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Abstract. Let S be a numerical semigroup with embedding dimension e(S), Frobenius

number g(S), and type t(S). Put n(S) := Card(S ∩ {0, 1, . . . , g(S)}). A question of Wilf is

shown to be equivalent to the statement that e(S)n(S) ≥ g(S)+1. This question is answered

affirmatively if S is symmetric, pseudo-symmetric, or of maximal embedding dimension. The

question is also answered affirmatively in the following cases: e(S) ≤ 3, g(S) ≤ 20, n(S) ≤ 4,

g(S)+1
4

≤ n(S).

1. Introduction

Let S be a numerical semigroup, that is, an additive submonoid of the monoid N of all

non-negative integers. It is well known that any such S is finitely generated (cf. [7, Theorem

2.4(2)]). We assume throughout that any numerical semigroup S under consideration has the

property that its set of elements has greatest common divisor 1. (Note that, even if S does not

have this property, S is isomorphic to a numerical semigroup with this property.) In this case,

it is well known (cf. [7, Theorem 2.4(1)]) that there exists a least integer g(S) ≥ −1 such that

{m ∈ N : m > g(S)} ⊆ S; it is customary to call g(S) the Frobenius number of S. An upper

bound for g(S) is known in terms of the irredundant generating set {a1, . . . , ae(S)} of S; that

is, the set consisting of a1 < · · · < ae(S) in N such that S =
〈
a1, . . . , ae(S)

〉
:= {∑e(S)

i=1 miai :

mi ∈ N for each i}, gcd(a1, . . . , ae(S)) = 1, and ai /∈
〈
a1, . . . , ai−1, ai+1, . . . , ae(S)

〉
for all

i. Indeed, a result of Schur leads to the fact that g(S) ≤ a1ae(S) − a1 − ae(S). (See [3,

Theorem B, p. 215] and [8, p. 390].) This inequality is best possible if e(S) = 2, for then

Sylvester [9] (cf. [2]) has shown that g(S) = a1a2 − a1 − a2. Our interest here is in another
1
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conjectured upper bound for g(S), namely, e(S)n(S) − 1. In this expression, e(S) is as

above and is called the embedding dimension of S; and n(S) := Card(S ∩ {0, 1, . . . , g(S)}).
Notice that n(S) plays a role in an evident lower bound for g(S). Indeed, 2n(S)− 1 ≤ g(S),

as a consequence of the fact that the assignment x 7→ g(S) − x establishes an injection

S ∩ {0, 1, . . . , g(S)} → {0, 1, . . . , g(S)} \ S. As explained in Proposition 2.1 (cf. [6, Remark,

p. 81]), the conjecture that e(S)n(S) − 1 ≥ g(S) is equivalent to a question posed by Wilf

[10] in a study of the so-called presentable integers obtained as non-negative integral linear

combinations of a finite set {a1, . . . , ae(S)} of relatively prime positive integers. For this

reason, we say that S affirmatively answers the Wilf Question if e(S)n(S) ≥ g(S) + 1.

We show first that the Wilf Question is answered affirmatively for numerical semigroups

S that are “large” in the following sense. Let g ∈ N. If g is odd (resp., even), then S is

maximal with respect to the property that g(S) = g if and only if S is symmetric (resp.,

pseudo-symmetric); that is, if and only if n(S) = g(S)+1
2

(resp., n(S) = g(S)
2

). (Cf. [5, Lemmas

1 and 3], [1, Lemmas I.1.8 and I.1.9].) Proposition 2.2 establishes that S affirmatively answers

the Wilf Question if S is either symmetric or pseudo-symmetric.

Corollary 2.4 includes the fact that S affirmatively answers the Wilf Question if S is

of maximal embedding dimension, in the sense that e(S) coincides with a1 (the minimal

positive element of S). To prove this result, we consider the maximal ideal of S, given by

M(S) := S \{0}; the semigroup S(1) := {m ∈ N : m+M(S) ⊆ S}; and the type of S, given

by t(S) := Card(S(1)\S). It is well known that S is symmetric if and only if either S = N (in

which case, t(N) := 0) or t(S) = 1; and, if S is pseudo-symmetric, then t(S) = 2 [1, p. 3]. The

above-mentioned Corollary 2.4 is a consequence of Proposition 2.3: if t(S) + 1 ≤ e(S), then

S affirmatively answers the Wilf Question. Another consequence is given in Corollary 2.6:

if e(S) ≤ 3, then S affirmatively answers the Wilf Question. The supporting fact, that

e(S) ≤ 3 implies t(S) + 1 ≤ e(S), is known [5, Theorem 11], but we provide a new proof

of it in Theorem 2.5. As an upshot, we obtain in Corollary 2.7 that the Wilf Question is

answered affirmatively if S is “large” in another sense, namely, that n(S) ≥ g(S)+1
4

