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Abstract. We define a family of codes called twisted Hermitian codes, which are
based on Hermitian codes and inspired by the twisted Reed-Solomon codes described
by Beelen, Puchinger, and Nielsen. We demonstrate that these new codes can have
high-dimensional Schur squares, and we identify a subfamily of twisted Hermitian codes
that achieves a Schur square dimension close to that of a random linear code. Twisted
Hermitian codes allow one to work over smaller alphabets than those based on Reed-
Solomon codes of similar lengths.

1. Introduction

Reed-Solomon and Hermitian codes are algebraic geometry codes based on the projec-
tive line and the Hermitian curve, respectively. To define an algebraic geometry code, let
X be a smooth, projective, absolutely irreducible curve over a finite field F. Let G and
D := P1 + · · · + Pn be divisors on X such that P1, . . . , Pn are distinct F-rational points
and the support of G does not contain any of the Pi. An algebraic geometric code is of
the form

C(D,G) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(G)} ⊆ Fn

where L(G) = {f : (f) ≥ −G}∪{0} and (f) denotes the divisior of the rational function
f on X. In this paper, we will modify this construction for Hermitian codes to yield a
new family of codes, called twisted Hermitian codes, with the goal of producing codes
from curves which have large Schur squares. Given a finite field F and a positive integer
n, the Schur product of vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn is

x ∗ y := (x1y1, . . . , xnyn) ∈ Fn.
The Schur product of two linear codes C1, C2 ⊆ Fn is

C1 ∗ C2 := 〈c1 ∗ c2 | c1 ∈ C1, c2 ∈ C2〉 ,
meaning C1 ∗ C2 is the set of all linear combinations of vectors of the form c1 ∗ c2 with
coefficients in F and c1 ∈ C1, c2 ∈ C2. The Schur square of a linear code C is C2 := C ∗ C.
Schur products were originally used to define error-locating pairs [24] and now arise in
several applications, such as secret sharing [5] and code-based cryptography [20]. A
challenge in coding theory is to specify explicit codes whose Schur square is large.

When either a Reed-Solomon code or a Hermitian code is squared, the result is typically
a code of the same type which limits its dimension. To obtain a code of the same
dimension whose square is much larger, twisted Reed-Solomon codes were defined by
Beelen, Puchinger, and Nielsen [2], drawing upon ideas from the twisted Gabidulin codes
of Sheekey [26]. These same ideas serve as inspiration for the recent work [19]. In this
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paper, we introduce twisted Hermitian codes which have an advantage over twisted Reed-
Solomon codes in that codes of similar lengths can be obtained over smaller alphabets.
Utilizing smaller alphabets can reduce the computational complexity of the finite field
arithmetic. For instance, to obtain a (twisted) Reed-Solomon code of length 4096, one
must use an alphabet of size 4096 whereas a (twisted) Hermitian code of the same length
only requires an alphabet size of 256; hence, one can work over the field with 256 elements
rather than the field of cardinality 4096. Twisted Hermitian codes can have a large Schur
square, as demonstrated herein, by making use of field extensions.

The motivation is to explicitly construct codes whose behavior, loosely speaking, mim-
ics that of random codes. While this is interesting in its own right, it is also prompted by
the McEliece cryptosystem, which is a code-based cryptosystem introduced by McEliece
in 1978 [21]. The public key in the McEliece cryptosystem is an obfuscation of the under-
lying linear code (chosen by McEliece to be a binary Goppa code), disguised to appear
as a random code, meaning one lacking any recognizable structure. The security of the
McEliece cryptosystem is derived from the NP-hardness of decoding a random linear
code, proven by Berlekamp, McEliece, and Tilborg in 1978 [3]. Though the McEliece
cryptosystem remains unbroken to this day (even with quantum algorithms), its reliance
on binary Goppa codes results in large key sizes that hinder practical implementation.
As a result, many variants of the McEliece cryptosystem have been introduced, with
other linear codes (including the algebraic geometry codes [15]) substituted within. Ad-
ditional structure can lead to a reduction in key size but often at the cost of introducing
vulnerabilities that allow an attacker to extract identifying characteristics of the under-
lying code from the public-key matrix; see, for instance, the recent work by Couvreur,
Márquez-Corbella, and Pellikaan on algebraic geometry codes [10] as well as that of
Márquez-Corbella, Mart́ınez-Moro and Pellikaan [20]. Once the attacker can identify the
underlying code, the fundamental assumption that secures the McEliece cryptosystem is
no longer valid. The twisted construction presents a challenge to the attacker in that its
square is not readily identifiable due to its large dimension. However, Lavauzelle and Ren-
ner recently demonstrated that for many parameter choices, twisted Reed-Solomon codes
have a subfield subcode which is vulnerable to attack [17]. We discuss the possibility of
such an attack for twisted Hermitian codes, pointing out a few key differences.

