ON A QUESTION OF WILF CONCERNING NUMERICAL SEMIGROUPS

David E. Dobbs	Gretchen L. Matthews
Department of Mathematics	Department of Mathematical Sciences
University of Tennessee	Clemson University
Knoxville, Tennessee 37996-1300	Clemson, South Carolina 29634-0975
U. S. A.	U. S. A.

Abstract. Let S be a numerical semigroup with embedding dimension e(S), Frobenius number g(S), and type t(S). Put $n(S) := \operatorname{Card}(S \cap \{0, 1, \dots, g(S)\})$. A question of Wilf is shown to be equivalent to the statement that $e(S)n(S) \ge g(S)+1$. This question is answered affirmatively if S is symmetric, pseudo-symmetric, or of maximal embedding dimension. The question is also answered affirmatively in the following cases: $e(S) \le 3$, $g(S) \le 20$, $n(S) \le 4$, $\frac{g(S)+1}{4} \le n(S)$.

1. INTRODUCTION

Let S be a numerical semigroup, that is, an additive submonoid of the monoid N of all non-negative integers. It is well known that any such S is finitely generated (cf. [7, Theorem 2.4(2)]). We assume throughout that any numerical semigroup S under consideration has the property that its set of elements has greatest common divisor 1. (Note that, even if S does not have this property, S is isomorphic to a numerical semigroup with this property.) In this case, it is well known (cf. [7, Theorem 2.4(1)]) that there exists a least integer $g(S) \ge -1$ such that $\{m \in \mathbb{N} : m > g(S)\} \subseteq S$; it is customary to call g(S) the Frobenius number of S. An upper bound for g(S) is known in terms of the irredundant generating set $\{a_1, \ldots, a_{e(S)}\}$ of S; that is, the set consisting of $a_1 < \cdots < a_{e(S)}$ in N such that $S = \langle a_1, \ldots, a_{e(S)} \rangle := \{\sum_{i=1}^{e(S)} m_i a_i :$ $m_i \in \mathbb{N}$ for each $i\}$, $gcd(a_1, \ldots, a_{e(S)}) = 1$, and $a_i \notin \langle a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{e(S)} \rangle$ for all *i*. Indeed, a result of Schur leads to the fact that $g(S) \le a_1a_{e(S)} - a_1 - a_{e(S)}$. (See [3, Theorem B, p. 215] and [8, p. 390].) This inequality is best possible if e(S) = 2, for then Sylvester [9] (cf. [2]) has shown that $g(S) = a_1a_2 - a_1 - a_2$. Our interest here is in another conjectured upper bound for g(S), namely, e(S)n(S) - 1. In this expression, e(S) is as above and is called the *embedding dimension of* S; and $n(S) := \operatorname{Card}(S \cap \{0, 1, \dots, g(S)\})$. Notice that n(S) plays a role in an evident lower bound for g(S). Indeed, $2n(S) - 1 \leq g(S)$, as a consequence of the fact that the assignment $x \mapsto g(S) - x$ establishes an injection $S \cap \{0, 1, \dots, g(S)\} \to \{0, 1, \dots, g(S)\} \setminus S$. As explained in Proposition 2.1 (cf. [6, Remark, p. 81]), the conjecture that $e(S)n(S) - 1 \geq g(S)$ is equivalent to a question posed by Wilf [10] in a study of the so-called *presentable* integers obtained as non-negative integral linear combinations of a finite set $\{a_1, \dots, a_{e(S)}\}$ of relatively prime positive integers. For this reason, we say that S affirmatively answers the Wilf Question if $e(S)n(S) \geq g(S) + 1$.

We show first that the Wilf Question is answered affirmatively for numerical semigroups S that are "large" in the following sense. Let $g \in \mathbb{N}$. If g is odd (resp., even), then S is maximal with respect to the property that g(S) = g if and only if S is symmetric (resp., pseudo-symmetric); that is, if and only if $n(S) = \frac{g(S)+1}{2}$ (resp., $n(S) = \frac{g(S)}{2}$). (Cf. [5, Lemmas 1 and 3], [1, Lemmas I.1.8 and I.1.9].) Proposition 2.2 establishes that S affirmatively answers the Wilf Question if S is either symmetric or pseudo-symmetric.

Corollary 2.4 includes the fact that S affirmatively answers the Wilf Question if S is of maximal embedding dimension, in the sense that e(S) coincides with a_1 (the minimal positive element of S). To prove this result, we consider the maximal ideal of S, given by $M(S) := S \setminus \{0\}$; the semigroup $S(1) := \{m \in \mathbb{N} : m + M(S) \subseteq S\}$; and the type of S, given by $t(S) := \operatorname{Card}(S(1) \setminus S)$. It is well known that S is symmetric if and only if either $S = \mathbb{N}$ (in which case, $t(\mathbb{N}) := 0$) or t(S) = 1; and, if S is pseudo-symmetric, then t(S) = 2 [1, p. 3]. The above-mentioned Corollary 2.4 is a consequence of Proposition 2.3: if $t(S) + 1 \leq e(S)$, then S affirmatively answers the Wilf Question. Another consequence is given in Corollary 2.6: if $e(S) \leq 3$, then S affirmatively answers the Wilf Question. The supporting fact, that $e(S) \leq 3$ implies $t(S) + 1 \leq e(S)$, is known [5, Theorem 11], but we provide a new proof of it in Theorem 2.5. As an upshot, we obtain in Corollary 2.7 that the Wilf Question is answered affirmatively if S is "large" in another sense, namely, that $n(S) \geq \frac{g(S)+1}{4}$. One finds the same conclusion in Corollary 2.12 in case S is "small" in the sense that $g(S) \leq 20$. This follows from Theorem 2.11, where we affirmatively answer the Wilf Question for numerical

