On Weierstrass semigroups of some triples on norm-trace curves

Gretchen L. Matthews
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA
gmatthe@clemson.edu,
WWW home page: www.math.clemson.edu/~gmatthe

Abstract

In this paper, we consider the norm-trace curves which are defined by the equation $y^{q^{r-1}}+y^{q^{r-2}}+\cdots+y=x^{\frac{q^{r}-1}{q-1}}$ over $\mathbb{F}_{q^{r}}$ where q is a power of a prime number and $r \geq 2$ is an integer. We determine the Weierstrass semigroup of the triple of points $\left(P_{\infty}, P_{00}, P_{0 b}\right)$ on this curve.

1 Introduction

Let X be a smooth projective absolutely irreducible curve of genus $g>1$ over a finite field \mathbb{F}, and let P_{1}, \ldots, P_{m} be m distinct \mathbb{F}-rational points on X. The Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$ of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is defined by

$$
H\left(P_{1}, \ldots, P_{m}\right)=\left\{\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{m}: \exists f \in \mathbb{F}(X) \text { with }(f)_{\infty}=\sum_{i=1}^{r} \alpha_{i} P_{i}\right\}
$$

where $\mathbb{F}(X)$ denotes the field of rational functions on $X,(f)_{\infty}$ denotes the divisor of poles of a rational function f, and \mathbb{N} denotes the set of nonnegative integers. The Weierstrass gap set $G\left(P_{1}, \ldots, P_{m}\right)$ of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is defined by

$$
G\left(P_{1}, \ldots, P_{m}\right)=\mathbb{N}^{m} \backslash H\left(P_{1}, \ldots P_{m}\right)
$$

If $m=1$, then $H\left(P_{1}\right)$ is the classically studied Weierstrass semigroup and $G\left(P_{1}\right)$ is the classically studied Weierstrass gap sequence (or gap set). It is well known that $\left|G\left(P_{1}\right)\right|=g$, the genus of X, regardless of the choice of point P_{1}. The gap set $G\left(P_{1}, P_{2}\right)$ was introduced in [1] where the authors note that the cardinality $\left|G\left(P_{1}, P_{2}\right)\right|$ may depend on the choice of points P_{1} and P_{2}. The study of the Weierstrass gap set of a pair was taken up by Kim [9] and later by Homma and Kim [7]. This was soon followed by the works of Ballico and Kim [2] and Ishii [8].

As suggested by Goppa and verified by Garcia, Kim, and Lax for the $m=1$ case [5], knowledge of Weierstrass semigroups of m-tuples of points provides insight into the parameters of associated algebraic geometry codes. This theme has been explored by a number of authors, including the present [14], [10] as well as Carvalho and Torres [4]. For a recent survey of such results, see [3].

In this paper, we determine a minimal generating set for the Weierstrass semigroup of the triple $\left(P_{\infty}, P_{00}, P_{0 b}\right)$ on the norm-trace curve $y^{q^{r-1}}+y^{q^{r-2}}+$ $\cdots+y=x^{\frac{q^{r}-1}{q-1}}$ over $\mathbb{F}_{q^{r}}$, where $r \geq 2$. Notice that when $r=2$, the Hermitian curve is obtained. Hence, these results may be viewed as a generalization of some of those in [13] where the Weierstrass semigroup of an m-tuple of collinear points on the Hermitian curve was obtained. This paper may also be seen as a sequel to that of Munuera, Tizziotti, and Torres [15] where the semigroup of the pair $\left(P_{\infty}, P_{00}\right)$ on the norm-trace curve is found and then applied to two-point algebraic geometry codes. In fact, we rely heavily on the results contained in both [13] and [15].

This paper is organized as follows. Section 2 provides a background on the Weierstrass semigroup of an m-tuple of points. Section 3 consists of necessary background on the norm-trace curve. The main result of this paper is contained in Section 4.

2 Weierstrass semigroups of m-tuples

In this section, we describe tools useful in the study of Weierstrass semigroups of m-tuples of points. Several generalize those used to study the gap set of a pair of points [9], [7].

We begin with a brief review of notation. The divisor of a rational function f will be denoted by (f), and \mathbb{Z}^{+}denotes the set of positive integers. Given $a_{1}, \ldots, a_{k} \in \mathbb{Z}^{+}$, the (numerical) semigroup generated by a_{1}, \ldots, a_{k} is

$$
\left\langle a_{1}, \ldots, a_{k}\right\rangle:=\left\{\sum_{i=1}^{k} c_{i} a_{i}: c_{i} \in \mathbb{N}\right\} .
$$

As usual, given $v \in \mathbb{Z}^{r}$ where $r \in \mathbb{Z}^{+}$, the $i^{t h}$ coordinate of v is denoted by v_{i}.
Define a partial order \preceq on Z^{r} by $\left(n_{1}, \ldots, n_{r}\right) \preceq\left(p_{1}, \ldots, p_{r}\right)$ if and only if $n_{i} \leq p_{i}$ for all $i, 1 \leq i \leq r$. When comparing elements of \mathbb{Z}^{r}, we will always do so with respect to the partial order \preceq.