This paper is organized as follows. This section concludes with a brief guide to nota-
tion. Necessary background is covered in Section 2. In Section 3, we define the twisted
Hermitian codes and explore their properties. In Section 4, we consider the McEliece
cryptosytem employing certain families of twisted Hermitian codes. Section 4 considers a
potential attack by casting the ideas of Lavauzelle and Renner in the Hermitian setting.
A conclusion may be found in Section 5.

Notation. Given a vector space V over a field F and B := {v1, . . . , vt} ⊆ V , we write
〈v1, . . . , vt〉F :=

{∑t
i=1 aivi : ai ∈ F

}
to denote the span of the set B; at times, we write

〈B〉 and when it is clear from the context, we omit the subscript F and simply write
〈v1, . . . , vt〉. The set of all m× n matrices with entries from a field F is written as Fm×n,
and Im ∈ Fm×m denotes the m×m identity matrix over F.

The finite field with q elements is denoted by Fq, where q is a power of a prime; N
denotes the set of nonnegative integers; and Z+ denotes the set of positive integers. An
[n, k, d] code C over Fq is an Fq-subspace of Fnq with k := dimFq C and minimum distance
d := min {wt(c) : c ∈ C \ {0}}. Here, wt(w) =| {i : wi 6= 0} | denotes the Hamming
weight of a word w ∈ Fnq . Elements of C are called codewords. An [n, k, d] code is MDS,
or maximum distance separable, if and only if d = n − k + 1. We say that a code is an
[n, k] code if its length is n and its dimension is k. A generator matrix for an [n, k] code
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C over a field Fq is any matrix M ∈ Fk×nq whose rows form a basis for C. A generator
matrix M = [Ik | A] is said to be in systematic form.

2. Preliminaries

We begin this section with a review of algebraic geometry codes and the necessary
details on Hermitian codes followed by a discussion of the Schur product. There are a
number of excellent references such as [14], [27], [28], or [29] which provide more compre-
hensive surveys.

Recall that an algebraic geometry code is of the form C(D,G) as described in Section
1. If degG < n, then C(D,G) is a [n, dimL(G),≥ n − degG] code. At times, it will
be useful to consider nested codes. If G ≤ G′, where G′ is another divisor on X whose
support does not contain any of the Pi, then C(D,G) ⊆ C(D,G′). See [7] for more
on nested Hermitian codes. In this paper, we restrict our attention to the case where
G = αP with α ∈ Z+, P an F-rational point on X, and D is the sum of the remaining
F-rational points; such codes are referred to as one-point codes in the literature and will
be denoted here by C(G).

Reed-Solomon codes are obtained from the construction above by taking X = P1(Fq),
the projective line; k < n ≤ q; G = kP where P denotes the unique point at infinity on
X; and D to be the sum of all other rational points on X. It is well known that C(kP ) is
an [n, k, n− k + 1] code; that is, C(kP ) is MDS. Notice that the alphabet size, meaning
the cardinality of the field Fq, is at least the length of the Reed-Solomon code; thus, to
define a Reed-Solomon code of length n requires that | Fq |≥ n.

Beyond Reed-Solomon codes, the best understood algebraic geometry codes are Her-
mitian codes. For a prime power q, let Xq denote the smooth, projective curve given by
yq + y = xq+1 over the finite field Fq2 ; Xq is known as the Hermitian curve. The genus of

Xq is g = q(q−1)
2

, and there are q3 affine Fq2-rational points of Xq in the projective plane,
meaning points the form (a : b : 1) ∈ P2 (Fq2) with bq + b = aq+1, and a unique point at
infinity P∞ = (0 : 1 : 0). Let n := q3 and P1, . . . , Pn denote the affine rational points of
Xq. Given a vector space V of functions on Xq which do not have poles at any of the Pi,
1 ≤ i ≤ n, a code can be defined by taking the image of the evaluation map

ev : V → Fnq2
f 7→ (f(P1), . . . , f(Pn)) .

For α ∈ N with 2g < α < n, we consider the space of functions

L(αP∞) = 〈xiyj : i, j ∈ N, j ≤ q − 1, δ(xiyj) ≤ α〉
where δ(xiyj) := iq + j(q + 1) is the pole order of xiyj at P∞. The Hermitian code
determined by α is the algebraic geometry code C(αP∞) = ev (L (αP∞)). Notice that
C(αP∞) is a code of length q3, dimension at least α+ 1− g, with equality achieved when
α ≥ 2g + 1, and minimum distance as given in [31].