. One finds

the same conclusion in Corollary 2.12 in case S is “small” in the sense that g(S) ≤ 20. This

follows from Theorem 2.11, where we affirmatively answer the Wilf Question for numerical
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semigroups that are “small” in another sense, namely, that n(S) ≤ 4. To prove this result, we

consider the ideal Si := {s ∈ S : s ≥ si}, where s0 := 0 and si denotes the ith positive element

of S for 1 ≤ i ≤ n(S); the relative ideal S(i) := {m ∈ N : m+Si ⊆ Si} for 0 ≤ i ≤ n(S); and

the type sequence (ti(S) : 1 ≤ i ≤ n(S)) of S where ti(S) := Card(S(i)\S(i−1)). Using this

notation, we often find it convenient to write S = {0, s1, s2, . . . , sn(S)−1, sn(S) = g(S) + 1,→}
where the symbol “→” means that all subsequent natural numbers belong to S.

The Wilf Question remains unanswered (though we believe it has an affirmative answer)

in the following cases: e(S) ≥ 4; n(S) ≥ 5; n(S) < g(S)+1
4

.

For background on numerical semigroups, see [5], [1].

2. Results

We begin by showing that what we have called the Wilf Question is equivalent to a

question posed by Wilf [10]. Let S be a numerical semigroup with irredundant generating

set {a1, . . . , ae(S)}, as in the Introduction. Wilf lets Ω denote the cardinality of the set of non-

presentable non-negative integers; thus, Ω = Card({0, 1, . . . , g(S)} \ S) = g(S) + 1 − n(S).

Wilf lets χ denote g(S)+1; and he lets k denote e(S). The specific question of Wilf concerns

Ω
χ
, the ratio of the number of non-presentable non-negative integers to the number of non-

negative integers ≤ g. On [10, page 565], Wilf asks if Ω
χ
≤ 1− 1

k
. (As χ(N) = g(N) + 1 = 0,

we tacitly assume that S 6= N below.) In studying the Wilf Question, we also tacitly assume

that S 6= 0 since e(0)n(0) = 0 · 0 = 0 = g(0) + 1.

Proposition 2.1. The question of Wilf is equivalent to the Wilf Question. In other words,

Ω
χ
≤ 1− 1

k
if and only if e(S)n(S) ≥ g(S) + 1.

Proof. Ω
χ
≤ 1− 1

k
⇔ g(S)+1−n(S)

g(S)+1
≤ 1− 1

e(S)
⇔ −n(S)

g(S)+1
≤ −1

e(S)
⇔ n(S)

g(S)+1
≥ 1

e(S)
⇔ e(S)n(S) ≥

g(S) + 1. 2

We next show that S affirmatively answers the Wilf Question if S is maximal with a given

Frobenius number.

Proposition 2.2. If a numerical semigroup S is either symmetric or pseudo-

symmetric, then S affirmatively answers the Wilf Question.
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Proof. Suppose first that S is symmetric. If S = N, then e(S)n(S) = 1·0 = 0 ≥ 0 = g(N)+1.

If S 6= N, then e(S) ≥ 2, and so e(S)n(S) ≥ 2n(S) = 2 · g(S)+1
2

= g(S) + 1.

Suppose next that S is pseudo-symmetric. Then e(S) ≥ 3, since Sylvester [9] (cf. [2])

has shown that any 2-generated numerical semigroup is symmetric. Therefore, e(S)n(S) ≥
3 · g(S)

2
≥ g(S) + 1 (since g(S) ≥ 2). 2

Proposition 2.3. If a numerical semigroup S satisfies t(S)+1 ≤ e(S), then S affirmatively

answers the Wilf Question.

Proof. The assertion follows immediately from the fact ([5, Theorem 22], [1, Proposition

I.1.11(c)]) that g(S) + 1 ≤ n(S)(t(S) + 1). 2

The next result refers to Arf semigroups, in the sense of [1]. See [1, Theorem I.3.4] for

fifteen characterizations of Arf semigroups.

Corollary 2.4. (a) Each numerical semigroup of maximal embedding dimension affirma-

tively answers the Wilf Question.

(b) Each (numerical) Arf semigroup affirmatively answers the Wilf Question.

Proof.(a) Let S be a numerical semigroup of maximal embedding dimension. Then e(S) =

a1, the minimal positive element of S, also known as µ(S), the so-called multiplicity of S.

A general fact about numerical semigroups T (for proofs, see [1, Remarks I.2.7(a), (b) or

I.6.3(d)]) states that t(T ) ≤ µ(T ) − 1. In particular, t(S) + 1 ≤ µ(S) = a1 = e(S). Apply

Proposition 2.3.

(b) Each Arf semigroup is of maximal embedding dimension [1, Theorem I.3.4 or page 18].