In [13] it is shown that if $1 \leq m \leq|\mathbb{F}|$, then there exists a minimal subset $\Gamma\left(P_{1}, \ldots, P_{m}\right) \subseteq H\left(P_{1}, \ldots, P_{m}\right)$ such that

$$
H\left(P_{1}, \ldots, P_{m}\right)=\left\{\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{r}}\right\} \in \mathbb{N}^{m}: \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{r}} \in \Gamma\left(P_{1}, \ldots, P_{m}\right)\right\}
$$

where

$$
\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}=\left(\max \left\{\mathbf{u}_{\mathbf{1}_{\mathbf{1}}}, \ldots, \mathbf{u}_{\mathbf{m}_{1}}\right\}, \ldots, \max \left\{\mathbf{u}_{\mathbf{1}_{\mathbf{m}}}, \ldots, \mathbf{u}_{\mathbf{m}_{\mathbf{m}}}\right\}\right) \in \mathbb{N}^{\mathbf{m}}
$$

is least upper bound of the vectors $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}} \in \mathbb{N}^{\mathbf{m}}$. In fact, $\Gamma\left(P_{1}, \ldots, P_{m}\right)$ may be defined as follows.
Definition 1. Given $m \mathbb{F}$-rational points P_{1}, \ldots, P_{m} on a curve over \mathbb{F} where $2 \leq m \leq|\mathbb{F}|$, set
$\Gamma\left(P_{1}, \ldots, P_{m}\right):=\left\{\mathbf{n} \in \mathbb{N}^{m}: \begin{array}{l}\mathbf{n} \text { is minimal in }\left\{\mathbf{p} \in H\left(P_{1}, \ldots, P_{m}\right): p_{i}=n_{i}\right\} \\ \text { for some } i, 1 \leq i \leq m\end{array}\right\}$.

The set $\Gamma\left(P_{1}, \ldots, P_{m}\right)$ is called the minimal generating set of the Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$. Hence, to determine the entire Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$, one only needs to determine the minimal generating set $\Gamma\left(P_{1}, \ldots, P_{m}\right)$.

When $m=2$,

$$
\Gamma\left(P_{1}, P_{2}\right)=\left\{\left(\alpha, \beta_{\alpha}\right): \alpha \in G\left(P_{1}\right)\right\}
$$

where

$$
\beta_{\alpha}:=\min \left\{\beta \in \mathbb{N}:(\alpha, \beta) \in H\left(P_{1}, P_{2}\right)\right\}
$$

This set introduced by Kim [9] where he showed that

$$
\left\{\beta_{\alpha}: \alpha \in G\left(P_{1}\right)\right\} \subseteq G\left(P_{2}\right)
$$

and in fact

$$
\begin{aligned}
\phi: G\left(P_{1}\right) & \rightarrow G\left(P_{2}\right) \\
\alpha & \mapsto \beta_{\alpha}
\end{aligned}
$$

is a bijection. While the latter fact fails for $m \geq 3$, we do have the following as proven in [13].

Lemma 1. If P_{1}, \ldots, P_{m} are distinct \mathbb{F}-rational points on a curve X over a finite field $|\mathbb{F}|$ and $2 \leq m \leq|\mathbb{F}|$, then

$$
\Gamma\left(P_{1}, \ldots, P_{m}\right) \subseteq G\left(P_{1}\right) \times \cdots \times G\left(P_{m}\right)
$$

Another property of the minimal generating set that we will rely on is in the following lemma.

Lemma 2. If P_{1}, \ldots, P_{m} are distinct \mathbb{F}-rational points on a curve X over a finite field $|\mathbb{F}|$ and $2 \leq m \leq|\mathbb{F}|$, then
$\Gamma\left(P_{1}, \ldots, P_{m}\right)=\left\{\mathbf{n} \in \mathbb{N}^{m}: \begin{array}{l}\mathbf{n} \text { is minimal in }\left\{\mathbf{p} \in H\left(P_{1}, \ldots, P_{m}\right): p_{i}=n_{i}\right\} \\ \text { for all } i, 1 \leq i \leq m\end{array}\right\}$.
We will use these properties to compute $\Gamma\left(P_{1}, P_{2}, P_{3}\right)$ for the norm-trace curve over $\mathbb{F}_{q^{r}}$ where $P_{1}=P_{\infty}, P_{2}=P_{00}$, and $P_{3}=P_{0 b}$. Before doing so, we discuss relevant properties of the norm-trace curve in the next section.

