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Abstract. In this paper, we consider the norm-trace curves which are
r— r— -1

defined by the equation y? ! +y? : 4ty = & =1 over IFy~ where

q is a power of a prime number and r > 2 is an integer. We determine

the Weierstrass semigroup of the triple of points (Poo, Poo, Po») on this

curve.

1 Introduction

Let X be a smooth projective absolutely irreducible curve of genus g > 1 over
a finite field IF, and let Pi,..., P, be m distinct IF-rational points on X. The
Weierstrass semigroup H (P, ..., Py,) of the m-tuple (Py, ..., P,) is defined by

H(P,...,P,) = {(oq,...,oz,.) eIN": 3f e F(X) with (f)so :ZaiPl},
i=1

where IF(X) denotes the field of rational functions on X, (f)s denotes the
divisor of poles of a rational function f, and IN denotes the set of nonnegative
integers. The Weierstrass gap set G(Py, ..., Py) of the m-tuple (P,..., Py,) is
defined by

G(P1y...,Pp)=IN"\H(Py,...Pp).

If m = 1, then H(Py) is the classically studied Weierstrass semigroup and G(P;)
is the classically studied Weierstrass gap sequence (or gap set). It is well known
that |G(Py)| = g, the genus of X, regardless of the choice of point P;. The gap
set G(Py, Py) was introduced in [1] where the authors note that the cardinality
|G (P1, Py) | may depend on the choice of points P; and P,. The study of the
Weierstrass gap set of a pair was taken up by Kim [9] and later by Homma and
Kim [7]. This was soon followed by the works of Ballico and Kim [2] and Ishii [8].
As suggested by Goppa and verified by Garcia, Kim, and Lax for the m = 1
case [5], knowledge of Weierstrass semigroups of m-tuples of points provides
insight into the parameters of associated algebraic geometry codes. This theme
has been explored by a number of authors, including the present [14], [10] as
well as Carvalho and Torres [4]. For a recent survey of such results, see [3].



In this paper, we determine a minimal generating set for the }Neierstgass
semigroup of the triple (Pso, Poo, Poy) on the norm-trace curve y9 449 +

ety = & T over IF -, where r > 2. Notice that when r = 2, the Hermitian
curve is obtained. Hence, these results may be viewed as a generalization of
some of those in [13] where the Weierstrass semigroup of an m-tuple of collinear
points on the Hermitian curve was obtained. This paper may also be seen as a
sequel to that of Munuera, Tizziotti, and Torres [15] where the semigroup of the
pair (Pso, Pyo) on the norm-trace curve is found and then applied to two-point
algebraic geometry codes. In fact, we rely heavily on the results contained in
both [13] and [15].

This paper is organized as follows. Section 2 provides a background on the
Weierstrass semigroup of an m-tuple of points. Section 3 consists of necessary
background on the norm-trace curve. The main result of this paper is contained
in Section 4.

2 Weierstrass semigroups of m-tuples

In this section, we describe tools useful in the study of Weierstrass semigroups
of m~tuples of points. Several generalize those used to study the gap set of a pair
of points [9], [7].

We begin with a brief review of notation. The divisor of a rational function
f will be denoted by (f), and Z" denotes the set of positive integers. Given
ai,...,ar € Z", the (numerical) semigroup generated by a1, ...,ay is

k
(aty...,ax) = {Zciai t¢ € ]N}.
i=1

As usual, given v € ZZ" where r € Z ™", the i*" coordinate of v is denoted by v;.
Define a partial order < on Z" by (n1,...,n,.) < (p1,...,p.) if and only if
n; < p; for all i, 1 < i <r. When comparing elements of Z", we will always do
so with respect to the partial order <.
In [13] it is shown that if 1 < m < |IF|, then there exists a minimal subset
r'(Py,...,P,) CH(P,...,P,) such that

H(Pl,...,Pm) = {lub{ul,...,ur} cIN™ tUup,...,Up € F(Pl,...,Pm)}
where
lub{uy,...,um} = (max{uz,,...,4m, },...,max{uy_,..., 4y, }) € N™

is least upper bound of the vectors uy,...,uy € N™. In fact, I' (Py,..., Py)
may be defined as follows.