Apply (a). 2

The next two results contain the deepest applications of Proposition 2.3.

Theorem 2.5. If S is a nonzero numerical semigroup such that e(S) ≤ 3, then t(S) + 1 ≤
e(S).
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Proof. Without loss of generality, S 6= N (since t(N) = 0 and e(N) = 1). Thus, e(S) is

either 2 or 3. Suppose first that e(S) = 2. Then, as noted above via [2], S is symmetric,

whence t(S) = 1 and the assertion holds.

In the remaining case, e(S) = 3 and our task is to show that t(S) ≤ 2. This is known: see

[5, Theorem 11] for two proofs of this fact. We next indicate, for the sake of completeness

and possible interest, how to modify the methods of Johnson [8] to obtain a third proof that

e(S) = 3 implies t(S) ≤ 2.

Let S = 〈a1, a2, a3〉. By [6, Proposition 8], we may restrict ourselves to the case where

a1, a2, a3 are pairwise relatively prime. Suppose N ∈ S(1) \ S. To verify the assertion, it

suffices to show that there are at most two possibilities for N . By definition of S(1), N can

be expressed as N = yijaj + yikak − ai with yij, yik ∈ N for {i, j, k} = {1, 2, 3}. As in [8],

let Li be the minimum positive integer Ki such that Kiai ∈ 〈aj, ak〉 for {i, j, k} = {1, 2, 3}.
Then we may write Liai = xijaj + xikak with xij, xik ∈ N. By [8, Theorem 3], xij and xik

are uniquely determined and xij, xik > 0.

We claim that yij ≤ Lj − 1. Suppose that yij = Lj + dj with dj ≥ 0. Then

N = (Lj + dj)aj + yikak − ai = (xjiai + xjkak) + djaj + yikak − ai

= (xji − 1)ai + (xjk + yik)ak + djaj ∈ S

since xji > 0. This is a contradiction as N /∈ S. Hence, the claim holds.

Next, we show that the representations of N of the form N = yijaj + yikak − ai with

yij, yik ∈ N are unique. Suppose that N = yijaj + yikak − ai = zijaj + zikak − ai with

yij, yik, zij, zik ∈ N. If yij = zij, then we are done. Otherwise, without loss of generality, we

may assume yij > zij. Then (yij − zij)aj + yikak = zikak. This leads to zik ≥ Lk, which

contradicts the fact that zik ≤ Lk − 1. Thus, N has unique representations

N = y31a1 + y32a2 − a3 = y21a1 + y23a3 − a2 = y12a2 + y13a3 − a1.

Next, we show that y31 6= y21. If y31 = y21, then (y32 + 1)a2 = (y23 + 1)a3. This leads to

y32 + 1 = ma3 for some m ≥ 1 since (a2, a3) = 1. In particular, y32 + 1 ≥ a3. By the proof

of [8, Theorem 3], a3 > L2. Thus, y32 + 1 > L2, contradicting the fact that y32 ≤ L2 − 1.

Therefore, either y31 < y21 or y21 < y31.
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We first consider the case y31 < y21. Here, (y32 +1)a2 = (y21−y31)a1 +(y23 +1)a3, whence

y32 + 1 ≥ L2. It follows that y32 = L2 − 1. Now we have

N = y31a1 + (L2 − 1)a2 − a3 = y12a2 + y13a3 − a1.

This implies (L2 − 1 − y12)a2 + (y31 + 1)a1 = (y13 + 1)a3. Thus, y13 + 1 ≥ L3 which forces

y13 = L3 − 1. Now we have y21a1 + y23a3 − a2 = N = y12a2 + (L3 − 1)a3 − a1. This leads

to (y21 + 1)a1 = (y12 + 1)a2 + (L3 − 1 − y23)a3. As before, this forces y21 = L1 − 1. Since

y32 = L2 − 1,

N = y31a1 + (L2 − 1)a2 − a3 = y31a1 + (x21a1 + x23a3)− a2 − a3

= (y31 + x21)a1 + (x23 − 1)a3 − a2.

By the uniqueness of the representation of N , L1−1 = y31 +x21 and x23−1 = y23 as x23 > 0.

Similarly, one can show that y31 = x31 − 1. Now we may write

N = (L1 − 1)a1 + y23a3 − a2 = (y31 + x21)a1 + (x23 − 1)a3 − a2

= (x21a1 + x23a3) + y31a1 − a3 − a2 = (L2 − 1)a2 + y31a1 − a3

= (L2 − 1)a2 + (x31 − 1)a1 − a3.

In the remaining case, y21 < y31. By interchanging subscripts in the above proof, we see

that

N = (L3 − 1)a3 + (x21 − 1)a1 − a2.