semigroups that are "small" in another sense, namely, that $n(S) \leq 4$. To prove this result, we consider the ideal $S_i := \{s \in S : s \geq s_i\}$, where $s_0 := 0$ and s_i denotes the i^{th} positive element of S for $1 \leq i \leq n(S)$; the relative ideal $S(i) := \{m \in \mathbb{N} : m + S_i \subseteq S_i\}$ for $0 \leq i \leq n(S)$; and the type sequence $(t_i(S) : 1 \leq i \leq n(S))$ of S where $t_i(S) := \operatorname{Card}(S(i) \setminus S(i-1))$. Using this notation, we often find it convenient to write $S = \{0, s_1, s_2, \ldots, s_{n(S)-1}, s_{n(S)} = g(S) + 1, \rightarrow\}$ where the symbol " \rightarrow " means that all subsequent natural numbers belong to S.

The Wilf Question remains unanswered (though we believe it has an affirmative answer) in the following cases: $e(S) \ge 4$; $n(S) \ge 5$; $n(S) < \frac{g(S)+1}{4}$.

For background on numerical semigroups, see [5], [1].

2. Results

We begin by showing that what we have called the Wilf Question is equivalent to a question posed by Wilf [10]. Let S be a numerical semigroup with irredundant generating set $\{a_1, \ldots, a_{e(S)}\}$, as in the Introduction. Wilf lets Ω denote the cardinality of the set of non-presentable non-negative integers; thus, $\Omega = \operatorname{Card}(\{0, 1, \ldots, g(S)\} \setminus S) = g(S) + 1 - n(S)$. Wilf lets χ denote g(S) + 1; and he lets k denote e(S). The specific question of Wilf concerns $\frac{\Omega}{\chi}$, the ratio of the number of non-presentable non-negative integers to the number of non-negative integers $\leq g$. On [10, page 565], Wilf asks if $\frac{\Omega}{\chi} \leq 1 - \frac{1}{k}$. (As $\chi(\mathbb{N}) = g(\mathbb{N}) + 1 = 0$, we tacitly assume that $S \neq \mathbb{N}$ below.) In studying the Wilf Question, we also tacitly assume that $S \neq 0$ since $e(0)n(0) = 0 \cdot 0 = 0 = g(0) + 1$.

Proposition 2.1. The question of Wilf is equivalent to the Wilf Question. In other words, $\frac{\Omega}{\chi} \leq 1 - \frac{1}{k}$ if and only if $e(S)n(S) \geq g(S) + 1$. **Proof.** $\frac{\Omega}{\chi} \leq 1 - \frac{1}{k} \Leftrightarrow \frac{g(S)+1-n(S)}{g(S)+1} \leq 1 - \frac{1}{e(S)} \Leftrightarrow \frac{-n(S)}{g(S)+1} \leq \frac{-1}{e(S)} \Leftrightarrow \frac{n(S)}{g(S)+1} \geq \frac{1}{e(S)} \Leftrightarrow e(S)n(S) \geq 1$

Proof.
$$\frac{1}{\chi} \leq 1 - \frac{1}{k} \Leftrightarrow \frac{q(x)}{g(S)+1} \leq 1 - \frac{1}{e(S)} \Leftrightarrow \frac{q(S)+1}{g(S)+1} \leq \frac{1}{e(S)} \Leftrightarrow \frac{q(S)+1}{g(S)+1} \geq \frac{1}{e(S)} \Leftrightarrow e(S)n(S) \geq g(S) + 1.$$

We next show that S affirmatively answers the Wilf Question if S is maximal with a given Frobenius number.

Proposition 2.2. If a numerical semigroup S is either symmetric or pseudosymmetric, then S affirmatively answers the Wilf Question. **Proof.** Suppose first that S is symmetric. If $S = \mathbb{N}$, then $e(S)n(S) = 1 \cdot 0 = 0 \ge 0 = g(\mathbb{N}) + 1$. If $S \neq \mathbb{N}$, then $e(S) \ge 2$, and so $e(S)n(S) \ge 2n(S) = 2 \cdot \frac{g(S)+1}{2} = g(S) + 1$.

Suppose next that S is pseudo-symmetric. Then $e(S) \ge 3$, since Sylvester [9] (cf. [2]) has shown that any 2-generated numerical semigroup is symmetric. Therefore, $e(S)n(S) \ge 3 \cdot \frac{g(S)}{2} \ge g(S) + 1$ (since $g(S) \ge 2$). \Box

Proposition 2.3. If a numerical semigroup S satisfies $t(S) + 1 \le e(S)$, then S affirmatively answers the Wilf Question.

Proof. The assertion follows immediately from the fact ([5, Theorem 22], [1, Proposition I.1.11(c)]) that $g(S) + 1 \le n(S)(t(S) + 1)$. \Box

The next result refers to Arf semigroups, in the sense of [1]. See [1, Theorem I.3.4] for fifteen characterizations of Arf semigroups.

Corollary 2.4. (a) Each numerical semigroup of maximal embedding dimension affirmatively answers the Wilf Question.

(b) Each (numerical) Arf semigroup affirmatively answers the Wilf Question.

Proof.(a) Let S be a numerical semigroup of maximal embedding dimension. Then $e(S) = a_1$, the minimal positive element of S, also known as $\mu(S)$, the so-called multiplicity of S. A general fact about numerical semigroups T (for proofs, see [1, Remarks I.2.7(a), (b) or I.6.3(d)]) states that $t(T) \leq \mu(T) - 1$. In particular, $t(S) + 1 \leq \mu(S) = a_1 = e(S)$. Apply Proposition 2.3.