Definition 1. Given m IF-rational points Py, ..., P, on a curve over IF where
2 <m <|IF|, set

rp P, = {né]Nm' n is minimal in {pEH(Pl,...7Pm):pi:ni}}
1,...’ m .— . .

for some i,1 <i<m



The set I'(Py,...,Py) is called the minimal generating set of the Weier-

strass semigroup H(Py,...,P,). Hence, to determine the entire Weierstrass
semigroup H(Py,...,P,), one only needs to determine the minimal generat-
ing set I'(P1, ..., Pp).

When m = 2,

I'(P,P)={(a,8s) : @« € G(P1)}

where

Bo :=min{f € N: («,) € H (P, Ps)}.
This set introduced by Kim [9] where he showed that

{Bo € G(P)} CG(P)

and in fact
¢:G(P) — G(P)

a = fa

is a bijection. While the latter fact fails for m > 3, we do have the following as
proven in [13].

Lemma 1. If Py,..., P, are distinct IF-rational points on a curve X over a
finite field |IF| and 2 < m <|TF |, then

[(Py,...,Pn) CG(P) % xG(Pn).

Another property of the minimal generating set that we will rely on is in the
following lemma.

Lemma 2. If Py,..., P, are distinct IF-rational points on a curve X over a
finite field |IF| and 2 < m <|TF |, then

B m . N is minimal in {p € H(Py,...,Py) :p; =n;}
F(Pl,...,Pm)—{ne]N Cforall i,1<i<m .

We will use these properties to compute I" (Py, Py, P3) for the norm-trace
curve over IF,» where Py = Py, P = Py, and P3 = Py,. Before doing so, we
discuss relevant properties of the norm-trace curve in the next section.

3 Preliminaries on the norm-trace curve

Let ¢ be a power of a prime number and r > 2 be an integer. The norm-trace
curve X over IF,- is defined by

r—1 r—2

yq +yq +...+y:1‘a+1

where a := % — 1. One immediately recognizes that setting r = 2 gives the
q

Hermitian curve over IF .



In [6], Geil determined that X has ¢*"~! affine points over IF -, namely
(ac: B : 1) where the norm of a with respect to the extension IF,-/IF, is equal
to the trace of 3 with respect to the extension IF- /IF,; that is, the set of affine
points of X which are rational over IF - is

{(a :0:1): Nr,. /w, (o) = Tre . /¥, (ﬁ)} .

We will denote such points by P,g. In addition, X has a single point at infinity
P.. Note that X has ¢"~! points of the form Py and a = ¢"~'+¢" 2+ - -+¢*+q.

Then the genus of X is given by g = Lﬂ-

By exploiting the facts that
(@)=Y Pyp—d P
B
and
(y) = (a+1) Poo — (a+1) P,
Geil [6] found that the Weierstrass semigroup of the point at infinity is
H(Poo) = <qr717a + 1> .

Later, using these same principal divisors, Munuera, Tizziotti, and Torres [15]
proved that the Weierstrass semigroup of the point Py is

H (Py) =
(a,a+1,qa—1,(2¢—1)a—2,3¢—2)a—3,....,(A+1)g—N)a—(A+1))

where A :=a —¢" 71 — 1 :q’“—12+qr—23_|_..._|_q_1.
Now, fix b € TFr with b7 +59 ~ +---+b=0. A similar argument to that
mentioned above, using the fact that

(y—b)=(a+1)Pyp— (a+1) P,
yields
H (Poy) = H (Poo) -

Let us use this information to obtain explicit descriptions for elements of the
gap sets of the points Py, and Pyp. Some arguments are provided in [15], but we
include these details here for easy reference. We claim that the gap set of the
point at infinity is

G(POO):
1<j<i1<a-—sand

(@ =it -1 (a+1)—jg" " (s=1)(g-1) <i—j<s(g—1)
where 1 <s<a+1—¢g !