This shows that there are at most two possibilities for N , namely, (L2−1)a2+(x31−1)a1−a3

and (L3 − 1)a3 + (x21 − 1)a1 − a2. Therefore, t(S) = Card(S(1) \ S) ≤ 2. 2

Corollary 2.6. If S is a numerical semigroup such that e(S) ≤ 3, then S affirmatively

answers the Wilf Question.

Proof. We observed earlier that 0 affirmatively answers the Wilf Question. On the other

hand, if S 6= 0, then the assertion follows by combining Theorem 2.5 and Proposition 2.3. 2
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As noted in the Introduction, each numerical semigroup S satisfies 2n(S) − 1 ≤ g(S)

or, equivalently, n(S) ≤ g(S)+1
2

. We next show that, in a sense, the “upper half” of cases

affirmatively answer the Wilf Question.

Corollary 2.7. Let S be a numerical semigroup such that n(S) ≥ g(S)+1
4

. Then S affirma-

tively answers the Wilf Question.

Proof. By Corollary 2.6, we may suppose that e(S) ≥ 4. Put g := g(S). Since n(S) < ∞,

there exists a numerical semigroup T ⊇ S such that T is maximal with the property that

g(T ) = g. Suppose that g is odd (resp., even). Then T is symmetric (resp., pseudo-

symmetric), by [1, Lemma I.1.8] (resp., [1, Lemma I.1.9]). Let k := Card(T \ S). Then

n(T ) = n(S) + k, since g(T ) = g(S). Thus, n(S) = g+1
2
− k (resp., g

2
− k). Accordingly,

S affirmatively answers the Wilf Question if and only if e(S)(g+1
2
− k) ≥ g + 1 (resp.,

e(S)(g
2
− k) ≥ g + 1); that is, if and only if

e(S) ≥ g + 1
g+1
2
− k

= 2 +
4k

g + 1− 2k

(
resp., e(S) ≥ g + 1

g
2
− k

= 2 +
4k + 2

g − 2k

)
.

As e(S) ≥ 4, it follows that S affirmatively answers the Wilf Question if

4 ≥ 2 +
4k

g + 1− 2k

(
resp., 4 ≥ 2 +

4k + 2

g − 2k

)
;

that is, if g+1
4
≥ k (resp., g−1

4
≥ k); that is, if

n(S) =
g + 1

2
− k ≥ g + 1

2
− g + 1

4
=

g + 1

4
(
resp., n(S) =

g

2
− k ≥ g

2
− g − 1

4
=

g + 1

4

)
.

Thus, the assertion has been proved in all cases. 2

In Theorem 2.11, we settle the Wilf Question for all S with “small” n(S). First, it is

convenient to collect some results from [1] and [4] that will be used frequently.
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Proposition 2.8. [1, (I.1.10) and Proposition I.1.11 (b)] Let S be a numerical semigroup.

Then:

(a) 1 ≤ ti(S) ≤ t(S) for all 1 ≤ i ≤ n(S).

(b) g(S) + 1− n(S) =
∑n(S)

i=1 ti(S).

Proposition 2.9. [4, Theorem 2.1] Let S be a semigroup with n(S) = 3 and ti := ti(S) for

each i = 1, 2, 3. Then

S = {0, s1, t1 + t2 + 2, t1 + t2 + t3 + 3,→}, where

s1 =





t1 + 2, ⇔ t2 = s2 − s1 ≤ g − s2 = t3;

t1 + 1, ⇔ t2 + 1 = s2 − s1 > g − s2 = t3.

Proposition 2.10. [4, Theorem 2.2] Let S be a semigroup with n(S) = 4 and ti := ti(S) for

each i = 1, 2, 3, 4. Then

S = {0, s1, s2, t1 + t2 + t3 + 3, t1 + t2 + t3 + t4 + 4,→}, where

s2 =





t1 + t2 + 3 ⇔ t3 = s3 − s2 ≤ g − s3 = t4;

t1 + t2 + 2 ⇔ t3 + 1 = s3 − s2 > g − s3 = t4;
and
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s1 =





t1 + 3 ⇔








s2 = t1 + t2 + 3

t2 + t3 = s3 − s1 ≤ g − s2 = t3 + t4




or



s2 = t1 + t2 + 2

t2 + t3 = s3 − s1 ≤ g − s2 = t3 + t4 + 1




t1 + 2 ⇔








s2 = t1 + t2 + 3

t2 + t3 + 1 = s3 − s1 > g − s2 = t3 + t4

t2 + 1 = s2 − s1 ≤ g − s2 = t3 + t4




or



s2 = t1 + t2 + 2

t2 + t3 + 1 = s3 − s1 > g − s2 = t3 + t4 + 1

t2 = s2 − s1 ≤ g − s2 = t3 + t4 + 1

t2 = s2 − s1 6= s3 − s2 = t3 + 1




t1 + 1 ⇔








s2 = t1 + t2 + 3

t2 + 2 = s2 − s1 > g − s2 = t3 + t4




or



s2 = t1 + t2 + 2

t2 + 1 = s2 − s1 > g − s2 = t3 + t4 + 1




or



s2 = t1 + t2 + 2

t2 + 1 = s2 − s1 = s3 − s2 = t3 + 1




.
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Theorem 2.11. If S is a numerical semigroup such that n(S) ≤ 4, then S affirmatively

answers the Wilf Question.