(b) Each Arf semigroup is of maximal embedding dimension [1, Theorem I.3.4 or page 18].Apply (a). □

The next two results contain the deepest applications of Proposition 2.3.

Theorem 2.5. If S is a nonzero numerical semigroup such that $e(S) \leq 3$, then $t(S) + 1 \leq e(S)$.

Proof. Without loss of generality, $S \neq \mathbb{N}$ (since $t(\mathbb{N}) = 0$ and $e(\mathbb{N}) = 1$). Thus, e(S) is either 2 or 3. Suppose first that e(S) = 2. Then, as noted above via [2], S is symmetric, whence t(S) = 1 and the assertion holds.

In the remaining case, e(S) = 3 and our task is to show that $t(S) \leq 2$. This is known: see [5, Theorem 11] for two proofs of this fact. We next indicate, for the sake of completeness and possible interest, how to modify the methods of Johnson [8] to obtain a third proof that e(S) = 3 implies $t(S) \leq 2$.

Let $S = \langle a_1, a_2, a_3 \rangle$. By [6, Proposition 8], we may restrict ourselves to the case where a_1, a_2, a_3 are pairwise relatively prime. Suppose $N \in S(1) \setminus S$. To verify the assertion, it suffices to show that there are at most two possibilities for N. By definition of S(1), N can be expressed as $N = y_{ij}a_j + y_{ik}a_k - a_i$ with $y_{ij}, y_{ik} \in \mathbb{N}$ for $\{i, j, k\} = \{1, 2, 3\}$. As in [8], let L_i be the minimum positive integer K_i such that $K_i a_i \in \langle a_j, a_k \rangle$ for $\{i, j, k\} = \{1, 2, 3\}$. Then we may write $L_i a_i = x_{ij}a_j + x_{ik}a_k$ with $x_{ij}, x_{ik} \in \mathbb{N}$. By [8, Theorem 3], x_{ij} and x_{ik} are uniquely determined and $x_{ij}, x_{ik} > 0$.

We claim that $y_{ij} \leq L_j - 1$. Suppose that $y_{ij} = L_j + d_j$ with $d_j \geq 0$. Then

$$N = (L_j + d_j)a_j + y_{ik}a_k - a_i = (x_{ji}a_i + x_{jk}a_k) + d_ja_j + y_{ik}a_k - a_i$$
$$= (x_{ji} - 1)a_i + (x_{jk} + y_{ik})a_k + d_ja_j \in S$$

since $x_{ji} > 0$. This is a contradiction as $N \notin S$. Hence, the claim holds.

Next, we show that the representations of N of the form $N = y_{ij}a_j + y_{ik}a_k - a_i$ with $y_{ij}, y_{ik} \in \mathbb{N}$ are unique. Suppose that $N = y_{ij}a_j + y_{ik}a_k - a_i = z_{ij}a_j + z_{ik}a_k - a_i$ with $y_{ij}, y_{ik}, z_{ij}, z_{ik} \in \mathbb{N}$. If $y_{ij} = z_{ij}$, then we are done. Otherwise, without loss of generality, we may assume $y_{ij} > z_{ij}$. Then $(y_{ij} - z_{ij})a_j + y_{ik}a_k = z_{ik}a_k$. This leads to $z_{ik} \geq L_k$, which contradicts the fact that $z_{ik} \leq L_k - 1$. Thus, N has unique representations

$$N = y_{31}a_1 + y_{32}a_2 - a_3 = y_{21}a_1 + y_{23}a_3 - a_2 = y_{12}a_2 + y_{13}a_3 - a_1.$$

Next, we show that $y_{31} \neq y_{21}$. If $y_{31} = y_{21}$, then $(y_{32} + 1)a_2 = (y_{23} + 1)a_3$. This leads to $y_{32} + 1 = ma_3$ for some $m \ge 1$ since $(a_2, a_3) = 1$. In particular, $y_{32} + 1 \ge a_3$. By the proof of [8, Theorem 3], $a_3 > L_2$. Thus, $y_{32} + 1 > L_2$, contradicting the fact that $y_{32} \le L_2 - 1$. Therefore, either $y_{31} < y_{21}$ or $y_{21} < y_{31}$.

We first consider the case $y_{31} < y_{21}$. Here, $(y_{32}+1)a_2 = (y_{21}-y_{31})a_1 + (y_{23}+1)a_3$, whence $y_{32}+1 \ge L_2$. It follows that $y_{32} = L_2 - 1$. Now we have

$$N = y_{31}a_1 + (L_2 - 1)a_2 - a_3 = y_{12}a_2 + y_{13}a_3 - a_1.$$

This implies $(L_2 - 1 - y_{12})a_2 + (y_{31} + 1)a_1 = (y_{13} + 1)a_3$. Thus, $y_{13} + 1 \ge L_3$ which forces $y_{13} = L_3 - 1$. Now we have $y_{21}a_1 + y_{23}a_3 - a_2 = N = y_{12}a_2 + (L_3 - 1)a_3 - a_1$. This leads to $(y_{21} + 1)a_1 = (y_{12} + 1)a_2 + (L_3 - 1 - y_{23})a_3$. As before, this forces $y_{21} = L_1 - 1$. Since $y_{32} = L_2 - 1$,

$$N = y_{31}a_1 + (L_2 - 1)a_2 - a_3 = y_{31}a_1 + (x_{21}a_1 + x_{23}a_3) - a_2 - a_3$$
$$= (y_{31} + x_{21})a_1 + (x_{23} - 1)a_3 - a_2.$$