Schur squares of algebraic geometry codes have been studied in [8], [10]. Given a
Hermitian code C(αP∞),

C(αP∞)2 ⊆ C(2αP∞),

and equality is achieved when α ≥ 2g+ 1. In this case, C(αP∞) has dimension α+ 1− g
and

dimC(αP∞)2 = dimC(2αP∞) = 2α + 1− g <<

(
(α + 1− g) + 1

2

)
; (1)

see also [4], [9] for details. These ideas may be applied to more general algebraic geometry
codes, meaning those constructed via evaluation maps analagous to ev using curves other
than Xq [25, Prop. 2].
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We seek a family of codes whose behavior under the Schur operation is indistinguishable
from that of random codes. A guiding principle is the following result obtained by
Cascudo, Cramer, Mirandola, and Zémor.

Proposition 1. [5, Theorem 2.3] Let n : N → N be such that n(k) ≥
(
k+1
2

)
. Then for

some positive real number δ and k large enough,

Pr

[
dim C2 =

(
k + 1

2

)]
≥ 1− 2−δ(n(k)−(k+1

2 )) (2)

where C is chosen uniformly at random from the family of all [n(k), k] codes over Fq whose
generator matrices are in systematic form.

In keeping with Proposition 1, given a code C of dimension k, it is desirable for C2 to
have dimension close to

(
k+1
2

)
. This serves as motivation to consider twisted Hermitian

codes which are defined in the next section.

3. Twisted Hermitian Codes

In [2], Beelen, Puchinger, and Rosenkilde introduce a new code construction based on
generalized Reed-Solomon codes; the resulting codes can have Schur squares with larger
dimensions than the generalized Reed-Solomon codes themselves. The study of these new
codes is carried on in [1] by Beelen, Bossert, Puchinger, and Rosenkilde. In this section,
we adapt the construction to Hermitian codes, determine their basic properties, and apply
new tools to address subtleties that arise in considering their squares. Decoding is also
discussed.

3.1. Properties of twisted Hermitian codes. We begin by defining the twisted Her-
mitian codes. To do so, let

B(αP∞) :=
{
xiyj : i, j ∈ N, j ≤ q − 1, δ(xiyj) ≤ α

}
,

which is a basis of L(αP∞) on the Hermitian curve Xq : yq + y = xq+1.

Definition 2. Consider α = uq + v(q + 1) ≥ q2 − q − 1 where u, v ∈ N. Let ` ∈ Z+,

t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
be a vector whose coordinates are ` distinct ordered pairs of nonzero integers, and

h = ((a1, b1), . . . , (a`, b`)) ∈
(
Z2
)`

be a vector whose coordinates are ` distinct ordered pairs of integers satisfying

akq + bk(q + 1) ≤ uq + v(q + 1) < (u+ rk)q + (v + sk)(q + 1)

for k = 1, . . . , `. Let η = (η1, . . . , η`) ∈ (Fq2 \ {0})`. The set of (t,h,η)-twisted bivariate
polynomials is

Bt,h,η(αP∞) =

(
B(αP∞) \

⋃̀
k=1

{
xakybk

})
∪
⋃̀
k=1

{
xakybk + ηkx

u+rkyv+sk
}
.

Let Lt,h,η(αP∞) = 〈Bt,h,η(αP∞)〉. The twisted Hermitian code Ct,h,η(αP∞) is

Ct,h,η(αP∞) := ev (Lt,h,η) ⊆ Fnq2 .
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Remark 3. It is immediate from the construction that Ct,h,η(αP∞) has the same length
as the code C(αP∞). Furthermore,

dimCt,h,η(αP∞) = dimLt,h,η(αP∞) = |Bt,h,η(αP∞)| = |B(αP∞)| = dimC(αP∞).

In addition, a generator matrix for the twisted Hermitian code is

Gt,h,η(αP∞) =


ev(b1)
ev(b2)

...
ev(bk)


where Bt,h,η(αP∞) = 〈b1, b2, . . . , bk〉 .

We sometimes write Cn,k
t,h,η(αP∞) to emphasize the length and dimension of a twisted

Hermitian code.

Example 4. Let q = 2 and α = 1(q) + 1(q + 1) = 5. The Hermitian curve X2 is given
by y2 + y = x3, and we consider X2 over a finite field of order q2 = 4, which may be
described as F4 = {0, 1, a, a+ 1} ∼= Z2[x]/〈x2+x+1〉. Note that

B(5P∞) = {1, x, y, x2, xy}.
The q3 + 1 = 8 rational points on X2 other than P∞ are enumerated below:

P1 = (0 : 0 : 1)
P2 = (0 : 1 : 1)
P3 = (1 : a : 1)
P4 = (1 : a+ 1 : 1)
P5 = (a : a : 1)
P6 = (a : a+ 1 : 1)
P7 = (a+ 1 : a : 1)
P8 = (a+ 1 : a+ 1 : 1).