3 Preliminaries on the norm-trace curve

Let q be a power of a prime number and $r \geq 2$ be an integer. The norm-trace curve X over $\mathbb{F}_{q^{r}}$ is defined by

$$
y^{q^{r-1}}+y^{q^{r-2}}+\cdots+y=x^{a+1}
$$

where $a:=\frac{q^{r}-1}{q-1}-1$. One immediately recognizes that setting $r=2$ gives the Hermitian curve over $\mathbb{F}_{q^{2}}$.

In [6], Geil determined that X has $q^{2 r-1}$ affine points over $\mathbb{F}_{q^{r}}$, namely ($\alpha: \beta: 1$) where the norm of α with respect to the extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$ is equal to the trace of β with respect to the extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$; that is, the set of affine points of X which are rational over $\mathbb{F}_{q^{r}}$ is

$$
\left\{(\alpha: \beta: 1): N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(\alpha)=\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(\beta)\right\}
$$

We will denote such points by $P_{\alpha \beta}$. In addition, X has a single point at infinity P_{∞}. Note that X has q^{r-1} points of the form $P_{0 \beta}$ and $a=q^{r-1}+q^{r-2}+\cdots+q^{2}+q$. Then the genus of X is given by $g=\frac{a\left(q^{r-1}-1\right)}{2}$.

By exploiting the facts that

$$
(x)=\sum_{\beta} P_{0 \beta}-q^{r-1} P_{\infty}
$$

and

$$
(y)=(a+1) P_{00}-(a+1) P_{\infty}
$$

Geil [6] found that the Weierstrass semigroup of the point at infinity is

$$
H\left(P_{\infty}\right)=\left\langle q^{r-1}, a+1\right\rangle
$$

Later, using these same principal divisors, Munuera, Tizziotti, and Torres [15] proved that the Weierstrass semigroup of the point P_{00} is

$$
\begin{aligned}
& H\left(P_{00}\right)= \\
& \quad\langle a, a+1, q a-1,(2 q-1) a-2,(3 q-2) a-3, \ldots,((\lambda+1) q-\lambda) a-(\lambda+1)\rangle
\end{aligned}
$$

where $\lambda:=a-q^{r-1}-1=q^{r-2}+q^{r-3}+\cdots+q-1$.
Now, fix $b \in \mathbb{F}_{q^{r}}$ with $b^{q^{r-1}}+b^{q^{r-2}}+\cdots+b=0$. A similar argument to that mentioned above, using the fact that

$$
(y-b)=(a+1) P_{0 b}-(a+1) P_{\infty}
$$

yields

$$
H\left(P_{0 b}\right)=H\left(P_{00}\right)
$$

Let us use this information to obtain explicit descriptions for elements of the gap sets of the points P_{∞} and P_{00}. Some arguments are provided in [15], but we include these details here for easy reference. We claim that the gap set of the point at infinity is

$$
\begin{aligned}
& G\left(P_{\infty}\right)= \\
& \qquad\left\{\begin{array}{l}
1 \leq j \leq i \leq a-s \text { and } \\
\left\{\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}: \begin{array}{l}
\\
\\
(s-1)(q-1) \leq i-j<s(q-1) \\
\text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\} .
\end{array}\right.
\end{aligned}
$$

Suppose there exist $\alpha_{1}, \alpha_{2} \in \mathbb{N}$ with

$$
\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}=\alpha_{1}(a+1)+\alpha_{2} q^{r-1}
$$

where $1 \leq j \leq i \leq a-s,(s-1)(q-1) \leq i-j<s(q-1)$, and $1 \leq s \leq$ $a+1-q^{r-1}$. Then

$$
\left(q^{r-1}-i+j-1-\alpha_{1}\right)(a+1)=\left(\alpha_{2}+j\right) q^{r-1}
$$

and, thus, $q^{r-1}-i+j-1-\alpha_{1} \geq 0$. This leads to a contradiction since $q^{r-1}-i+j-1-\alpha_{1}$ is not a multiple of q^{r-1}. Consequently, each such integer $\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}$ is an element of the gap set of P_{∞}. We apply a counting argument to see that each element of $G\left(P_{\infty}\right)$ is of the form $\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}$ with $1 \leq j \leq i \leq a-s,(s-1)(q-1) \leq i-j<$ $s(q-1)$, and $1 \leq s \leq a+1-q^{r-1}$; that is, we give a counting argument to show that there are precisely g integers of the form $\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}$ with $1 \leq j \leq i \leq a-s,(s-1)(q-1) \leq i-j<s(q-1)$, and $1 \leq s \leq a+1-q^{r-1}$. It is not hard to see that