Proof. Without loss of generality, S 6= N. In general, n(S) ≥ 1. The only numerical

semigroups S such that n(S) = 1 take the form S = 〈a, a + 1, a + 2, . . . , 2a− 1〉, and any

such S satisfies e(S)n(S) = a · 1 = a = g(S) + 1. If n(S) = 2, then S is an Arf semigroup by

[1, Remark I.3.6(b)], and so the assertion follows from Corollary 2.4(b).

Suppose next that n(S) = 3. Then S need not be Arf (or even of maximal embedding

dimension) [1, Remark I.3.6(c)], but the assertion can be established by the following case

analysis.

Let (t1, t2, t3) denote the type sequence of S. By Proposition 2.9,

S = {0, s1, t1 + t2 + 2, t1 + t2 + t3 + 3,→},

where either s1 = t1 + 1 or s1 = t1 + 2. Given S as above, let

J = [t1 + t2 + t3 + 3, (t1 + t2 + t3 + 3) + (s1 − 1)]

and

I = J ∩ 〈s1, t1 + t2 + 2〉 .

Let E(S) denote the minimal generating set of S. Then e(S) = |E(S)|. To verify the

assertion, it suffices by Proposition 2.3 to establish the following claim: e(S) = t1 + 1.

We first consider the case s1 = t1 + 2; that is,

S = {0, t1 + 2, t1 + t2 + 2, t1 + t2 + t3 + 3,→}.

In this case, t2 ≤ t3 by Proposition 2.9. Of course, t1 + 2 = µ(S) ∈ E(S). By Proposition

2.8, t2 ≤ t1. This implies t1 + t2 + 2 < 2(t1 + 2), and so t1 + t2 + 2 ∈ E(S). Therefore,

E(S) = {t1 +2, t1 +t2 +2}∪(J \I). Hence, e(S) = |E(S)| = 2+ |J |−|I| = 2+(t1 +2)−|I| =
t1 + 4− |I|. Thus, it suffices to show that |I| = 3.

Notice that 2(t1 +2) ∈ I as 2(t1 +2) ∈ S and t1 + t2 +2 < 2(t1 +2) imply t1 + t2 + t3 +3 ≤
2(t1 + 2) ≤ (t1 + t2 + t3 + 3) + (t1 + 1). Similarly, (t1 + 2) + (t1 + t2 + 2) ∈ I. Also, one can

verify that 2(t1 + t2 + 2) ∈ I using the fact that t2 ≤ t3. As a result, |I| ≥ 3.
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Suppose s ∈ I. Then s = u(t1 + 2) + v(t1 + t2 + 2) for some u, v ∈ N. If u + v > 2, then

(u(t1 + 2) + v(t1 + t2 + 2))− 2(t1 + 2) > t1 + 1.

Since 2(t1+2) ∈ I ⊆ J and J is an interval of length s1−1 = t1+1, u(t1+2)+v(t1+t2+2) /∈ J .

Hence, u(t1 + 2) + v(t1 + t2 + 2) /∈ I. Clearly, t1 + 2, t1 + t2 + 2 /∈ I as t1 + 2, t1 + t2 + 2 <

t1 + t2 + t3 + 3. Therefore, u + v = 2. It follows that |I| ≤ 3, as claimed.

In the remaining case, s1 = t1 + 1; i.e.,

S = {0, t1 + 1, t1 + t2 + 2, t1 + t2 + t3 + 3,→}.

Here, t2 + 1 > t3 by Proposition 2.9. As above, t1 + 1 = µ(S) ∈ E(S). According to

Proposition 2.8, t2 ≤ t1. Hence there are two subcases to consider: t2 = t1 and t2 < t1.

Suppose first that t1 = t2. Then t1+t2+2 = 2(t1+1) /∈ E(S), and so E(S) = {t1+1}∪(J \
I). Thus e(S) = |E(S)| = 1+|J |−|I| = 1+(t1+1)−|I| = t1+2−|I|. To establish the claim,

we must show that |I| = 1. In this subcase, we have I = [2t1 + t3 + 3, 3t1 + t3 + 3]∩ 〈t1 + 1〉.
Note that 3(t + 1) ∈ I since t3 ≤ t2 ≤ t1. It follows that u(t1 + 1) /∈ I for u 6= 3, as J is an

interval of length s1 − 1 = t1. Hence, I = {3(t1 + 1)}.
In the remaining subcase, t2 < t1. Here, t1 + t2 + 2 ∈ E(S) since t1 + t2 + 2 < 2(t1 + 1).