Choose ` = 2 and the following vectors:

t = ((1, 0), (2, 0)) ,

h = ((2, 0), (1, 1)) ,

η = (1, a) .

Then
2⋃

k=1

{xakybk} = {x2, xy},

and
2⋃

k=1

{xakybk + ηkx
u+rkyv+sk} = {x2 + x2y, xy + ax3y}

so that
Bt,h,η(5P∞) = {1, x, y, x2 + x2y, xy + ax3y}.

The resulting space of functions is

Lt,h,η(5P∞) = 〈Bt,h,η(5P∞)〉,
and the twisted Hermitian code is

Ct,h,η(5P∞) = ev (Lt,h,η(5P∞)) .
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A generator matrix Gt,h,η(5P∞) for the twisted Hermitian code may be obtained by eval-
uating each element of Bt,h,η(5P∞) at each of the Pi, 1 ≤ i ≤ 8 to obtain

Gt,h,η(5P∞) =


P1 P2 P3 P4 P5 P6 P7 P8

1 1 1 1 1 1 1 1 1
x 0 0 1 1 a a a+ 1 a+ 1
y 0 1 a a+ 1 a a+ 1 a a+ 1

x2+x2y 0 0 a+ 1 a a 1 1 a+ 1
xy+ax3y 0 0 1 a 0 0 a a+ 1

.
Because twisted Hermitian codes share some similarities with Hermitian codes (such

as length and dimension per Remark 3), it is reasonable to ask how the codes themselves
compare and more pointedly if they are essentially the same codes. With this in mind,
we next demonstrate that the twisted Hermitian codes are not Hermitian codes.

To reveal the distinction between twisted Hermitian codes and Hermitian codes, we
determine the largest subcode of Ct,h,η(αP∞) which is a Hermitian code as well as its
smallest supercode which is a Hermitian code. Recall that t = ((r1, s1), . . . , (r`, s`)) ∈(
(Z \ {0})2

)`
and h = ((a1, b1), . . . , (a`, b`)) ∈ (Z2)

`
. Let

α′ = min {aiq + bi(q + 1) : i = 1, . . . , `} − 1

and
α′′ = α + max {riq + si(q + 1) : i = 1, . . . , `} .

Then
L(α′P∞) ⊆ Lt,h,η(αP∞) ⊆ L(α′′P∞)

follows from the definition of the twisted code by considering basis elements of the space
of functions that are used to define the codewords. Therefore,

C(α′P∞) ⊆ Ct,h,η(αP∞) ⊆ C(α′′P∞).

Notice that

dimC(α′P∞) =|
{
xiyj ∈ B(αP∞) | δ(xiyj) < min {aiq + bi(q + 1) : i = 1, . . . , `}

}
|< k,

since akq + bk(q + 1) ≤ uq + v(q + 1) for all 1 ≤ k ≤ l and the (ak, bk) are distinct. In
addition,

dimC(α′′P∞) = (α + max {rkq + sk(q + 1) | (rk, sk) ∈ t}) + 1− g ≥ k + q.

Hence, we conclude that twisted Hermitian codes are not Hermitian codes. These ob-
servations are recorded in the next result, followed by their impact on bounding the
minimum distance of the twisted Hermitian code.

Proposition 5. Consider a twisted Hermitian code Ct,h,η(αP∞) constructed as in Def-

inition 2 with t = ((r1, s1), . . . , (r`, s`)) ∈
(
(Z \ {0})2

)`
and h = ((a1, b1), . . . , (a`, b`)) ∈

(Z2)
`
. Then

C(α′P∞) $ Ct,h,η(αP∞) $ C(α′′P∞)

where
α′ = min {aiq + bi(q + 1) : i = 1, . . . , `} − 1

and
α′′ = α + max {riq + si(q + 1) : i = 1, . . . , `} .



TWISTED HERMITIAN CODES 7

According to Proposition 5, the minimum distance d of Cn,k
t,h,η(αP∞) satisfies

n− α′′ ≤ d (C(α′′P∞)) ≤ d ≤ d (C(α′P∞)) .

Both d (C(α′′P∞)) and d (C(α′P∞)) are known [31], being minimum distances of Hermit-
ian codes. In the case that 2g − 2 < α′ and α′′ < n, we have that

n− α′′ ≤ d (C(α′′P∞)) ≤ n− α′.
Thus, the twisted code Cn,k

t,h,η(αP∞) is capable of correcting at least t =
⌊
n−α′′−1

2

⌋
errors.

We can use such a value of t for implementation within the McEliece cryptosystem (as
detailed in Section 4), even though the code may be capable of correcting more errors.