$$
\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}=\left(q^{r-1}-i^{\prime}+j^{\prime}-1\right)(a+1)-j^{\prime} q^{r-1}
$$

where $1 \leq j \leq i \leq a-1$ and $1 \leq j^{\prime} \leq i^{\prime} \leq a-1$ implies

$$
i=i^{\prime} \text { and } j=j^{\prime}
$$

Hence, the number of such integers $\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}$ is equal to the number of pairs (i, j) satisfying $1 \leq j \leq i \leq a-1$ and $i-j<q^{r-1}-1$. Now, the number of (i, j) pairs with $1 \leq j \leq i \leq a-1$ and $i-j<q^{r-1}-1$ is

$$
\sum_{i=1}^{a-1} \sum_{j=1}^{i} 1-\sum_{i=q^{r-1}}^{a-1} \sum_{j=1}^{i-q^{r-1}+1} 1=\frac{a\left(q^{r-1}-1\right)}{2}
$$

which is the genus of the curve. This completes the proof that $G\left(P_{\infty}\right)$ is as claimed.

Next, we claim that the gap set of the point P_{00} (and of the point $P_{0 b}$) is
$G\left(P_{00}\right)=G\left(P_{0 b}\right)=\left\{(i-j)(a+1)+j: \begin{array}{c}1 \leq j \leq i \leq a-s \text { and } \\ (s-1)(q-1) \leq i-j<s(q-1) \\ \text { where } 1 \leq s \leq a+1-q^{r-1}\end{array}\right\}$.
To see this, it is helpful to visualize the elements of the semigroup $H\left(P_{00}\right)$ placed in an array as follows. Arrange the positive elements of $H\left(P_{00}\right)$ in an array so that each row consists of consecutive integers. Consider $\alpha=(i-j)(a+1)+j$ where $1 \leq j \leq i \leq a-s,(s-1)(q-1) \leq i-j<s(q-1)$, and $1 \leq s \leq$ $a+1-q^{r-1}$. Write $i-j=(s-1)(q-1)+k$ where $0 \leq k \leq q-2$. Then

$$
\alpha=((s-1) q-(s-2)) a+(k-1) a+i
$$

Hence, if $\alpha \in H\left(P_{00}\right)$, then α would be on row $(s-1)(q-1)+k$ of the array. However, the largest number on this row is

$$
((s-1)(q-1)+k) a+(s-1)(q-1)+k,
$$

and $\alpha>((s-1)(q-1)+k) a+(s-1)(q-1)+k$ as $i>(s-1) q-(s-2)+k+1$. As a result, $\alpha \in G\left(P_{00}\right)$. The claim now follows by the same counting argument applied above, because there are g positive integers of the form $(i-j)(a+1)+j$ with $1 \leq j \leq i \leq a-s,(s-1)(q-1) \leq i-j<s(q-1)$, and $1 \leq s \leq a+1-q^{r-1}$.

We will use these explicit descriptions of elements of the gap sets in the next section to find the Weierstrass semigroup of the triple $\left(P_{\infty}, P_{00}, P_{0 b}\right)$.

4 Determination of the semigroup $\boldsymbol{H}\left(\boldsymbol{P}_{\infty}, P_{00}, P_{0 b}\right)$

In this section, we find the Weierstrass semigroup of the triple $\left(P_{\infty}, P_{00}, P_{0 b}\right)$ on the norm-trace curve over $\mathbb{F}_{q^{r}}$. In fact, we produce the minimal generating set for this Weierstrass semigroup. To do so, we rely heavily on the results of [15]. In particular, we will use that the minimal generating set of the pair $\left(P_{\infty}, P_{00}\right)$ of points on the norm-trace curve over $\mathbb{F}_{q^{r}}$ is

$$
\Gamma\left(P_{\infty}, P_{00}\right)=\left\{\begin{array}{l}
1 \leq j \leq i \leq a-s \\
v_{i j}:(s-1)(q-1) \leq i-j \leq s(q-1)-1 \\
\text { for some } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}
$$

where

$$
v_{i j}:=\left((a+1)\left(q^{r-1}-i+j-1\right)-j q^{r-1},(a+1)(i-j)+j\right)
$$

as proved in [15]. It is not difficult to see that $\Gamma\left(P_{\infty}, P_{00}\right)=\Gamma\left(P_{\infty}, P_{0 b}\right)$.
Theorem 1. The minimal generating set of the Weierstrass semigroup of the triple $\left(P_{\infty}, P_{00}, P_{0 b}\right)$ of $\mathbb{F}_{q^{r}}$-rational points on the norm-trace curve over $\mathbb{F}_{q^{r}}$ is

$$
\Gamma\left(P_{\infty}, P_{00}, P_{0 b}\right)=\left\{\begin{array}{l}
1 \leq t \leq i-j, 1 \leq j<i \leq a-s \\
\gamma_{i, j, t}:(s-1)(q-1) \leq i-j \leq s(q-1)-1 \\
\text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}
$$

where
$\gamma_{i, j, t}:=$

$$
\left(\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1},(i-j-t)(a+1)+j,(t-1)(a+1)+j\right) .
$$