Suppose there exist ay,as € IN with
(' —i+ji—1)(a+1)—jqd" " =ai(a+1)+axq~

where 1 < j <i<a-—s,(s—1)(g—1) <i—j<s(g—1),and 1 < s <
a+1—¢ ! Then

(' —itj—1—o)(a+1)= (a2 +4)qd ",

and, thus, ¢" !

— 14+ 45 —1—a > 0. This leads to a contradiction since
¢ ' —i+j—1—ap is not a multiple of ¢"~!'. Consequently, each such in-
teger (¢"' —i+j—1)(a+1)—jg" " is an element of the gap set of Ps,. We
apply a counting argument to see that each element of G (Ps,) is of the form
(q’“*1 fiJrj—l) (a+1)—jg"twithl1<j<i<a—s,(s—1)(g—1)<i—j<
s(g—1),and 1 < s < a+1-¢""1; that is, we give a counting argument to show
that there are precisely g integers of the form (qr_1 —i47— 1) (a+1)—jg~1
withl1 <j<i<a—s,(s—1)(¢g—1)<i—j<s(g—1),and1 <s<a+l—qg" L
It is not hard to see that

(@ '—it+i—-1)(a+1)—jg ' =(" =i+ —1)(a+1)—j'q!
where 1 <j<i<a—1land 1<j < <a-—1 implies
i=1 and j = j'.

Hence, the number of such integers (qr’1 —1+7— 1) (a+1)—jq"!is equal to
the number of pairs (4, 7) satisfying 1 < j <i<a—1landi—j < ¢ ! —1. Now,

the number of (i, ) pairs with 1 <j<i<a—landi—j<q'—1is
i a—1 i—q" 1+ r 1 1)
Syi- 2 Z 7,

lel 7,q

which is the genus of the curve. This completes the proof that G (Px) is as
claimed.
Next, we claim that the gap set of the point Py (and of the point Pyp) is

1<j<i<a-sand
G(Poo) =G (Pop)=q(i—Jj)la+1)+j: (s—1)(¢—1)<i—j<s(g—1)
Wherelgsga—l—l—qr’l

To see this, it is helpful to visualize the elements of the semigroup H (Pyg) placed
in an array as follows. Arrange the positive elements of H (Pyg) in an array so
that each row consists of consecutive integers. Consider v = (i — j) (a + 1) + j
where 1 < j <i<a—s (s—1)(¢g—1) <i—j<s(g—1),and 1 <s <
a+1—¢q" L Writei—j=(s—1)(¢g—1) +k where 0 < k < g — 2. Then

a=((s=1)q—(s—2))a+(k—La+i.



Hence, if a € H (Pyp), then a would be on row (s — 1) (¢ — 1) 4+ k of the array.
However, the largest number on this row is

((s=Dlg-D+ka+(s-1)(¢g-1)+F,

anda>((s—1)(¢g—1)+k)at+(s—1)(¢g—1)+kasi> (s—1)g—(s — 2)+k+1.
As a result, & € G (Pyp). The claim now follows by the same counting argument
applied above, because there are g positive integers of the form (i — j) (a + 1)+
withl1<j<i<a—s,(s—1)(¢g—1)<i—j<s(g—1),and1 <s<a+1—g" L.