Thus, E(S) = {t1 + 1, t1 + t2 + 2} ∪ (J \ I), and so e(S) = |E(S)| = 2 + |J | − |I| =

2 + (t1 + 1)− |I| = t1 + 3− |I|. It suffices to show that |I| = 2. Notice that 2(t1 + 1) ∈ I as

2(t1+1) ∈ S and t1+t2+2 < 2(t1+1) imply t1+t2+t3+3 ≤ 2(t1+1) ≤ (t1+t2+t3+3)+t1.

Similarly, (t1 +1)+(t1 + t2 +2) ∈ I. Hence, {2(t1 +1), (t1 +1)+(t1 + t2 +2)} ⊆ I. However,

2(t1 + t2 + 2) > (t1 + t2 + t3 + 3) + t1 as t2 + 1 > t3. As a result, 2(t1 + t2 + 2) /∈ I. Since J

is an interval of length s1 − 1 = t1, it follows that |I| = 2. This completes the proof for the

case n = 3.

Finally, suppose that n(S) = 4. Let (t1, t2, t3, t4) denote the type sequence of S. By

Proposition 2.10,

S = {0, s1, s2, s3 = t1 + t2 + t3 + 3, s4 = t1 + t2 + t3 + t4 + 4,→}
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where s1 ∈ {t1 + 1, t1 + 2, t1 + 3} and s2 ∈ {t1 + t2 + 2, t1 + t2 + 3}. Given such a description

of S, let

J = [s4, s4 + s1 − 1]

and

I = J ∩ 〈s1, s2, s3〉 .

Let E(S) denote the minimal generating set of S. Then e(S) = |E(S)|. By Proposition 2.3,

it suffices to prove the claim that e(S) ≥ t1 +1, except in the case s2 = t1 +t2 +3, s1 = t1 +3,

s3 6= 2s1, and 2s3 ≤ s1 + s4 − 1. In this exceptional case, we also show that S affirmatively

answers the Wilf Question.

We begin by considering the case s2 = t1 + t2 + 2. In this case, t3 ≥ t4 by Proposition

2.10. There are three subcases to consider: s1 = t1 + 1, s1 = t1 + 2, and s1 = t1 + 3.

We begin with the subcase s1 = t1 + 1. In this subcase, either t2 > t3 + t4 or t2 = t3

by Proposition 2.10. Suppose s2, s3 /∈ 〈s1〉. Then s1, s2 ∈ E(S). Note that s3 ∈ E(S)

if s3 6= s1 + s2. Moreover, s3 = s1 + s2 implies that t1 = t3. Since either t2 > t3 + t4

or t2 = t3, it follows from Proposition 2.8 that t2 = t3. Hence, t1 = t2 = t3, and so

s2 = t1 + t2 +2 = 2(t1 +1) = 2s1 which is a contradiction. This shows that s1, s2, s3 ∈ E(S).

As in the proof for the case n = 3, e(S) = 3 + |J | − |I| = 3 + t1 + 1− |I| = t1 + 4− |I|. It

suffices to show |I| ≤ 3. Note that 2s1 ∈ S and s2, s3 /∈ 〈s1〉 imply that s4 ≤ 2s1 ≤ s4+s1−1.

Hence, 2s1 ∈ I. It follows that 3s1 > s4 + s1− 1 since J is an interval of length s1− 1. This

leads to I ⊆ {2s1, s1 + s2, s1 + s3, 2s2, s2 + s3, 2s3}. Note that s2 + s3 > s4 + s1− 1 as t2 ≥ t4.

As a consequence, s2 + s3, 2s3 /∈ I. If t2 > t3 + t4, then 2s2 > s4 + s1 − 1 and so 2s2 /∈ I. If

t2 = t3, then 2s2 = s1 + s2. Therefore, I ⊆ {2s1, s1 + s2, s1 + s3}, as desired.

Next, suppose s2 ∈ 〈s1〉 or s3 ∈ 〈s1〉. Note that this implies that s2 = 2s1 or s3 = 2s1 as

2s1 ∈ S, 2s1 < 3s1, and s2 < s3. First, assume s2 = 2s1; that is, assume t1 = t2. If t2 = t3,

then s3 = 3s1 and I = [s4, s4+s1−1]∩〈s1〉 = {4s1}. Hence, e(S) = 1+|J |−|I| = 1+t1+1−1 =

t1 + 1. Otherwise, t2 > t3 + t4. Here, s1, s3 ∈ E(S) since s3 = 3s1 implies t1 = t2 = t3

contradicting the fact that t2 > t3 + t4 (since t4 ≥ 1 by Proposition 2.8). This gives

e(S) = 2+ |J |−|I| = 2+t1+1−|I|. Note that I = [2s1+t3+t4+2, 3s1+t3+t4+1]∩〈s1, s3〉 .
Clearly, 3s1 ∈ I and s1 + s3 ∈ I by Proposition 2.8. As a consequence, I = {3s1, s1 + s3}, as



13

every element of I is of the form us1 + vs3, u, v ∈ N, and J is an interval of length s1 − 1.