Proof. Set

$$
S:=\left\{\begin{array}{l}
1 \leq t \leq i-j, 1 \leq j<i \leq a-s \\
\gamma_{i, j, t}:(s-1)(q-1) \leq i-j \leq s(q-1)-1 \\
\text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}
$$

and $\Gamma:=\Gamma\left(P_{\infty}, P_{00}, P_{0 b}\right)$. First, we will show that $S \subseteq \Gamma$. Assume

$$
s:=\gamma_{i, j, t} \in S
$$

Then $s \in H\left(P_{\infty}, P_{00}, P_{0 b}\right)$ since

$$
\left(\frac{x^{a+1-j}}{y^{i-j-t+1}(y-b)^{t}}\right)_{\infty}=s_{1} P_{\infty}+s_{2} P_{00}+s_{3} P_{0 b}
$$

Hence, $s \in P:=\left\{p \in H\left(P_{\infty}, P_{00}, P_{0 b}\right): p_{1}=s_{1}\right\}$ and so $P \neq \emptyset$. To conclude that $s \in \Gamma$, we will prove that s is minimal in P.

Suppose not; that is, suppose there exists $v \in P$ with $v \preceq s$ and $v \neq s$. Let $f \in \mathbb{F}_{q^{r}}(X)$ be so that

$$
(f)=A-v_{1} P_{\infty}-v_{2} P_{00}-v_{3} P_{0 b}
$$

where $A \geq 0$.
Suppose $v_{2}<s_{2}$. Then $v_{2}=s_{2}-k$ with $k \in \mathbb{Z}^{+}$and so

$$
v_{2}=(a+1)(i-j-t)+j-k
$$

If $j \leq k$, then

$$
\left(f y^{i-j-t}\right)_{\infty}=\left(v_{1}+(a+1)(i-j-t)\right) P_{\infty}+v_{3} P_{0 b}
$$

Hence,

$$
w:=\left((a+1)\left(q^{r-1}-t-1\right)-j q^{r-1}, v_{3}\right) \in H\left(P_{\infty}, P_{0 b}\right)
$$

However,

$$
\begin{gathered}
\left((a+1)\left(q^{r-1}-t-1\right)-j q^{r-1},(a+1) t+j\right) \in \Gamma\left(P_{\infty}, P_{0 b}\right) \\
w \preceq\left((a+1)\left(q^{r-1}-t-1\right)-j q^{r-1},(a+1) t+j\right)
\end{gathered}
$$

and

$$
w \neq\left((a+1)\left(q^{r-1}-t-1\right)-j q^{r-1},(a+1) t+j\right)
$$

Consequently, it must be that $j>k$. Now,

$$
\begin{aligned}
& \left(f y^{i-j-t} x^{j-k}\right)_{\infty}= \\
& \quad\left(v_{1}+(a+1)(i-j-t)+(j-k) q^{r-1}\right) P_{\infty}+\left(v_{3}-(j-k)\right) P_{0 b}
\end{aligned}
$$

which implies

$$
w^{\prime}:=\left(v_{1}+(a+1)(i-j-t)+(j-k) q^{r-1}, v_{3}-(j-k)\right) \in H\left(P_{\infty}, P_{0 b}\right)
$$

This yields a contradiction since

$$
w^{\prime} \preceq\left((a+1)\left(q^{r-1}-t-1\right)-k q^{r-1},(a+1) t+k\right),
$$

$$
w^{\prime} \neq\left((a+1)\left(q^{r-1}-t-1\right)-k q^{r-1},(a+1) t+k\right),
$$

and

$$
\left((a+1)\left(q^{r-1}-t-1\right)-k q^{r-1},(a+1) t+k\right) \in \Gamma\left(P_{\infty}, P_{0 b}\right)
$$