Determining tighter bounds on the minimum distance of twisted Hermitian codes is
an interesting but nontrivial problem. For instance, in the (perhaps simpler) Reed-
Solomon situation, determining weights of codewords of twisted codes can amount to
considering roots of sparse polynomials, which is a problem of current interest; see, for
instance, [6], [16]. Another interesting question to consider is if the minimum distance of
a twisted Hermitian code can attain that of a Hermitian code, especially given that there
exist twisted Reed-Solomon codes which are MDS [2], [18].

Example 6. Consider the twisted Hermitian code Ct,h,η(12P∞) with q = 3, α = 12,

t = ((1, 0), (0, 1)) ,
h = ((1, 2), (0, 3)) ,

and η = (η1, η2), where η1, η2 ∈ F9 satisfy the conditions of Definition 2. By Proposition
5,

α′′ = 12 + max{riq + si(q + 1) : i = 1, 2} = 16

and
α′ = min{aiq + bi(q + 1) : i = 1, 2} − 1 = 10

from which it follows that

C(10P∞) $ Ct,h,η(12P∞) $ C(16P∞).

According to [27, Theorem 5], d (C(10P∞)) = 17 and d (C(16P∞)) = 11 so that

11 ≤ d (Ct,h,η(12P∞)) ≤ 17.

3.2. Squares of twisted Hermitian codes. Recall from (1) that a Hermitian code
C(αP∞) has a Schur square with relatively small dimension: dimC(αP∞)2 ≤ 2α+ 1− g.

In this section, we show that the twisted Hermitian code Cn,k
t,h,η(αP∞) may have a Schur

square with much larger dimension in comparison to the square of the code itself.
Because the codes of interest are obtained by evaluating sets of functions, it is useful

to consider the Schur product of sets. Given B,B′ ⊆ Fq[x, y], let

B ∗B′ := {b · b′ | b ∈ B,b′ ∈ B′} ,
and

B 2 := B ∗B.

Lemma 7. Let M denote the set of bivariate monomials

M :=
{
xiyj : i, j ∈ N, 0 ≤ i ≤ q2 − 1, 0 ≤ j ≤ q − 1

}
⊆ Fq2 [x, y].

Then the evaluation map ev : 〈M 〉 → Fnq2 is an injective mapping.
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Proof. Let the domain of ev be restricted to 〈M 〉 as described above. It suffices to
show that ker(ev) = {0}. Assume to the contrary that 0 6= p(x, y) ∈ 〈M 〉 such that
ev(p(x, y)) = 0 ∈ Fnq2 . Then every rational affine point (x : y : 1) of the Hermitian

curve Xq also satisfies p(x, y) = 0. Fix a ∈ Fq2 . Then there are then q distinct bi ∈ Fq2
such that (a : bi : 1) is a rational point on the Hermitian curve Xq. Then the univariate
polynomial p(a, y) has q distinct zeros in Fq2 , despite the fact that deg(p(a, y)) ≤ q − 1.
Hence p(a, y) ≡ 0 for all a ∈ Fq2 . On the other hand,

p(x, y) =

q−1∑
j=0

q2−1∑
i=0

aijx
i

 yj =

q−1∑
j=0

qj(x)yj

where qj(x) =
∑q2−1

i=0 aijx
i and qj(a) = 0 for all a ∈ Fq2 . This implies the univariate

polynomial qj(x) has q2 zeros in Fnq2 , despite the fact that deg(qj) ≤ q2 − 1. As a result,

p(x, y) ≡ 0, which is a contradiction. �

We can use properties of the finite field to define a reduction scheme for bivariate
polynomials.

Definition 8. Suppose i, j ∈ N are such that 0 ≤ i ≤ 2(q2 − 1) and 0 ≤ j ≤ q − 1. We
define

xiyj :=

{
xiyj if 0 ≤ i ≤ q2 − 1

xi−(q
2−1)yj otherwise.

For f(x, y) =
∑
ckx

ikyjk ∈ Fq2 [x, y], we define

f :=
∑

ckxikyjk . (3)

It follows immediately that for f =
∑
ckx

ikyjk , g =
∑
dhx

ihyjh ∈ L(αP∞),

ev(f · g) = ev(f · g).

Given f(x, y) =
∑n

k=1 ckx
ikyjk ∈ Fq2 [x, y],

δ(f) := max {ikq + jk(q + 1) : k = 1, . . . , n} . (4)

If B = {f1, . . . , fm} ⊆ Fq2 [x, y], then

δ (B) := {δ (fk) : k = 1, . . . ,m} (5)

We can now establish a lower bound on dimCt,h,η(αP∞)2.

Lemma 9. Let Ct,h,η(αP∞) be a twisted Hermitian code. Then

dimCt,h,η(αP∞)2 ≥| D |
where D := {δ(f · g) | f, g ∈ L(αP∞)}.