Therefore, |I| ≤ 2 and e(S) = t1 + 3− |I| ≥ t1 + 3− 2 = t1 + 1.

Finally, suppose s3 = 2s1. Then s1, s2 ∈ E(S) and e(S) = 2+ |J |− |I| = 2+ t1 +1−|I| =
t1+3−|I|, where I = [2s1+t4+1, 3s1+t4]∩〈s1, s2〉 . Clearly, 3s1 ∈ I, as 3s1 ∈ S and s3 = 2s1

imply that s4 ≤ 3s1 ≤ 3s1 + t4. Since 2s1 + t4 + 1 ≤ 2s1 + t3 + 1 ≤ 2s1 + t2 + 1 ≤ s1 + s2 ≤
s1 +s3 +t4 = 3s1 +t4, we have that s1 +s2 ∈ I. If t2 = t3, then 2s2 = 3s1. If t2 > t3 +t4, then

2s2 > 3s1 + t4 and so 2s1 + s2 /∈ J . Then |I| ≤ 2 follows from the facts that 3s1, s1 + s2 ∈ I

and J is an interval of length s1 − 1. Hence, e(S) = t1 + 3− |I| ≥ t1 + 3− 2 = t1 + 1. This

concludes the proof in the subcase s2 = t1 + t2 + 2 and s1 = t1 + 1.

Next, we consider the subcase s1 = t1+2. In this subcase, t3+t4+1 ≥ t2 > t4 and t2 6= t3+1

by Proposition 2.10. Notice that s2 < 2s1 as t2 ≤ t1 by Proposition 2.8. Thus, s1, s2 ∈ E(S).

It follows that s3 ∈ E(S) or s3 = 2s1. Suppose first that s3 ∈ E(S); that is, assume s3 /∈
〈s1, s2〉. As in the previous subcase, e(S) = 3+ |J |−|I| = 3+ t1 +2−|I| = t1 +5−|I|, where

I = [s4, s4 + t1 +1]∩〈s1, s2, s3〉. It suffices to show |I| ≤ 4. Note that 2s1, s1 +s2, s1 + s3 ∈ S

and s3 /∈ 〈s1, s2〉 imply s4 ≤ 2s1, s1 + s3. Clearly, 2s1, s1 + s2, s1 + s3 ≤ s4 + s1 − 1. Thus,

2s1, s1 +s2, s1 +s3 ∈ I. As before, by definition of I and J , it follows that |I| ≤ 4, as desired.

Suppose now that s3 = 2s1. Then e(S) = 2 + |J | − |I| = 2 + t1 + 2 − |I| = t1 + 4 − |I|,
where I = [2s1 + t4 + 1, 3s1 + t4] ∩ 〈s1, s2〉. Clearly, 3s1 ∈ I. Using Proposition 2.8 and

the fact that t2 > t4, one can check that s1 + s2 ∈ I. By definition of I and J , |I| ≤ 3.

Hence, e(S) = t1 + 4 − |I| ≥ t1 + 4 − 3 = t1 + 1. This concludes the proof in the subcase

s2 = t1 + t2 + 2 and s1 = t1 + 2.

Finally, we consider the subcase s1 = t1 + 3. Here, t2 ≤ t4 + 1 by Proposition 2.10. As

in the previous subcase, s2 < 2s1, whence s1, s2 ∈ E(S) and either s3 ∈ E(S) or s3 = 2s1.

Suppose first that s3 ∈ E(S). Then e(S) = 3 + |J | − |I| = 3 + t1 + 3 − |I| = t1 + 6 − |I|,
where I = [s4, s4 + s1 − 1] ∩ 〈s1, s2, s3〉. It suffices to show |I| ≤ 5. Note that 2s1 ∈ I, since

2s1 ∈ S and s3 /∈ 〈s1, s2〉 imply that s4 ≤ 2s1 ≤ s4 + s1 − 1. This leads to I ⊆ {2s1, s1 +

s2, s1 + s3, 2s2, s2 + s3, 2s3} since J is an interval of length s1− 1. However, 2s3 > s4 + s1− 1

as t2 + t3 > t3 ≥ t4, whence 2s3 /∈ I. Therefore, I ⊆ {2s1, s1 + s2, s1 + s3, 2s2, s2 + s3}, as

desired.
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Suppose now that s3 = 2s1. Then e(S) = 2 + |J | − |I| = 2 + t1 + 3 − |I| = t1 + 5 − |I|,
where I = [2s1 + t4 + 1, 3s1 + t4] ∩ 〈s1, s2〉. It suffices to show that |I| ≤ 4. Note that