By the uniqueness of the representation of N, $L_1 - 1 = y_{31} + x_{21}$ and $x_{23} - 1 = y_{23}$ as $x_{23} > 0$. Similarly, one can show that $y_{31} = x_{31} - 1$. Now we may write

$$N = (L_1 - 1)a_1 + y_{23}a_3 - a_2 = (y_{31} + x_{21})a_1 + (x_{23} - 1)a_3 - a_2$$
$$= (x_{21}a_1 + x_{23}a_3) + y_{31}a_1 - a_3 - a_2 = (L_2 - 1)a_2 + y_{31}a_1 - a_3$$
$$= (L_2 - 1)a_2 + (x_{31} - 1)a_1 - a_3.$$

In the remaining case, $y_{21} < y_{31}$. By interchanging subscripts in the above proof, we see that

$$N = (L_3 - 1)a_3 + (x_{21} - 1)a_1 - a_2.$$

This shows that there are at most two possibilities for N, namely, $(L_2-1)a_2+(x_{31}-1)a_1-a_3$ and $(L_3-1)a_3+(x_{21}-1)a_1-a_2$. Therefore, $t(S) = \operatorname{Card}(S(1) \setminus S) \leq 2$. \Box

Corollary 2.6. If S is a numerical semigroup such that $e(S) \leq 3$, then S affirmatively answers the Wilf Question.

Proof. We observed earlier that 0 affirmatively answers the Wilf Question. On the other hand, if $S \neq 0$, then the assertion follows by combining Theorem 2.5 and Proposition 2.3. \Box

As noted in the Introduction, each numerical semigroup S satisfies $2n(S) - 1 \leq g(S)$ or, equivalently, $n(S) \leq \frac{g(S)+1}{2}$. We next show that, in a sense, the "upper half" of cases affirmatively answer the Wilf Question.

Corollary 2.7. Let S be a numerical semigroup such that $n(S) \ge \frac{g(S)+1}{4}$. Then S affirmatively answers the Wilf Question.

Proof. By Corollary 2.6, we may suppose that $e(S) \ge 4$. Put g := g(S). Since $n(S) < \infty$, there exists a numerical semigroup $T \supseteq S$ such that T is maximal with the property that g(T) = g. Suppose that g is odd (resp., even). Then T is symmetric (resp., pseudo-symmetric), by [1, Lemma I.1.8] (resp., [1, Lemma I.1.9]). Let $k := \operatorname{Card}(T \setminus S)$. Then n(T) = n(S) + k, since g(T) = g(S). Thus, $n(S) = \frac{g+1}{2} - k$ (resp., $\frac{g}{2} - k$). Accordingly, S affirmatively answers the Wilf Question if and only if $e(S)(\frac{g+1}{2} - k) \ge g + 1$ (resp., $e(S)(\frac{g}{2} - k) \ge g + 1$); that is, if and only if

$$e(S) \ge \frac{g+1}{\frac{g+1}{2}-k} = 2 + \frac{4k}{g+1-2k} \left(\text{resp.}, e(S) \ge \frac{g+1}{\frac{g}{2}-k} = 2 + \frac{4k+2}{g-2k} \right).$$

As $e(S) \ge 4$, it follows that S affirmatively answers the Wilf Question if

$$4 \ge 2 + \frac{4k}{g+1-2k} \left(\text{resp.}, 4 \ge 2 + \frac{4k+2}{g-2k} \right);$$

that is, if $\frac{g+1}{4} \ge k$ (resp., $\frac{g-1}{4} \ge k$); that is, if

$$n(S) = \frac{g+1}{2} - k \ge \frac{g+1}{2} - \frac{g+1}{4} = \frac{g+1}{4}$$
$$\left(\text{resp.}, n(S) = \frac{g}{2} - k \ge \frac{g}{2} - \frac{g-1}{4} = \frac{g+1}{4}\right)$$

Thus, the assertion has been proved in all cases. \Box

In Theorem 2.11, we settle the Wilf Question for all S with "small" n(S). First, it is convenient to collect some results from [1] and [4] that will be used frequently. **Proposition 2.8.** [1, (I.1.10) and Proposition I.1.11 (b)] Let S be a numerical semigroup. Then: (a) $1 \le t_i(S) \le t(S)$ for all $1 \le i \le n(S)$. (b) $g(S) + 1 - n(S) = \sum_{i=1}^{n(S)} t_i(S)$.

Proposition 2.9. [4, Theorem 2.1] Let S be a semigroup with n(S) = 3 and $t_i := t_i(S)$ for each i = 1, 2, 3. Then

$$S = \{0, s_1, t_1 + t_2 + 2, t_1 + t_2 + t_3 + 3, \rightarrow\}, \text{ where }$$

$$s_1 = \begin{cases} t_1 + 2, & \Leftrightarrow t_2 = s_2 - s_1 \le g - s_2 = t_3; \\ t_1 + 1, & \Leftrightarrow t_2 + 1 = s_2 - s_1 > g - s_2 = t_3. \end{cases}$$

Proposition 2.10. [4, Theorem 2.2] Let S be a semigroup with n(S) = 4 and $t_i := t_i(S)$ for each i = 1, 2, 3, 4. Then

$$S = \{0, s_1, s_2, t_1 + t_2 + t_3 + 3, t_1 + t_2 + t_3 + t_4 + 4, \rightarrow\}, \text{ where}$$

$$s_2 = \begin{cases} t_1 + t_2 + 3 & \Leftrightarrow t_3 = s_3 - s_2 \le g - s_3 = t_4; \\ t_1 + t_2 + 2 & \Leftrightarrow t_3 + 1 = s_3 - s_2 > g - s_3 = t_4; \end{cases}$$
and

8

Theorem 2.11. If S is a numerical semigroup such that $n(S) \leq 4$, then S affirmatively answers the Wilf Question.