We will use these explicit descriptions of elements of the gap sets in the next
section to find the Weierstrass semigroup of the triple (Pso, Poo, Pob)-

4 Determination of the semigroup H (Pa, Pyo, Pob)

In this section, we find the Weierstrass semigroup of the triple (Ps, Poo, Poy) on
the norm-trace curve over IF . In fact, we produce the minimal generating set
for this Weierstrass semigroup. To do so, we rely heavily on the results of [15].
In particular, we will use that the minimal generating set of the pair (Pu, Poo)
of points on the norm-trace curve over IFy- is

1<j<i1<a—s,
F(POQ,POO): v”(s—l)(q—l)gz—jgs(q—l)—l
forsome 1 <s<a+1—g !
where
viji=((a+1) (¢ —i+i—1)—j¢ " (a+1)(i—5)+])
as proved in [15]. It is not difficult to see that I' (P, Poo) = I' (Pso, Pop)-

Theorem 1. The minimal generating set of the Weierstrass semigroup of the
triple (Paso, Poo, Pob) of IF ¢ -rational points on the norm-trace curve over IF ;- is

1<t<i—j51<j<i1<a—s,
I' (P, Poos Pop) = { Vije : (s—1)(g—1)<i—j<s(g—1)—1
wherelgsga—i—l—qT_l

where
Yi gt =

(@' —i+j—1)(a+1)—j¢ " (i—j—t)(a+1)+4E—-1)(a+1)+]).
Proof. Set
1<t<i—j1<ji<1<a—s,

=i 5D (@-1D)<i-j<slg-1)-1
where 1 <s<a+1—-¢""



and I' := I' (Puo, Poo, Poy). First, we will show that S C I'. Assume
S =it € S.

Then s € H (P, Poo, Pop) since

( I,aJrlfj >
= 81 Pso + $2Pyo + S3FPop-
. T S1400 24700 3400
y Iy =)'

Hence, s € P := {p € H (P, Poo, Poy) : p1 = 51} and so P # ). To conclude
that s € I', we will prove that s is minimal in P.

Suppose not; that is, suppose there exists v € P with v < s and v # s. Let
f € Fyr (X) be so that

(f) = A—v1 Py —v2Pyo — v3Pop

where A > 0.
Suppose vy < s9. Then vy = 9 — k with k € Z™' and so

ve=(a+1)(i—j—t)+j—k.
If j <k, then

(fyi*j*t)oc =(v1+(a+1)(i—7j—1)) Py + v3Ppp.

Hence,
w:=((a+1)(¢" ' —t—1) = j¢" ", v3) € H (Ps, Pop) -
However,
((a+1) (¢ —t=1)—jg" ' (a+1)t+j) € I (P, Pyp),
w=((a+1)(¢" ' —t—1)—jg" " (a+1)t+7),
and

w# ((a+1) (¢ ' —t—1)—jg" "', (a+1)t+7).
Consequently, it must be that j > k. Now,
(fyi*j*txj*k)oo —
(vi+(a+D)(i—j—t)+ (G —k)q"") P+ (v3— (j — k) Poo
which implies
w = (v1+(a+1)(i—j—t)+ (G —k)q " v3—(j—k)) € H(Px,Pop)-
This yields a contradiction since

w = ((a+1) (¢ —t—1)—k¢" " (a+1)t+ k),



w # ((a+1) (¢ —t—1)—k¢" " (a+1)t+ k),

and
((a+1) (¢t —t—1)—kg" " (a+ 1)t +k) € I'(Pso, Pop) -

As a result, vo = s5 and vz < s3.
Write vg = s3 — k with k € Z so that v3 = (a 4+ 1) (t — 1) +j — k. If j < k,

then considering (f (y — b)tﬂ) leads to a contradiction as

((a+1) (¢t —i+t+5—2)—jqd" ' (a+1)(i—j—1t)+3j) € H(Px, Poo),

((a+1) (¢ —i+t+i—2)—jg (a+1l)(i—j—t)+j) 2w
((a+D)(¢" ' —i+t+ji—2)—jq "(a+1)(i—7—1t)+]) #w,
and w € I' (Py, Pyo) where

wi=((a+1)(¢" "= (—t)+j—1)—j¢d" " (a+1)((i—t)—j)+ 7).

