�
4

/C = {C
1

, . . . , Cn���2�} .
Because {C

1

, . . . , Cn���2�} is a partition of Z↵
2

⇥ Z�
4

and � : Z↵
2

⇥ Z�
4

! Zn
2

is an isometry,

V (Hn) = [̇n���2�
i=1

�(Ci);

that is, the images of the cosets partition the set of vertices of the hypercube. Define a
coloring of the vertices of the hypercube Hn by

f : V (Hn) ! {1, . . . , 2n�(�+2�)}
v 7! i, where v 2 �(Ci).

We claim that f is a distance-(d�1) coloring of Hn. To see this, suppose f(v) = f(v0). Then
v, v0 2 �(Ci) for some i, 1 6 i 6 2n�(�+2�). Hence, there exists u 2 Z↵

2

⇥ Z�
4

and c, c0 2 C so
that v = �(u+ c) and v0 = �(u+ c0). It follows that

d(v, v0) = d(u+ c, u+ c0) = wt((u+ c)� (u+ c0)) = wtL(c� c0) > d.

Then f is a distance-(d� 1) coloring of Hn with 2n�(�+2�) colors. Hence,

�dL�1

(n) 6 2n�(�+2�).

⇤
In the case that ↵ = 0, one may consider C as a Z

4

-linear code. Then, via Theorem 3.1,
we recover a key result of Fu et. al. as a corollary.

Corollary 3.2. [6, Theorem 4] If there exists a Z
4

-linear code C with parameters (2n, 2k, d),
then C gives rise to a distance-(d� 1) coloring of H

2n and

�d�1

(2n) 6 22n�k.
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Applying Corollary 3.2 to the (2r, 22
r+1�2r�2, 6) Preparata code over Z

4

with r > 3 gives

�
5

(2r+1) 6 22r+2.

In [6], they go on to show
�
5

(2r+1) = 22r+2.

Recently, Kiermaier and Zwanzger constructed a family of Z
4

-linear codes, called Te-
ichmüller codes some of which have greater minimum distance than any linear code of equal
length and cardinality. In particular, using Hjelmslev geometries and geometric dualization,
they find Z

4

-linear codes Cr with parameters (22r+1� 2r+1+2
r�1
2 , 22r+2, 22r � 2r), for all odd

r > 3 [9, Theorem 5]. For r = 3, 5, Cr has greater minimum distance than any linear code
of equal length and cardinality. In the next result, we use the codes Cr to find distance-l
colorings of certain hypercubes for particular values of l.

Theorem 3.3. For all odd r > 3 and n = 22r+1 � 2r+1 + 2
r�1
2

�
2

2r�2

r�1

(n) 6 2n�2r�2.

Proof. This follows immediately from Theorem 3.1 using the Z
4

-linear codes Cr mentioned
above. ⇤

In the next example, we consider the first code in the family discovered by Kiermaier and
Zwanzger, meaning Cr with r = 3.

Example 1. The code C
3

is a nonlinear binary (114, 28, 56) code. Applying Theorem 3.3, we
see that

�
55

(114) 6 2106.

As a basis for comparison, consider that (3) gives

2.46⇥ 1026 6 �
55

(114) 6 2112 6 5.19⇥ 1033.

Thus, Theorem 3.3 o↵ers an improvement to the upper bound on �
55

(114); one may note
that 2106 ⇠ 8.113⇥ 1031.

Example 2. In [10], a geometric construction based on a hyperoval in the projective Hjelmslev
plane over Z

4

yields a nonlinear binary (58, 27, 28) code, which has greater minimum distance
than any binary linear code of the same length with the same number of codewords [9].
Applying Theorem 3.1, we see

�
27

(58) 6 251,

whereas (3) gives
242.6629 6 �

27

(58) 6 256.

Similar examples can be found to give

�
27

(60) 6 252

which might be compared with

243.4 6 �
27

(60) 6 257

as given by (3).
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Nonlinear binary codes with parameters better than comparable binary linear codes are
not limited to those found in [8, 9, 10]. In the next example, we utilize one which was
originally found computationally.

Example 3. In this example, we consider a distance-11 coloring of the 64-dimensional hyper-
cube H

64

. Calderbank and McGuire found a Z
4

-linear code C with parameters (64, 237, 12)
[4]; the best known linear code of length 64 and dimension 37 has minimum distance 10 [7].
Applying Theorem 3.1, we see that

�
11

(64) 6 227.

As in the previous examples, we compare this with the bounds in [12, Theorem 1] which give
2⇥ 107 6 �

11

(64) 6 236.

Remark 3.4. The code C in Example 3 is part of an infinite family of binary codes of lengths
2m+1 with 22

m+1�5m�2 codewords, where m is odd [5]. For m 6= 5, the minumum distance of
each code in this family equal to 8. Applying Theorem 3.1, we obtain

�
7

�
2m+1

�
6 25m+2.

However, this bound is not so e↵ective as [15, Theorem 15] gives

�
7

�
2m+1

�
6 23m+2.

Each of the examples above utilizes a code which is Z
4

-linear, meaning that it is Z
2

Z
4

-
linear of type (0, �; 0, �). In the following example, we apply codes which are Z

2

Z
4

-linear of
type (↵, �; �, �) with ↵, � > 0.

Example 4. In [1], Z
2

Z
4

-cyclic codes are considered. A number of such codes are described
explicitly, including those of type (7, 7; 6, 0) and minimum distance 8, type (7, 7; 3, 1) and
minimum distance 10, and (7, 7; 3, 0) and minimum distance 12. Each of these codes provides
a coloring of the hypercube H

21

. Applying Theorem 3.1, we see that

�
7

(21) 6 215,

�
9

(21) 6 216,

and

�
11

(21) 6 218

whereas the upper bounds given by (3) are 216, 218, and 220, respectively. Additional exam-
ples may be found by applying the codes given in [1]. Perhaps the most interesting is the
Z

2

Z
4

-linear code of type (31, 31; 5, 1) and minimum distance 46 which allows us to conclude

�
45

(93) 6 286,

as compared with the upper bound of 291 given by (3). It is worth noting that while these
codes are Z

2

Z
4

-linear, they are also binary linear codes. Hence, the bounds on the distance-`
chromatic number found in this example may also be obtained directly from (1).
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4. Conclusion

In this paper, we consider colorings of the hypercube using nonlinear binary codes which
are images of Z

2

Z
4

-additive codes. These give bounds on the distance-` chromatic number
of the n-dimensional hypercube for certain values of ` and n. Examples using particular
codes, especially those from Z

4

-linear codes where nonlinear binary images which have better
parameters than any binary linear code, are provided. While the results presented here are
somewhat modest in scope, they lay the groundwork for further improvements as the study
of Z

2

Z
4

-linear codes matures.
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