Proof. Without loss of generality, $S \neq \mathbb{N}$. In general, $n(S) \geq 1$. The only numerical semigroups S such that n(S) = 1 take the form $S = \langle a, a + 1, a + 2, ..., 2a - 1 \rangle$, and any such S satisfies $e(S)n(S) = a \cdot 1 = a = g(S) + 1$. If n(S) = 2, then S is an Arf semigroup by [1, Remark I.3.6(b)], and so the assertion follows from Corollary 2.4(b).

Suppose next that n(S) = 3. Then S need not be Arf (or even of maximal embedding dimension) [1, Remark I.3.6(c)], but the assertion can be established by the following case analysis.

Let (t_1, t_2, t_3) denote the type sequence of S. By Proposition 2.9,

$$S = \{0, s_1, t_1 + t_2 + 2, t_1 + t_2 + t_3 + 3, \rightarrow\},\$$

where either $s_1 = t_1 + 1$ or $s_1 = t_1 + 2$. Given S as above, let

$$J = [t_1 + t_2 + t_3 + 3, (t_1 + t_2 + t_3 + 3) + (s_1 - 1)]$$

and

$$I = J \cap \langle s_1, t_1 + t_2 + 2 \rangle$$

Let E(S) denote the minimal generating set of S. Then e(S) = |E(S)|. To verify the assertion, it suffices by Proposition 2.3 to establish the following claim: $e(S) = t_1 + 1$.

We first consider the case $s_1 = t_1 + 2$; that is,

$$S = \{0, t_1 + 2, t_1 + t_2 + 2, t_1 + t_2 + t_3 + 3, \rightarrow\}.$$

In this case, $t_2 \leq t_3$ by Proposition 2.9. Of course, $t_1 + 2 = \mu(S) \in E(S)$. By Proposition 2.8, $t_2 \leq t_1$. This implies $t_1 + t_2 + 2 < 2(t_1 + 2)$, and so $t_1 + t_2 + 2 \in E(S)$. Therefore, $E(S) = \{t_1 + 2, t_1 + t_2 + 2\} \cup (J \setminus I)$. Hence, $e(S) = |E(S)| = 2 + |J| - |I| = 2 + (t_1 + 2) - |I| = t_1 + 4 - |I|$. Thus, it suffices to show that |I| = 3.

Notice that $2(t_1+2) \in I$ as $2(t_1+2) \in S$ and $t_1+t_2+2 < 2(t_1+2)$ imply $t_1+t_2+t_3+3 \le 2(t_1+2) \le (t_1+t_2+t_3+3) + (t_1+1)$. Similarly, $(t_1+2) + (t_1+t_2+2) \in I$. Also, one can verify that $2(t_1+t_2+2) \in I$ using the fact that $t_2 \le t_3$. As a result, $|I| \ge 3$.

Suppose $s \in I$. Then $s = u(t_1 + 2) + v(t_1 + t_2 + 2)$ for some $u, v \in \mathbb{N}$. If u + v > 2, then

$$(u(t_1+2) + v(t_1+t_2+2)) - 2(t_1+2) > t_1 + 1.$$

Since $2(t_1+2) \in I \subseteq J$ and J is an interval of length $s_1-1 = t_1+1$, $u(t_1+2)+v(t_1+t_2+2) \notin J$. Hence, $u(t_1+2) + v(t_1+t_2+2) \notin I$. Clearly, $t_1+2, t_1+t_2+2 \notin I$ as $t_1+2, t_1+t_2+2 < t_1+t_2+t_3+3$. Therefore, u+v=2. It follows that $|I| \leq 3$, as claimed.

In the remaining case, $s_1 = t_1 + 1$; i.e.,

$$S = \{0, t_1 + 1, t_1 + t_2 + 2, t_1 + t_2 + t_3 + 3, \rightarrow \}.$$

Here, $t_2 + 1 > t_3$ by Proposition 2.9. As above, $t_1 + 1 = \mu(S) \in E(S)$. According to Proposition 2.8, $t_2 \leq t_1$. Hence there are two subcases to consider: $t_2 = t_1$ and $t_2 < t_1$.

Suppose first that $t_1 = t_2$. Then $t_1 + t_2 + 2 = 2(t_1 + 1) \notin E(S)$, and so $E(S) = \{t_1 + 1\} \cup (J \setminus I)$. Thus $e(S) = |E(S)| = 1 + |J| - |I| = 1 + (t_1 + 1) - |I| = t_1 + 2 - |I|$. To establish the claim, we must show that |I| = 1. In this subcase, we have $I = [2t_1 + t_3 + 3, 3t_1 + t_3 + 3] \cap \langle t_1 + 1 \rangle$. Note that $3(t + 1) \in I$ since $t_3 \leq t_2 \leq t_1$. It follows that $u(t_1 + 1) \notin I$ for $u \neq 3$, as J is an interval of length $s_1 - 1 = t_1$. Hence, $I = \{3(t_1 + 1)\}$.

