ON TRIPLY-GENERATED TELESCOPIC SEMIGROUPS
AND CHAINS OF SEMIGROUPS

GRETCHEN L. MATTHEWS

ABSTRACT. Given a numerical semigroup S = (a1,a2,...,a,) in
canonical form, let M(S) := S\ {0}. Define associated numerical
semigroups B(S) := {# € No : « + M(S) C M(S)} and L(S) :=
(a1,a2 —ai,...,ay —a1). Set Bo(S) = S, and for ¢ > 1, define
B;(S) := B(B;—1(S)). Similarly, set Lo(S) = S, and for ¢ > 1, de-
fine L;(S) := L(L;—1(S)). These constructions define finite ascend-
ing chains of semigroups S = Bo(S) C B1(S) C - C Bg(s)(S) = No
and S = Lo(S) C L1(S) C -+ C Ly(s)(S) = No. It is shown that if
S is a triply-generated telescopic semigroup, then B;(S) = L1(S) for
some j, 1 < j < B(S). From this, it follows that certain triply-
generated telescopic semigroups S satisfy B;(S) C L;(S) for all
0 <1 < B(S).

1. INTRODUCTION

A numerical semigroup is a submonoid of the moniod Ny of non-negative
integers under addition. It is well known that each numerical semigroup is
finitely generated. More precisely, given a numerical semigroup S, there ex-
ist a1, as,...,a, € Nsuch that S = (aq,as,...,a,); thatis S = {Z;’:l c;a;
¢; € No}. We adopt the conventions of [1] and [2]. In particular, we will
consider those numerical semigroups S with the property that the set of
elements of S has greatest common divisor 1. (Note that while not every nu-
merical semigroup satisfies this property, every numerical semigroup is iso-
morphic to one that does.) Then each numerical semigroup S has a canon-
ical form description so that S = (a1, as,...,a,) where a1 < ag < -+ < a,,
a; ¢ {a;:1<i<wv,i#j}) forall 1 <j<v,and gcd{a,as,...,a,} =1.
The embedding dimension of S, denoted e(S), is the number of generators
of S in its canonical form description; that is, e(S) = v. It can be shown
that e(S) < ay. Thus, a numerical semigroup is said to be of mazimal
embedding dimension if e(S) = aj, the least positive element of S. The
assumption that ged{a;,as,...,a,} = 1 ensures that Ny \ S is finite. The
Frobenius number of S, denoted g(5), is the largest integer in Ny \ S.
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Suppose S = (a1, as,...,a,) is a canonical form description of a numeri-
cal semigroup S. Let M := S\ {0}. One may consider associated numerical
semigroups

B(S):={zeNy:2+ M C M}
and
L(S) := (a1,a2 — a1,...,a, —ay) .
Clearly, S C B(S) and S C L(S). It is also not hard to see that B(S) C
L(S) since x € B(S) implies z+a; = Y _._, ¢;a; for some ¢; € Ng. Asin [1],
one may iterate the B and L constructions to obtain two ascending chains
of numerical semigroups

Bo(S) =5 g Bl(S) = B(Bo(S)) Q Q Bh+1(5) = B(Bh(S)) g ‘o
and
Lo(S) :== 8 C Li(S) := L(Lo(S)) € -+ € Lp41(S) :== L(Ln(S5)) € ...

Note that S G B(S) and S G L(S) for all numerical semigroups S #
Ny. This, together with the fact that Ny \ S is finite, implies that there
exist smallest non-negative integers 5(S) and A(S) such that Bg(g)(S) =
No = Lx(s)(S). Thus, the B and L constructions give rise to finite strictly
increasing chains of numerical semigroups. Since By(S) = S = Lo(95),
B1(S) € L1(S), and Bgs)(S) = Ng = Ly(s)(5), it is natural to compare
the two chains. In particular, it is natural to ask, as in [1], if B;(S) C L;(S)
for all 0 < ¢ < 3(S). In [2], we show that while this containment does not
hold for all numerical semigroups S, it does hold if S is a doubly-generated
semigroup (aj,as).