As a result, $v_{2}=s_{2}$ and $v_{3}<s_{3}$.
Write $v_{3}=s_{3}-k$ with $k \in \mathbb{Z}^{+}$so that $v_{3}=(a+1)(t-1)+j-k$. If $j \leq k$, then considering $\left(f(y-b)^{t-1}\right)$ leads to a contradiction as

$$
\begin{gathered}
\left((a+1)\left(q^{r-1}-i+t+j-2\right)-j q^{r-1},(a+1)(i-j-t)+j\right) \in H\left(P_{\infty}, P_{00}\right), \\
\left((a+1)\left(q^{r-1}-i+t+j-2\right)-j q^{r-1},(a+1)(i-j-t)+j\right) \preceq w, \\
\left((a+1)\left(q^{r-1}-i+t+j-2\right)-j q^{r-1},(a+1)(i-j-t)+j\right) \neq w,
\end{gathered}
$$

and $w \in \Gamma\left(P_{\infty}, P_{00}\right)$ where

$$
w:=\left((a+1)\left(q^{r-1}-(i-t)+j-1\right)-j q^{r-1},(a+1)((i-t)-j)+j\right) .
$$

Thus, $j>k$. However, considering

$$
\left(\frac{f(y-b)^{t-1} x^{j-k}}{y^{j-k+t}}\right)_{\infty}
$$

gives

$$
\left((a+1)\left(q^{r-1}-i+k-2\right)-k q^{r-1},(a+1)(i-k)+k\right) \in H\left(P_{\infty}, P_{00}\right)
$$

Once again, this leads to a contradiction since

$$
\begin{aligned}
& \left((a+1)\left(q^{r-1}-i+k-2\right)-k q^{r-1},(a+1)(i-k)+k\right) \preceq w^{\prime} \\
& \left((a+1)\left(q^{r-1}-i+k-2\right)-k q^{r-1},(a+1)(i-k)+k\right) \neq w^{\prime}
\end{aligned}
$$

and $w^{\prime} \in \Gamma\left(P_{\infty}, P_{0 b}\right)$ by [15] where

$$
w^{\prime}:=\left((a+1)\left(q^{r-1}-i+k-1\right)-k q^{r-1},(a+1)(i-k)+k\right) .
$$

It follows that s is minimal in P and so $S \subseteq \Gamma$.
Next, we will show that $\Gamma \subseteq S$. Suppose $n \in \Gamma$. According to Lemma 1,

$$
n \in G\left(P_{\infty}\right) \times G\left(P_{00}\right) \times G\left(P_{0 b}\right)
$$

Hence,

$$
\begin{aligned}
& n_{1}=(a+1)\left(q^{r-1}-i_{1}+j_{1}-1\right)-j_{1} q^{r-1}, \\
& n_{2}=(a+1)\left(i_{2}-j_{2}\right)+j_{2}, \text { and } \\
& n_{3}=(a+1)\left(i_{3}-j_{3}\right)+j_{3}
\end{aligned}
$$

where $1 \leq j_{k} \leq i_{k} \leq a-s_{k}$ and $\left(s_{k}-1\right)(q-1) \leq i_{k}-j_{k} \leq s_{k}(q-1)-1$ for $k=1,2,3$, with $1 \leq s_{k} \leq a+1-q^{r-1}$. We may assume, without loss of generality,
that $j_{2} \leq j_{3}$. Let $f \in \mathbb{F}_{q^{r}}(X)$ be so that $(f)=A-n_{1} P_{\infty}-n_{2} P_{00}-n_{3} P_{0 b}$ for some $A \geq 0$. Then

$$
\begin{aligned}
\left(f(y-b)^{i_{3}-j_{3}+1}\right)= & A+\left((a+1)\left(i_{3}-j_{3}+1\right)-n_{3}\right) P_{0 b} \\
& -\left(n_{1}+(a+1)\left(i_{3}-j_{3}+1\right)\right) P_{\infty} \\
& -n_{2} P_{00}
\end{aligned}
$$

Thus,

$$
\left(n_{1}+(a+1)\left(i_{3}-j_{3}+1\right), n_{2}\right) \in H\left(P_{\infty}, P_{00}\right)
$$

Consequently, there exists $u \in \Gamma\left(P_{\infty}, P_{00}\right)$ with

$$
u \preceq\left(n_{1}+(a+1)\left(i_{3}-j_{3}+1\right), n_{2}\right)
$$

and $u_{2}=n_{2}$. According to [15], $u_{1}=(a+1)\left(q^{r-1}-i_{2}+j_{2}-1\right)-j_{2} q^{r-1}$. Notice that $n_{1}<u_{1}$ since otherwise $\left(u_{1}, u_{2}, 0\right) \preceq n$, contradicting the minimality of n in $\left\{p \in H\left(P_{\infty}, P_{00}, P_{0 b}\right): p_{2}=n_{2}\right\}$. As a result,

$$
n_{1}<u_{1} \leq n_{1}+(a+1)\left(i_{3}-j_{3}+1\right)
$$

Set

$$
h=\frac{\prod_{\beta \in \mathcal{B}}(y-\beta)}{y^{i_{2}-j_{2}} x^{j_{2}}(y-b)^{i_{3}-j_{3}}}
$$

where $\mathcal{B}=\left\{\beta \in \mathbb{F}_{q^{r}}: \operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(\beta)=0, \beta \neq 0, b\right\}$. Then

$$
\begin{aligned}
(h)= & \sum_{\beta \neq 0, b}\left(a+1-j_{2}\right) P_{0 \beta}-\left(u_{1}-(a+1)\left(i_{3}-j_{3}+1\right)\right) P_{\infty} \\
& -\left((a+1)\left(i_{2}-j_{2}\right)+j_{2}\right) P_{00}-\left((a+1)\left(i_{3}-j_{3}\right)+j_{2}\right) P_{0 b} .
\end{aligned}
$$