Lemma 9 suggests that dimCt,h,η(αP∞)2 can be made large by choosing t,h,η to
maximize the size of D. Before applying it, we first establish a few relevant tools.

Given M as in Lemma 7, set

M2 :=

{
xiyj ∈M : δ(xiyj) ≤

⌈
max δ (M )

2

⌉}
.

Observe that for any prime power q,⌈
max δ (M )

2

⌉
=

⌈
(q2 − 1)q + (q − 1)(q + 1)

2

⌉
≥ 2g + 1.

It follows that
M ⊆M 2

2 .
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We make use of this observation in the following lemma.

Lemma 10. Let A ⊆ F[x, y] be a set of elements with distinct pole orders such that
δ (A) ⊆ δ (M2). Then | δ (A2) \ δ (M ) |≤ g.

Proof. Since M ⊆M 2
2 , δ (M ) ⊆ δ(M 2). Observe that

| δ(M 2
2 ) \ δ(M ) |=| δ

(
M 2

2

)
| − | δ (M ) |=

[
(q3 + q2 − q − 1) + 1− g

]
− q3 = g.

Since δ(A2) ⊆ δ(M 2
2 ), it follows that | (δ (A2) \ δ (M )) |≤ g. �

Next, we employ a few basic results from additive number theory; specifically, we make
use of the notion of a Sidon set.

Definition 11. A set A ⊆ N is a finite Sidon set provided it is finite and ∀a, b, c, d ∈ A,
a+ b = c+ d if and only if (a, b) = (c, d) or (a, b) = (d, c).

Erdös and Turan show in [11] that every subset of a Sidon set is itself a Sidon set and
that every nonempty subset of N contains a Sidon set. For finite and nonempty A ⊆ N,
let S[A] denote the largest subset of A that is a Sidon set. Gowers shows in [12] that

| S[A] |≤ 2
√
| A |.

We now introduce a family of twisted Hermitian codes with a large Schur square di-
mension. It will be useful to consider the map

φq : N → Z2

w 7→ ((q + 1)bw
q
c − w,w − qbw

q
c).

Theorem 12. For a given prime power q0, let α ∈ δ (M ) and

P :=
{
δ(xiyj) : xiyj ∈M , δ(xiyj) ≤ α

}
T :=

{
δ(xiyj) : xiyj ∈M , δ(xiyj) > α

}
= {t1, . . . , tn}

H := P \ S[P ] = {h1, . . . , h`}
satisfying ` :=| H |≤| T |. Let

h = (φ(h1), . . . , φ(h`)) ;

t = (φ(t1)− (u, v), . . . , φ(t`)− (u, v)) ;

s1, . . . , s` be prime powers such that

Fq20 = Fs0 $ Fs1 $ · · · $ Fs` = Fq2 ; (6)

and η = (η1, . . . , η`) be such that ηi ∈ Fsi \ Fsi−1
for i = 1, . . . , `. Then

dimCt,h,η(αP∞)2 ≥
(
k + 1

2

)
− g

where k := dimCt,h,η(αP∞).

Proof. Let B = {xiyj : δ(xiyj) ∈ S[P ]} and Bt =
{
xakybk + ηkx

u+rkyv+sk : k = 1, . . . , `
}

.

Then Ct,h,η(αP∞) = ev〈B ∪ Bt〉 and Ct,h,η(αP∞)2 = ev〈(B ∪Bt)
2〉. It is technical but

easy to show that (B ∪Bt)
2 is a linearly independent set. Then

| (B ∪Bt)
2 | =

(
| B | + | Bt | +1

2

)
=

(
k + 1

2

)
.
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Furthermore, since δ (B ∪Bt) ⊆ δ (M2), Lemma 10 gives

| δ ((B ∪Bt))
2 \ δ (M ) |≤ g

which implies that at most g elements of δ (B ∪Bt)
2 are not in M . Then at least(

k+1
2

)
− g elements of δ

(
(B ∪Bt)

2) lie in M ; i.e., dim ev〈(B ∪Bt)
2〉 ≥

(
k+1
2

)
− g. Thus,

dimCt,h,η(αP∞)2 ≥
(
k+1
2

)
− g. �

This particular subfamily achieves a large Schur square dimension by first maximizing
the size of D as seen in Theorem 9 and then forcing linear independence by choosing
coefficients according to the nested field structure shown in (6).