This brings us to the focus of this work. Doubly-generated semigroups
S = (a1, az) are examples of so-called telescopic semigroups. A numerical
semigroup S = (ai,as,...,a,) in canonical form is telescopic if g— € S;_1

for all 2 <i < v, where d; := ged{ay,as,...,a;} and S; := <‘(11—11, ‘;—f,...,;—;>.

In this paper, we consider triply-generated telescopic semigroups; that
is, numerical semigroups S = (a1, as,as) such that asz € <%1, %2> where
d := ged{ay,az}. The main result, Theorem 2.3, states that for such S,
Bay 4 5(S) = L1(S). It follows immediately that B;(S) € Li(S) for
0 <i< % +d-2 Asa consequence, we see in Corollary 2.4 that for
certain triply-generated telescopic semigroups S, B;(S) C L;(S) for all
0<i<p(s).

For background on numerical semigroups, see [4], [1]. For background
on telescopic semigroups, see [3].

2. RESULTS

We collect some results on numerical semigroups from [1] that will be
used in the proof of the main result. Recall that a numerical semigroup S
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is symmetric if the map SN {0,1,...,9(S)} — (No\ S)n{0,1,...,9(9)}
defined by s — ¢(S) — s is a bijection.

Proposition 2.1. Let S = {(a1,as,...,a,) be a numerical semigroup in
canonical form. Then:

(a) g(B1(5)) = g(5) — ar.

(b) If S is symmetric, then B1(S) = (a1, az,...,a,,9(S)).

(c) S is of mazimal embedding dimension if and only if B1(S) = L1(S5).

The next proposition contains some useful results on telescopic semi-
groups from [3].

Proposition 2.2. (a) Suppose S = (a1, a2,a3) is a canonical form de-
scription of a numerical semigroup S. If S is telescopic, then g(S) =
A2 4+ (d —1)ag — a1 — az where d := ged{ay,az}.

(b) If a numerical semigroup S is telescopic, then S is symmetric.

Theorem 2.3. If S = (aj,as2,a3) is a telescopic semigroup and d :=
ged{ay,as}, then Bi(S) C Li(S) for 0 < i < 4 +d — 2. Moreover,
B‘%erfz(s) = Li(9).

Proof. It will be convenient to write B; and L; instead of B;(S) and L;(S5),
respectively. Let g := ¢(S) and d := ged{a,as}. According to Proposition

2.2(a),
a10a2

g(S) = +(d71)a3—a1 — as.

Much of the proof is devoted to proving the claim that if 1 <i < % +d—3,
then
B, = ({a1,a2,a3} UT;)
where
g—ria; —roaz —13a3: T1+T1r2+71r3=10—1,
0<r <i-—1,
0<ry <4 —
0 S T3 é d — ].

First, we establish the claim in the case i = 1. According to Proposi-
tion 2.2(b), S is symmetric since S is telescopic. This implies that B; =
(a1,2,as,g) by Proposition 2.1(b). It follows that By = (a1,a2,a3} UT1)
as T1 = {g}, and the claim holds in the case i = 1.

We now proceed by induction on ¢ > 1. Suppose the claim holds for all
j, 1 < j < i—1; that is, assume that B; = ({a1,a2,a3} UTj;) for all j,
1 < j <i—1. By definition of B;, to show that ({a1,as,a3} UT;) C B;, it
suffices to show that T; C B;. Let x € T;. Then

T; =

)

T = g —Ti1a1 — Troag — T3as3,

where ri+ro+r3 =i—1,0<7r; <i—1,0<7r < % —1,and 0 <73 < d—1.

‘We must show that x + B;_1 C B;_1. Since B;_1 = <{a1,a2,a3} UT,‘_1>
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by the induction hypothesis, it suffices to show that x + 5 C B;_; and
x+T;—1 C B;—1. Note that x + a1 = g — (11 — 1)ay — reag — rzaz. If
0<ri<i—1,thenz+a; € T;_1. If r; =0, then x + a1 = g+ a1 —r2a2 —
r3az = (4 —1—ra)az+(d—1—r3)az € S. Thus, v+a; € B;_;. Similarly,
one may check that z + as,x +a3 € B;_1. Thenz+ S C B;_;.