Thus, j > k. However, considering
(f (y—b"" xj’“)
J—k+t
y o0

((a+1)(¢" " —i+k—2)—kq" ', (a+1)(i—k)+ k) € H(Px,Pro).

gives

Once again, this leads to a contradiction since
((a+1) (¢t —i+k—2)—kd" ' (a+1)(i—k)+k) 2w,

((a+1) (¢t —i+k—2)—kd" ' (a+1) (i —k)+ k) #,
and w' € I' (P, Pyp) by [15] where

wi=((a+1) (¢ —i+k—1)—k¢ ' (a+1)(i—k)+k).

It follows that s is minimal in P and so S C I'.
Next, we will show that I" C S. Suppose n € I'. According to Lemma 1,

n € G (Px) x G (Poo) x G (Poy) -

Hence,
(a+1) (¢ —ir+5 —1) =g,
(a+ 1) (i2 — j2) + j2, and

ny = (a+1) (i3 — j3) + Js

where 1 < ji < i <a—s;and (sp—1)(¢—1) <ip —jr < sp(g—1)—1 for
k=1,2,3,with1 < s, < a+1—¢"~'. We may assume, without loss of generality,



that J2 < g3. Let f S ]qu (X) be so that (f) = A — n1 Py — noPyg — n3 Py, for
some A > 0. Then
(F=0" ) = A+ ((a+ 1) lis — s + 1) = na) Py
—(m+(a+1)(is—Jjs+1)) P
—TLQPO().
Thus,
(n1+(a+1) (i3 —js +1),n2) € H (P, Poo) -
Consequently, there exists u € I" (Pao, Poo) with

u=(n+(a+1)(izs —Jjs +1),n2)

and us = na. According to [15], u; = (a + 1) (qr_1 — Qg + jo — 1) —jaq" 1. Notice
that ny < wu; since otherwise (uq,u2,0) < n, contradicting the minimality of n
in {p € H(P007P007P0b) P2 = TLQ}. As a result,

ni<up <ni+(a+1)(is—js+1).

Set
HﬁeB (y—B)

yiz—d2giz (y — b) 7
where B= {3 € ¥y : Trp,,. ¥, (6) =0, §# 0,b}. Then

h =

(h) =2 pz0p (@+1—j2) Pog — (ur — (a+1) (i3 — js + 1)) P
—((a+1) (i2 = j2) + j2) Poo — ((a + 1) (i3 — j3) + ja2) Fob-

Thus, w = (U}h(a"‘ ].) (22 _j2) +j2,(a+ ].) (23 —]3) +]2) S H(Pooa-POO,POb)
where
wy =max{0,u1 — (a+1) (i3 —j3+1)}.

However, w < n since jo < j3. It follows that w = n; otherwise n is not minimal
in {p € H (P, Poo, Po») : p2 = na}. Since n; > 0, we must have that

up > (a+1) (i3 —js+ 1)

and jo = j3. In particular,

ni=(a+1)(¢" " = (i2 +is — js + 1) + j2)
ng = (a+1) (iz — j2) + j2
ns = (a+1) (is — js) + jo-

It can be checked that 1 < is + i3 — j3+ 1 < a — 1, from which it follows that
i +1i3 — j3+ 1 =11 and js = j;. As a result,

N = Yig+iz—js+1,j2,i3—js+1

and son € S. Thus, I' C S. This concludes the proof that I' (Px,, Poo, Pop) = S.