In the remaining subcase, $t_2 < t_1$. Here, $t_1 + t_2 + 2 \in E(S)$ since $t_1 + t_2 + 2 < 2(t_1 + 1)$. Thus, $E(S) = \{t_1 + 1, t_1 + t_2 + 2\} \cup (J \setminus I)$, and so $e(S) = |E(S)| = 2 + |J| - |I| = 2 + (t_1 + 1) - |I| = t_1 + 3 - |I|$. It suffices to show that |I| = 2. Notice that $2(t_1 + 1) \in I$ as $2(t_1 + 1) \in S$ and $t_1 + t_2 + 2 < 2(t_1 + 1)$ imply $t_1 + t_2 + t_3 + 3 \leq 2(t_1 + 1) \leq (t_1 + t_2 + t_3 + 3) + t_1$. Similarly, $(t_1 + 1) + (t_1 + t_2 + 2) \in I$. Hence, $\{2(t_1 + 1), (t_1 + 1) + (t_1 + t_2 + 2)\} \subseteq I$. However, $2(t_1 + t_2 + 2) > (t_1 + t_2 + t_3 + 3) + t_1$ as $t_2 + 1 > t_3$. As a result, $2(t_1 + t_2 + 2) \notin I$. Since J is an interval of length $s_1 - 1 = t_1$, it follows that |I| = 2. This completes the proof for the case n = 3.

Finally, suppose that n(S) = 4. Let (t_1, t_2, t_3, t_4) denote the type sequence of S. By Proposition 2.10,

$$S = \{0, s_1, s_2, s_3 = t_1 + t_2 + t_3 + 3, s_4 = t_1 + t_2 + t_3 + t_4 + 4, \rightarrow\}$$

12

where $s_1 \in \{t_1 + 1, t_1 + 2, t_1 + 3\}$ and $s_2 \in \{t_1 + t_2 + 2, t_1 + t_2 + 3\}$. Given such a description of S, let

$$J = [s_4, s_4 + s_1 - 1]$$

and

$$I = J \cap \langle s_1, s_2, s_3 \rangle \,.$$

Let E(S) denote the minimal generating set of S. Then e(S) = |E(S)|. By Proposition 2.3, it suffices to prove the claim that $e(S) \ge t_1 + 1$, except in the case $s_2 = t_1 + t_2 + 3$, $s_1 = t_1 + 3$, $s_3 \ne 2s_1$, and $2s_3 \le s_1 + s_4 - 1$. In this exceptional case, we also show that S affirmatively answers the Wilf Question.

We begin by considering the case $s_2 = t_1 + t_2 + 2$. In this case, $t_3 \ge t_4$ by Proposition 2.10. There are three subcases to consider: $s_1 = t_1 + 1$, $s_1 = t_1 + 2$, and $s_1 = t_1 + 3$.

We begin with the subcase $s_1 = t_1 + 1$. In this subcase, either $t_2 > t_3 + t_4$ or $t_2 = t_3$ by Proposition 2.10. Suppose $s_2, s_3 \notin \langle s_1 \rangle$. Then $s_1, s_2 \in E(S)$. Note that $s_3 \in E(S)$ if $s_3 \neq s_1 + s_2$. Moreover, $s_3 = s_1 + s_2$ implies that $t_1 = t_3$. Since either $t_2 > t_3 + t_4$ or $t_2 = t_3$, it follows from Proposition 2.8 that $t_2 = t_3$. Hence, $t_1 = t_2 = t_3$, and so $s_2 = t_1 + t_2 + 2 = 2(t_1 + 1) = 2s_1$ which is a contradiction. This shows that $s_1, s_2, s_3 \in E(S)$. As in the proof for the case n = 3, $e(S) = 3 + |J| - |I| = 3 + t_1 + 1 - |I| = t_1 + 4 - |I|$. It suffices to show $|I| \leq 3$. Note that $2s_1 \in S$ and $s_2, s_3 \notin \langle s_1 \rangle$ imply that $s_4 \leq 2s_1 \leq s_4 + s_1 - 1$. Hence, $2s_1 \in I$. It follows that $3s_1 > s_4 + s_1 - 1$ since J is an interval of length $s_1 - 1$. This leads to $I \subseteq \{2s_1, s_1 + s_2, s_1 + s_3, 2s_2, s_2 + s_3, 2s_3\}$. Note that $s_2 + s_3 > s_4 + s_1 - 1$ and so $2s_2 \notin I$. If $t_2 = t_3$, then $2s_2 = s_1 + s_2$. Therefore, $I \subseteq \{2s_1, s_1 + s_2, s_1 + s_3\}$, as desired.

Next, suppose $s_2 \in \langle s_1 \rangle$ or $s_3 \in \langle s_1 \rangle$. Note that this implies that $s_2 = 2s_1$ or $s_3 = 2s_1$ as $2s_1 \in S$, $2s_1 < 3s_1$, and $s_2 < s_3$. First, assume $s_2 = 2s_1$; that is, assume $t_1 = t_2$. If $t_2 = t_3$, then $s_3 = 3s_1$ and $I = [s_4, s_4 + s_1 - 1] \cap \langle s_1 \rangle = \{4s_1\}$. Hence, $e(S) = 1 + |J| - |I| = 1 + t_1 + 1 - 1 = t_1 + 1$. Otherwise, $t_2 > t_3 + t_4$. Here, $s_1, s_3 \in E(S)$ since $s_3 = 3s_1$ implies $t_1 = t_2 = t_3$ contradicting the fact that $t_2 > t_3 + t_4$ (since $t_4 \ge 1$ by Proposition 2.8). This gives $e(S) = 2 + |J| - |I| = 2 + t_1 + 1 - |I|$. Note that $I = [2s_1 + t_3 + t_4 + 2, 3s_1 + t_3 + t_4 + 1] \cap \langle s_1, s_3 \rangle$. Clearly, $3s_1 \in I$ and $s_1 + s_3 \in I$ by Proposition 2.8. As a consequence, $I = \{3s_1, s_1 + s_3\}$, as

every element of I is of the form $us_1 + vs_3$, $u, v \in \mathbb{N}$, and J is an interval of length $s_1 - 1$. Therefore, $|I| \leq 2$ and $e(S) = t_1 + 3 - |I| \geq t_1 + 3 - 2 = t_1 + 1$.