I ⊆ {s1 + s2, 2s2, 3s1, 2s1 + s2, s1 + 2s2, 3s2}. Clearly, s1 + s2 ∈ I. This leads to s1 + 2s2 =

(s1 + s2) + s2 ≥ 2s1 + t4 + 1 + s1 > 3s1 + t4, whence s1 + 2s2 /∈ I and 3s2 /∈ I. Therefore,

|I| ≤ 4 and so e(S) ≥ t1 + 1. This concludes the proof in the case s2 = t1 + t2 + 2.

Arguments similar to those above may be used to show that e(S) ≥ t1 + 1 in the case

s2 = t1 + t2 + 3, except in the subcase s1 = t1 + 3, s3 6= 2s1, and 2s3 ≤ s1 + s4 − 1. We now

show that the Wilf Question can be answered affirmatively in this exceptional subcase.

In this subcase, s1, s2, s3 ∈ E(S). This leads to e(S) = 3+|J |−|I| = 3+t1+3−|I| = t1+6−
|I|, where I ⊆ {2s1, s1+s2, s1+s3, 2s2, s2+s3, 2s3}. Thus, e(S) = t1+6−|I| ≥ t1+6−6 = t1.

Notice that t1 + 2 ≥ t2 + t3 + t4 since 2s1 ≥ s4. By Proposition 2.3, we may assume that

t1 ≥ 3. It follows that g+1 = s4 = t1+t2+t3+t4+4 ≤ t1+t1+2+4 ≤ 2t1+6 ≤ 4t1 ≤ 4e(S),

thus completing the proof for the case n = 4. 2

It is perhaps a matter of taste whether numerical semigroups S with “small” Frobenius

number should be considered as “small” semigroups. In any event, we next show that such

S affirmatively answer the Wilf Question.

Corollary 2.12. If S is a numerical semigroup such that g(S) ≤ 20, then S affirmatively

answers the Wilf Question.

Proof. Set n := n(S). Let T , k be as in the proof of Corollary 2.7. Suppose that g := g(S)

is odd (resp., even). By the proof of Corollary 2.7, the assertion holds if k ≤ g+1
4

(resp.,

k ≤ g−1
4

). As k = n(T ) − n = g+1
2
− n (resp., g

2
− n), the assertion holds if n ≥ g+1

4
(resp.,

n ≥ g−1
4

). By Theorem 2.11, we may suppose that n ≥ 5. Therefore, the assertion holds if

5 ≥ g+1
4

(resp., 5 ≥ g−1
4

); that is, if g ≤ 20. 2

Remark 2.13. (a) Suppose that one had a sharpening of Corollary 2.6 in which there is

an integer N such that the Wilf Question were answered affirmatively for all S such that

e(S) ≤ N . Now, let S be a numerical semigroup for which g := g(S) is odd (resp., even).
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By the proof of Corollary 2.7, S affirmatively answers the Wilf Question if

N + 1 ≥ 2 +
4k

g + 1− 2k

(
resp., N + 1 ≥ 2 +

4k + 2

g − 2k

)

where k is as in the proof of Corollary 2.7. Thus, S affirmatively answers the Wilf Question

if

k ≤
(

N − 1

N + 1

)
g + 1

2

(
resp., k ≤

(
N − 1

N + 1

)
g

2
− 1

N + 1

)
;

that is, if n := n(S) = g+1
2
− k (resp., g

2
− k) satisfies n ≥ g+1

N+1
. (This agrees with the result

in Corollary 2.7, where we used N = 3.) The above reasoning quantifies the sense in which

sharpenings of Corollary 2.6 would lead to an affirmative resolution of the Wilf Question.

To see how a sharpening of Theorem 2.11 would lead to affirmative answers for all S for

which g(S) is correspondingly bounded above, we invite the reader to (re)work the proof of

Corollary 2.12.

(b) Theorem 2.5 is best possible, in the sense that Backelin [5, pages 15-16] has shown

that for each odd number t ≥ 7, there exists a numerical semigroup S such that e(S) = 4

and t(S) = t. In particular, t(S)+1 > e(S). Thus if one is to proceed as suggested in (a) for

N = 4, it would be essential to develop methods that are different from those used above.
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[5] R. Fröberg, C. Gottlieb and R. Häggkvist, Semigroups, semigroup rings and analytically irreducible

rings, Reports Dept. Math. Univ. Stockholm, no. 1 (1986).
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