3.3. Decoding twisted Hermitian codes. Tailored decoding algorithms for twisted
Hermitian codes can be designed by borrowing ideas from those for twisted Reed-Solomon

codes given in [2]. For a twisted Hermitian code Ct,h,η(αP∞) with t ∈ (Z2)
`

and re-
ceived message m ∈ Fnq2 , ` coefficients γ1, ..., γ` ∈ Fq2 may be guessed (or selected at

random). A decoding algorithm for a Hermitian code may then be applied to m −
ev
(∑`

i=1 ηiγai,bix
u+riyv+si

)
as if it was a received word. This allows application of any

Hermitian decoder. These rounds of guessing will only be successful if γi = aai,bi , for

i = 1, ..., `. Because the alphabet size is q2, this may require up to q2
`

rounds of Hermit-
ian decoding. As with twisted Reed-Solomon codes, these rounds might produce twisted
Hermitian polynomials where γi 6= aai,bi . The polynomials that are produced with these
characteristics will be discarded as they do not yield valid codewords.

The efficiency of decoding twisted Hermitian codes may be considered by taking the
cost of the Hermitian decoder used and multiplying it by the number of guessing rounds.
Two methods of decoding Hermitian codes that might be utilized are those that have
sub-quadratic efficiency, which is the best complexity known for decoding Hermitian
codes. The Guruswami-Sudan Algorithm [13] has a Hermitian decoding efficiency of
O(n2+ω/3sωm), where m and s are the multiplicity and list size parameters respec-
tively and ω ≤ 3 is the exponent of matrix multiplication. This means that decoding
twisted Hermitian codes using the Guruswami-Sudan Algorithm would have efficiency
O(q2

`
n2+ω/3sωm). Power decoding also has a similar decoding efficiency for Hermitian

codes, which is O(n2+ω/3pω), where p is the powering parameter and ω is as defined
before [22]. This means that the efficiency of decoding twisted Hermitian codes using

power decoding is O(q2
`
n2+ω/3pω). Determining more efficient and specialized decoding

methods for twisted algebraic geometry codes remains a topic of study.

4. Applications of twisted Hermitian codes to the McEliece
cryptosystem

In this section, we consider the potential use of twisted Hermitian codes in a code-based
cryptosystem. First, we abstract the key elements of the McEliece cryptosystem for use
with an arbitrary linear code (in place of the Goppa code in [21]). Then we consider the
role of squares in attacking the resulting system, noting how the twisted codes avoid direct
distinguisher attack. This section concludes with considerations prompted by the recent
attack of Lavauzelle and Renner [17] on a twisted Reed-Solomon code-based cryptosystem.

LetG be a k×n generator matrix for an [n, k, d] linear code C over a finite field F capable
of correcting at least t errors. The public key is (GPUB, t) := SGP , where S ∈ Fk×k is
nonsingular and P ∈ Fn×n is a permutation matrix. The private key is (S, P,DC), where
DC is an efficient decoding algorithm of C. To transmit a message to a receiver Alice,
Bob encodes the message m ∈ Fk as mGPUB + e, where e ∈ F1×n has weight wt(e) ≤ t.
Alice receives a transmission in the form x := mSGP + e and initiates deciphering by
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left-multiplying x by P−1 to yield mSG+eP−1. Alice then applies the decoding algorithm
DC to retrieve mS and left-multiplies by S−1 to recover m. To maintain security, the
underlying code C must not be revealed.

4.1. Role of squares in the McEliece cryptosystem. The Schur square distinguisher
is an attack applied to the McEliece cryptosystem implemented with Reed-Solomon codes
in [9]. Though the attacker does not know the linear code C underlying GPUB, the
distinguisher may allow the attacker to know dim C2. The low-dimensional squares of
Reed-Solomon and Hermitian codes imply that dim C2 can be used to distinguish C from
a random linear code. This is demonstrated in [8] where generalized Reed-Solomon codes
are considered; Schur products are used to identify C2 within the family from which it is
drawn; and the Sidelnikov and Shestakov algorithm may then be used to identify C. See
also [30] for other approaches involving generalized Reed-Solomon codes. Since dim C2
can be an identifying characteristic of the family of codes from which C is drawn, the
attacker may then use a family-specific structural attack on intercepted messages. Both
twisted Reed-Solomon and twisted Hermitian codes may avoid a direct application of this
attack if constructed to have large dimensional squares.

Based on the attacks described above, it is desirable to implement this code-based
cryptosystem with a family of codes whose Schur squares are indistinguishable from
those of random codes. With this in mind twisted Reed-Solomon codes were introduced
in [2] and can be defined as follows.

Definition 13. Let α1, . . . , αn ∈ Fq be pairwise distinct field elements, and fix 1 ≤ k ≤ n,
` ≥ 1. Let h ∈ {0, · · · , k − 1}`, t ∈ {1, . . . , n − k}` such that η ∈ (Fq\{0})`. A twisted
Reed-Solomon code of length n and dimension k is given by:

Ct,h,η(k) =

{
(f(α1), · · · , f(αn)) : f ∈

{
k−1∑
i=0

aix
i +
∑̀
j=1

ηjahjx
k−1+tj : ai ∈ Fq

}}
.