Thus, $w:=\left(w_{1},(a+1)\left(i_{2}-j_{2}\right)+j_{2},(a+1)\left(i_{3}-j_{3}\right)+j_{2}\right) \in H\left(P_{\infty}, P_{00}, P_{0 b}\right)$ where

$$
w_{1}=\max \left\{0, u_{1}-(a+1)\left(i_{3}-j_{3}+1\right)\right\}
$$

However, $w \preceq n$ since $j_{2} \leq j_{3}$. It follows that $w=n$; otherwise n is not minimal in $\left\{p \in H\left(P_{\infty}, P_{00}, P_{0 b}\right): p_{2}=n_{2}\right\}$. Since $n_{1}>0$, we must have that

$$
u_{1}>(a+1)\left(i_{3}-j_{3}+1\right)
$$

and $j_{2}=j_{3}$. In particular,

$$
\begin{aligned}
& n_{1}=(a+1)\left(q^{r-1}-\left(i_{2}+i_{3}-j_{3}+1\right)+j_{2}\right) \\
& n_{2}=(a+1)\left(i_{2}-j_{2}\right)+j_{2} \\
& n_{3}=(a+1)\left(i_{3}-j_{3}\right)+j_{2}
\end{aligned}
$$

It can be checked that $1 \leq i_{2}+i_{3}-j_{3}+1 \leq a-1$, from which it follows that $i_{2}+i_{3}-j_{3}+1=i_{1}$ and $j_{2}=j_{1}$. As a result,

$$
n=\gamma_{i_{2}+i_{3}-j_{3}+1, j_{2}, i_{3}-j_{3}+1}
$$

and so $n \in S$. Thus, $\Gamma \subseteq S$. This concludes the proof that $\Gamma\left(P_{\infty}, P_{00}, P_{0 b}\right)=S$.

Example 1. Consider the norm-trace curve X defined by $y^{9}+y^{3}+y=x^{12}$ over \mathbb{F}_{27}. Notice that X has genus 48 , the gap set of the point P_{∞} is

$$
\begin{aligned}
G\left(P_{\infty}\right) & =\mathbb{N} \backslash\langle 9,13\rangle \\
& =\left\{\begin{array}{l}
1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,19,20,21,23,24,25,28 \\
29,30,32,33,34,37,38,41,42,43,46,47,50,51,55,56,59,60,64 \\
68,69,73,77,82,86,95
\end{array}\right\},
\end{aligned}
$$

and the gap set of the points P_{00} and $P_{0 b}$ is

$$
\begin{aligned}
G\left(P_{00}\right) & =G\left(P_{0 b}\right)=\mathbb{N} \backslash\langle 12,13,35,58,81\rangle \\
& =\left\{\begin{array}{l}
1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,27, \\
28,29,30,31,32,33,34,40,41,42,43,44,45,46,53,54,55,56,57, \\
66,67,68,69,79,80,92
\end{array}\right\} .
\end{aligned}
$$

In [15], it is shown that
$\Gamma\left(P_{\infty}, P_{00}\right)=$
$\left\{\begin{array}{l}(1,23),(2,46),(3,69),(4,92),(5,11),(6,34),(7,57),(8,80),(10,22), \\ (11,45),(12,68),(14,10),(15,33),(16,56),(17,79),(19,21),(20,44), \\ (21,67),(23,9),(24,32),(25,55),(28,20),(29,43),(30,66),(32,8),(33,31), \\ (34,54),(37,19),(38,42),(41,7),(42,30),(43,53),(46,18),(47,41),(50,6), \\ (51,29),(55,17),(56,40),(59,5),(60,28),(64,16),(68,4),(69,27), \\ (73,15),(77,3),(82,14),(86,2),(95,1)\end{array}\right\}$.