Finally, suppose $s_3 = 2s_1$. Then $s_1, s_2 \in E(S)$ and $e(S) = 2 + |J| - |I| = 2 + t_1 + 1 - |I| = t_1 + 3 - |I|$, where $I = [2s_1 + t_4 + 1, 3s_1 + t_4] \cap \langle s_1, s_2 \rangle$. Clearly, $3s_1 \in I$, as $3s_1 \in S$ and $s_3 = 2s_1$ imply that $s_4 \leq 3s_1 \leq 3s_1 + t_4$. Since $2s_1 + t_4 + 1 \leq 2s_1 + t_3 + 1 \leq 2s_1 + t_2 + 1 \leq s_1 + s_2 \leq s_1 + s_3 + t_4 = 3s_1 + t_4$, we have that $s_1 + s_2 \in I$. If $t_2 = t_3$, then $2s_2 = 3s_1$. If $t_2 > t_3 + t_4$, then $2s_2 > 3s_1 + t_4$ and so $2s_1 + s_2 \notin J$. Then $|I| \leq 2$ follows from the facts that $3s_1, s_1 + s_2 \in I$ and J is an interval of length $s_1 - 1$. Hence, $e(S) = t_1 + 3 - |I| \geq t_1 + 3 - 2 = t_1 + 1$. This concludes the proof in the subcase $s_2 = t_1 + t_2 + 2$ and $s_1 = t_1 + 1$.

Next, we consider the subcase $s_1 = t_1+2$. In this subcase, $t_3+t_4+1 \ge t_2 > t_4$ and $t_2 \ne t_3+1$ by Proposition 2.10. Notice that $s_2 < 2s_1$ as $t_2 \le t_1$ by Proposition 2.8. Thus, $s_1, s_2 \in E(S)$. It follows that $s_3 \in E(S)$ or $s_3 = 2s_1$. Suppose first that $s_3 \in E(S)$; that is, assume $s_3 \notin \langle s_1, s_2 \rangle$. As in the previous subcase, $e(S) = 3+|J|-|I| = 3+t_1+2-|I| = t_1+5-|I|$, where $I = [s_4, s_4+t_1+1] \cap \langle s_1, s_2, s_3 \rangle$. It suffices to show $|I| \le 4$. Note that $2s_1, s_1+s_2, s_1+s_3 \in S$ and $s_3 \notin \langle s_1, s_2 \rangle$ imply $s_4 \le 2s_1, s_1+s_3$. Clearly, $2s_1, s_1+s_2, s_1+s_3 \le s_4+s_1-1$. Thus, $2s_1, s_1+s_2, s_1+s_3 \in I$. As before, by definition of I and J, it follows that $|I| \le 4$, as desired.

Suppose now that $s_3 = 2s_1$. Then $e(S) = 2 + |J| - |I| = 2 + t_1 + 2 - |I| = t_1 + 4 - |I|$, where $I = [2s_1 + t_4 + 1, 3s_1 + t_4] \cap \langle s_1, s_2 \rangle$. Clearly, $3s_1 \in I$. Using Proposition 2.8 and the fact that $t_2 > t_4$, one can check that $s_1 + s_2 \in I$. By definition of I and J, $|I| \leq 3$. Hence, $e(S) = t_1 + 4 - |I| \geq t_1 + 4 - 3 = t_1 + 1$. This concludes the proof in the subcase $s_2 = t_1 + t_2 + 2$ and $s_1 = t_1 + 2$.

Finally, we consider the subcase $s_1 = t_1 + 3$. Here, $t_2 \leq t_4 + 1$ by Proposition 2.10. As in the previous subcase, $s_2 < 2s_1$, whence $s_1, s_2 \in E(S)$ and either $s_3 \in E(S)$ or $s_3 = 2s_1$. Suppose first that $s_3 \in E(S)$. Then $e(S) = 3 + |J| - |I| = 3 + t_1 + 3 - |I| = t_1 + 6 - |I|$, where $I = [s_4, s_4 + s_1 - 1] \cap \langle s_1, s_2, s_3 \rangle$. It suffices to show $|I| \leq 5$. Note that $2s_1 \in I$, since $2s_1 \in S$ and $s_3 \notin \langle s_1, s_2 \rangle$ imply that $s_4 \leq 2s_1 \leq s_4 + s_1 - 1$. This leads to $I \subseteq \{2s_1, s_1 + s_2, s_1 + s_3, 2s_2, s_2 + s_3, 2s_3\}$ since J is an interval of length $s_1 - 1$. However, $2s_3 > s_4 + s_1 - 1$ as $t_2 + t_3 > t_3 \geq t_4$, whence $2s_3 \notin I$. Therefore, $I \subseteq \{2s_1, s_1 + s_2, s_1 + s_3, 2s_2, s_2 + s_3\}$, as desired. 14

Suppose now that $s_3 = 2s_1$. Then $e(S) = 2 + |J| - |I| = 2 + t_1 + 3 - |I| = t_1 + 5 - |I|$, where $I = [2s_1 + t_4 + 1, 3s_1 + t_4] \cap \langle s_1, s_2 \rangle$. It suffices to show that $|I| \leq 4$. Note that $I \subseteq \{s_1 + s_2, 2s_2, 3s_1, 2s_1 + s_2, s_1 + 2s_2, 3s_2\}$. Clearly, $s_1 + s_2 \in I$. This leads to $s_1 + 2s_2 = (s_1 + s_2) + s_2 \geq 2s_1 + t_4 + 1 + s_1 > 3s_1 + t_4$, whence $s_1 + 2s_2 \notin I$ and $3s_2 \notin I$. Therefore, $|I| \leq 4$ and so $e(S) \geq t_1 + 1$. This concludes the proof in the case $s_2 = t_1 + t_2 + 2$.