Ezample 1. Consider the norm-trace curve X defined by y° + ¢ +y = 2'2 over
IF57. Notice that X has genus 48, the gap set of the point P, is

G (Px) =IN\ (9,13)
1,2,3,4,5,6,7,8,10,11,12, 14, 15,16, 17, 19, 20, 21, 23, 24, 25, 28,
= { 29,30,32,33, 34, 37, 38,41, 42, 43, 46, 47, 50, 51, 55, 56, 59, 60, 64,
68,69, 73,77,82, 86,95

3

and the gap set of the points Pyy and Py is

G (Pyo) = G (Py) = IN \ (12,13,35,58,81)
1,2,3,4,5,6,7,8,9,10,11,14,15,16, 17, 18, 19, 20, 21, 22, 23, 27,
28,29, 30, 31,32, 33, 34, 40, 41, 42, 43, 44, 45, 46, 53, 54, 55, 56, 57,
66,67, 68, 69, 79, 80, 92

In [15], it is shown that

I' (Poo, Poo) =
(1,23),(2,46), (3,69), (4,92), (5,11), (6,34), (7,57), (8,80), (10, 22),
(11,45), (12, 68), (14, 10), (15, 33), (16, 56), (17, 79), (19, 21), (20, 44)
(21,67), (23,9). (24, 32), (25, 55). (28, 20), (29, 43). (30, 66), (32, 8), (33, 31),
(34,54), (37, 19), (38,42), (41, 7), (42, 30), (43,53), (46, 18), (47, 41), (50, 6),
(51,29), (55, 17), (56, 40), (59, 5), (60, 28), (64, 16), (68, 4). (69, 27).
(73,15). (77.3). (82, 14). (86.2), 95, 1

According to Theorem 1, the minimal generating set of the Weierstrass semi-
group of the triple (P, Poo, Pop) is



I' (P, Poo, Poy) =

,10,10), (2,7, 33), (2,
,17,43), (3,30, 30), (
,14,66), (4,27,53), (4,
,79,1),(6,8,21), (6
,31,18), (7,44,5), (
,41,28), (8,54,
(1
(
(

20, 20), (2
3,43,17), (
4,40, 40), (
21,8)(7,

3

3,7), (3,4, 56),
.56

53,

),

33, 7), (
3,56,4),
4,53,2

BN |
~—

7,1
) (8,
) (

b

5,44
2,67), (8,15
67,2), (1

), (8 5
5), ( 0, 11,6,3 )

42), (12, 29, 29),
), (16,4, 43),
6

9,
1,19, 19), 2

5,

17,1,66), (17,14, 53),
( 1

1

2

2,42,16
6,17,30

4
2), 9
,55), (12, 1

20), (15,2

)

9), (8,
15), (8
), (11,32,6), (12,3, 55), (12, 16,
), (12,55,3), (15, 7,20), (15, 20,
), (16,30, 1 ,(17,1,
), 17,66, 1), (19, 8,8),
,2,54), (21,15, 41),
)

46197(24196,

1

1

7), (16,43, 4)

7,27,40), (17,40,27), (17,53, 14),
)

(1

(3

(4

(4

(7

(8

(11,

(1 7
(1 6
(1 6,
(20,5,31), (20,18, 18), (20,31,5), (21, 2, 54
(21,28,28), (21,41, 15), (21, 54,2), (
(25.3,42). (25, 16,29). (25,29, 16). (25, 42,3). (28.7,7),
(29,4, 30), (29,17,17), (29, 30,4), (30, 1, 53), (30, 14, 40),
(30,27,27), (30,40, 14), (30,53, 1), (33,5, 18), (33, 18, 5),
(34,2,41), (34,15,28), (34,28, 15), (34,41, 2), (37,6,6),
(38,3,29), (38,16, 16), (38,29, 3), (42,4, 17), (42,17, 4),
(43,1,40), (43, 14,27), (43,27, 14), (43,40, 1), (46,5,5),
(47,2,28), (47,15, 15), (47, 28,2), (51,3, 16), (51, 16, 3),
(5 6,14, 14). (56,27, 1), (60, 2, 15),
(6 9

(8

(
7474)’ (5
(6 ,14), (69,14, 1), (73,2,2),

7

5
0,15,2),
2,1,1)

,1,27), (56,1
4,3,3), (69,1

b
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