Consider the evaluation map

evα : Fq[x] → Fnq
f 7→ (f(α1), · · · , f(αn)) .

Let q0 be a prime, and q = q` = q2
`

0 . Lavazuelle and Renner showed in [17] that the
subfield subcode Csub = Ct,h,η(k) ∩ Fnq0 of Ct,h,η(k) is given by

Csub =
〈
evα(xi) : i ∈ {0, 1, · · · , k − 1}\{h1, h2, · · · , h`}

〉
Fq0

.

Given that Csub is not a Reed-Solomon code, the Sidelnikov-Shestakov attack cannot be
directly applied. However, for ` ≤ 1

2
(
√
n − 3) the Schur square C2

sub is a Reed-Solomon
code of length n and dimension 2k − 1. This idea forms the basis for an efficient key-
recovery attack on the code-based cryptosystem employing twisted Reed Solomon codes.

The similarity in construction of twisted Hermitian codes and twisted Reed-Solomon
codes suggests a possible attack on the cryptosystem based on the twisted Hermitian
codes. In the remaining part of this section, we consider the possible components of such
an attack. Recall the code Ct,h,η(αP∞) over Fq2 constructed in Theorem 12 where

Fq20 = Fs0 $ Fs1 $ · · · $ Fs` = Fq2 ,
and consider the subfield subcode

Ct,h,η(αP∞) ∩
(
F2
q0

)n
where h = ((a1, b1), . . . , (a`, b`)) ∈ (Z2)

`
.
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Lemma 14. Let f ∈ 〈M 〉Fq2 ⊆ Fq2 [x, y] and P1, . . . , Pn ∈ Xq20(Fq20). Then ev(f) ∈ Fn
q20

if

and only if f ∈ 〈M0〉F
q20

where M0 := {xiyj : i, j ∈ N, 0 ≤ i ≤ q20 − 1, 0 ≤ j ≤ q0 − 1} .

Proof. Suppose f ∈ 〈M0〉F
q20

and P1, . . . , Pn ∈ Xq20(Fq20). Then it is clear that ev(f) ∈ Fn
q20

.

Conversely, consider c := ev(f) ∈ Fn
q20

where f ∈ 〈M 〉Fq2 ⊆ Fq2 [x, y]. According to [23,

Lemma 6], there exists p =
∑
α∈F

q20

∏
α′∈F

q20
\{α}

x− α′

α− α′

∑
β∈Bα

γα,β
∏

β′∈Bα\{β}

y − β′

β − β′

 such that

ev(p) = c. Notice that p ∈ 〈M0〉F
q20

⊆ 〈M 〉Fq2 . Since ev : 〈M 〉Fq2 → Fnq2 is an injective

map (as shown in Lemma 7) and c = ev(p) = ev(f), it follows that f = p ∈ 〈M0〉F
q20

. �

Proposition 15. Given a twisted Hermitian code C = Ct,h,η(αP∞) and P1, . . . , Pn ∈
Xq20(Fq20),

C ∩ Fnq20 =

ev(f) : f ∈

〈
B(αP∞) \

⋃̀
k=1

{
xakybk

}〉
F
q20

 .

Proof. Consider ev(f) where f ∈
〈
B(αP∞) \

⋃`
k=1

{
xakybk

}〉
F
q20

. Then ev(f) ∈ C ∩ Fn
q20

as each Pi ∈ Xq0(Fq20). On the other hand, suppose that ev(f) ∈ C ∩ Fn
q20

. Then Lemma

14 applies so that f ∈
〈
B(αP∞) \

⋃`
k=1

{
xakybk

}〉
F
q20

. �

This result prompts the conjecture that the Schur square of the subfield subcode of
a twisted Hermitian code in Proposition 15 is a Hermitian code. This is related to [10,
Conjecture 19]. Positive resolution of these conjectures would lay the groundwork for an
attack on a twisted Hermitian code-based cryptosystem.

5. Conclusion

In this paper, we present a new family of codes, called twisted Hermitian codes, whose
construction is based on Hermitian codes. The length and dimension of the new codes is
the same as the Hermitian codes, but these codes are not Hermitian codes. These new
codes can have Schur squares larger than those of Hermitian codes. In particular, we
identify a subfamily of the new codes that have Schur squares of dimension close to that
expected of a random linear code. Codes of this subfamily are resistant to Schur square
distinguishing when applied directly. However, the associated code-based cryptosystems
may exhibit potential vulnerabilities related to square distinguisher attacks on particular
subfield subcodes.
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