Arguments similar to those above may be used to show that $e(S) \ge t_1 + 1$ in the case $s_2 = t_1 + t_2 + 3$, except in the subcase $s_1 = t_1 + 3$, $s_3 \ne 2s_1$, and $2s_3 \le s_1 + s_4 - 1$. We now show that the Wilf Question can be answered affirmatively in this exceptional subcase.

In this subcase, $s_1, s_2, s_3 \in E(S)$. This leads to $e(S) = 3 + |J| - |I| = 3 + t_1 + 3 - |I| = t_1 + 6 - |I|$, where $I \subseteq \{2s_1, s_1 + s_2, s_1 + s_3, 2s_2, s_2 + s_3, 2s_3\}$. Thus, $e(S) = t_1 + 6 - |I| \ge t_1 + 6 - 6 = t_1$. Notice that $t_1 + 2 \ge t_2 + t_3 + t_4$ since $2s_1 \ge s_4$. By Proposition 2.3, we may assume that $t_1 \ge 3$. It follows that $g+1 = s_4 = t_1 + t_2 + t_3 + t_4 + 4 \le t_1 + t_1 + 2 + 4 \le 2t_1 + 6 \le 4t_1 \le 4e(S)$, thus completing the proof for the case n = 4. \Box

It is perhaps a matter of taste whether numerical semigroups S with "small" Frobenius number should be considered as "small" semigroups. In any event, we next show that such S affirmatively answer the Wilf Question.

Corollary 2.12. If S is a numerical semigroup such that $g(S) \leq 20$, then S affirmatively answers the Wilf Question.

Proof. Set n := n(S). Let T, k be as in the proof of Corollary 2.7. Suppose that g := g(S) is odd (resp., even). By the proof of Corollary 2.7, the assertion holds if $k \leq \frac{g+1}{4}$ (resp., $k \leq \frac{g-1}{4}$). As $k = n(T) - n = \frac{g+1}{2} - n$ (resp., $\frac{g}{2} - n$), the assertion holds if $n \geq \frac{g+1}{4}$ (resp., $n \geq \frac{g-1}{4}$). By Theorem 2.11, we may suppose that $n \geq 5$. Therefore, the assertion holds if $5 \geq \frac{g+1}{4}$ (resp., $5 \geq \frac{g-1}{4}$); that is, if $g \leq 20$. \Box

Remark 2.13. (a) Suppose that one had a sharpening of Corollary 2.6 in which there is an integer N such that the Wilf Question were answered affirmatively for all S such that $e(S) \leq N$. Now, let S be a numerical semigroup for which g := g(S) is odd (resp., even). By the proof of Corollary 2.7, S affirmatively answers the Wilf Question if

$$N+1 \ge 2 + \frac{4k}{g+1-2k} \left(\text{resp.}, N+1 \ge 2 + \frac{4k+2}{g-2k} \right)$$

where k is as in the proof of Corollary 2.7. Thus, S affirmatively answers the Wilf Question if

$$k \le \left(\frac{N-1}{N+1}\right)\frac{g+1}{2} \quad \left(\text{resp.}, k \le \left(\frac{N-1}{N+1}\right)\frac{g}{2} - \frac{1}{N+1}\right);$$

that is, if $n := n(S) = \frac{g+1}{2} - k$ (resp., $\frac{g}{2} - k$) satisfies $n \ge \frac{g+1}{N+1}$. (This agrees with the result in Corollary 2.7, where we used N = 3.) The above reasoning quantifies the sense in which sharpenings of Corollary 2.6 would lead to an affirmative resolution of the Wilf Question. To see how a sharpening of Theorem 2.11 would lead to affirmative answers for all S for which g(S) is correspondingly bounded above, we invite the reader to (re)work the proof of Corollary 2.12.

(b) Theorem 2.5 is best possible, in the sense that Backelin [5, pages 15-16] has shown that for each odd number $t \ge 7$, there exists a numerical semigroup S such that e(S) = 4and t(S) = t. In particular, t(S) + 1 > e(S). Thus if one is to proceed as suggested in (a) for N = 4, it would be essential to develop methods that are different from those used above.

References

- V. Barucci, D. E. Dobbs and M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Memoirs Amer. Math. Soc., 125/598 (1997).
- [2] A. Brauer, On a problem of partitions, Amer. J. Math., 64 (1942), 299–312.
- [3] A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math., 211 (1962), 215–220.
- [4] M. D'Anna, Type sequences of numerical semigroups, Semigroup Forum, 56 (1998), 1–31.
- [5] R. Fröberg, C. Gottlieb and R. Häggkvist, Semigroups, semigroup rings and analytically irreducible rings, Reports Dept. Math. Univ. Stockholm, no. 1 (1986).
- [6] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), no. 1, 63–83.
- [7] R. Gilmer, *Commutative semigroup rings*, Univ. Chicago Press, Chicago, 1984.
- [8] S. M. Johnson, A linear Diophantine problem, Canad. J. Math., 12 (1960), 390–398.
- [9] J. J. Sylvester, Mathematical questions with their solutions, Educational Times 41 (1884), 21.

[10] H. S. Wilf, A circle-of-lights algorithm for the "money-changing problem", Amer. Math. Monthly, 85 (1978), 562–565.

16