According to Theorem 1, the minimal generating set of the Weierstrass semigroup of the triple $\left(P_{\infty}, P_{00}, P_{0 b}\right)$ is

$$
\begin{aligned}
& \Gamma\left(P_{\infty}, P_{00},\right.\left.P_{0 b}\right)= \\
& \qquad \begin{array}{l}
(1,10,10),(2,7,33),(2,20,20),(2,33,7),(3,4,56), \\
(3,17,43),(3,30,30),(3,43,17),(3,56,4),(4,1,79), \\
(4,14,66),(4,27,53),(4,40,40),(4,53,27),(4,66,14), \\
(4,79,1),(6,8,21),(6,21,8)(7,5,44),(7,18,31), \\
(7,31,18),(7,44,5),(8,2,67),(8,15,54),(8,28,41), \\
(8,41,28),(8,54,15),(8,67,2),(10,9,9),(11,6,32), \\
(11,19,19),(11,32,6),(12,3,55),(12,16,42),(12,29,29), \\
(12,42,16),(12,55,3),(15,7,20),(15,20,7),(16,4,43), \\
(16,17,30),(16,30,17),(16,43,4),(17,1,66),(17,14,53), \\
(17,27,40),(17,40,27),(17,53,14),(17,66,1),(19,8,8), \\
(20,5,31),(20,18,18),(20,31,5),(21,2,54),(21,15,41), \\
(21,28,28),(21,41,15),(21,54,2),(24,6,19),(24,19,6), \\
(25,3,42),(25,16,29),(25,29,16),(25,42,3),(28,7,7), \\
(29,4,30),(29,17,17),(29,30,4),(30,1,53),(30,14,40), \\
(30,27,27),(30,40,14),(30,53,1),(33,5,18),(33,18,5), \\
(34,2,41),(34,15,28),(34,28,15),(34,41,2),(37,6,6), \\
(38,3,29),(38,16,16),(38,29,3),(42,4,17),(42,17,4), \\
(43,1,40),(43,14,27),(43,27,14),(43,40,1),(46,5,5), \\
(47,2,28),(47,15,15),(47,28,2),(51,3,16),(51,16,3), \\
(55,4,4),(56,1,27),(56,14,14),(56,27,1),(60,2,15), \\
(60,15,2),(64,3,3),(69,1,14),(69,14,1),(73,2,2), \\
(82,1,1)
\end{array}
\end{aligned} .
$$

Acknowledgements. The referee's comments and corrections are greatly appreciated.

References

1. Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves, Springer-Verlag, 1985
2. Ballico, E., Kim, S. J.: Weierstrass multiple loci of n-pointed algebraic curves. J. Algebra 199 (1998), no. 2, 455-471
3. Carvalho, C., Kato, T.: On Weierstrass semigroups and sets: a review of new results, Geom. Dedicata, to appear
4. Carvalho, C., Torres, F.: On Goppa codes and Weierstrass gaps at several points. Des. Codes Cryptogr. 35 (2005), no. 2, 211-225
5. Garca, A., Kim, S. J., Lax, R. F.: Consecutive Weierstrass gaps and minimum distance of Goppa codes. J. Pure Appl. Algebra 84 (1993), no. 2, 199-207
6. Geil, O.: On codes from norm-trace curves. Finite Fields Appl. 9 (2003), no. 3, 351-371
7. Homma, M., Kim, S. J.: Goppa codes with Weierstrass pairs. J. Pure Appl. Algebra 162 (2001), no. 2-3, 273-290
8. Ishii, N.: A certain graph obtained from a set of several points on a Riemann surface. Tsukuba J. Math. 23 (1999), no. 1, 55-89
9. Kim, S. J.: On the index of the Weierstrass semigroup of a pair of points on a curve. Arch. Math. (Basel) 62 (1994), no. 1, 73-82
10. Matthews, G. L.: Codes from the Suzuki function field. IEEE Trans. Inform. Theory 50 (2004), no. 12, 3298-3302
11. Matthews, G. L.: Some computational tools for estimating the parameters of algebraic geometry codes. Coding theory and quantum computing, 19-26, Contemp. Math., 381, Amer. Math. Soc., Providence, RI, 2005
12. Matthews, G. L.: Weierstrass semigroups and codes from a quotient of the Hermitian curve. Des. Codes Cryptogr. 37 (2005), no. 3, 473-492
13. Matthews, G. L.: The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian curve. Finite fields and applications, 12-24, Lecture Notes in Comput. Sci., 2948, Springer, Berlin, 2004
14. Matthews, G. L.: Weierstrass pairs and minimum distance of Goppa codes. Des. Codes Cryptogr. 22 (2001), no. 2, 107-121
15. Munuera, C., Tizziotti, G. C., Torres, F.: Two-point codes on Norm-Trace curves. Coding Theory and Applications, Second International Castle Meeting, ICMCTA 2008 (A. Barbero Ed.), 128-136, Lecture Notes in Comput. Sci. 5228, SpringerVerlag Berlin Heidelberg 2008