It remains to show that x +7T; 1 C B; 1. Let y € T;_1. Then

Y=g —lha —lras — l3as,

where l1 +lo+1l3=1—2,0< 11 <i—2,0< [, < %—1,and0§l3 <d-1.
We will show that x +y € B;_1. Notice that z +y

=g —ria; — 1202 —r3az + g —liay — laaz — l3a3
:g—(r1+ll+1)a1—(7“2—1—12—(%1— ))ag—(r3+l3—(d—1))a3.

If r1 41, <i—3, then (’I‘l —|—ll—|—1)—|—(r2+l2—(%— ))+(T3+l3—(d—1)) =
(T1+T2+T3)+(ll+l2+lg)*(%+d73) = (i71)+(i72)*(%+
d-3)<i—-14i—-2—-i=i—-3and 0<7r; 4+ +1<i—2 Since
0<ro,ly < %—170§T2+12—(%— )S %—1. Since 0 < r3,l3 <d—1,
0 <rg+l3—(d—1) < d-—1. By definition of T;_1, this implies that
r4+y€eT;_1 C Bj_qinthecaser; +1; <i—3.

We now assume that 1 +1; > i —2. Notice that z+y > g(B;_1) implies
xr+y € B;_1. Thus, we only need to consider the case in which x + y <
g(Bi—1). Repeated applications of Proposition 2.1(a) lead to ¢g(B;—1) =
g— (i —1)ay since ay < g — (%4 —3)az — (d — 1)ag < z for all z € T;_;.
Thus,  +y < g — (¢ — 1)ay. This implies

(1) Asas + Asas < Aqaq,

where A1 = 7’1+llf(i72), A2 = %717(1"24’12), and A3 = d*l*(’l‘gﬁ*lg).
Note that

Ay + A3 > A
Otherwise, Ay + Az < Ay, which implies that
%—1—(7‘2+l2)+d—1—(7‘3+l3) §T1+l1—(i—2).

Asaresult, ¢ +d—3+i—-2< (ri+ro+r3)+(h+la+l3) =i—1+i—1,
and so % +d —3 < i—2. This contradicts the fact that 1 <i < % +d —3.
If Ay <0, then as < ag implies that Asas > Asas. Then (1) gives

(A2 + A3z)as < Azaz + Asaz < Ajay < Ajas.
It follows that As + A3 < Aj, which is a contradiction. Thus, A, > 0. If
Az >0, then (As + As)a; < Asas + Asas < Ajaq. This implies Ay + Az <
A1, which is a contradiction.

Thus, we have reduced to the case where A; > 0, Ay > 0, and A3 < 0;
that is, r1 +11 >i—2, %4 —1>ry+1lp,and r3 +13 >d—1. Then z +y

=g —ria1 —reaz — 1303 + g — liar — laaz — lzas
:g—(’l"l-l-ll — %2+1)Q1—(r2+lg+1)a2—(r3+13—(d—1))a3.



ON TELESCOPIC SEMIGROUPS 5

a2

If r1 +1; — %% +1 < 0, then substituting for g and simplifying gives z +y =
(%—1—(7‘2+l2+1))a2+((d—1)—(T3+l3—(d—1)))a3—(T1+ll—%"-ﬁ-l-l—l)al S
S. Thus, the only case left to consider is r1 + [; — %2 + 1 > 0. Here,
-2+l =>G—-1—(ro+m3) +(@E—-2-(a+13) -2 +1<
i—1+i-2—(d-1)-2+1<i—1+i—-1—-(% +d—3) <i—2. Wealso
have that (ry+11 — % +1)+(r2+la+1)+(rs+I3—(d—1)) < i—3. Therefore,
r+y € SUT;_1 C B;_1. This shows that x +T;_1 C B;_1. It follows that
2+ B;—1 C B;_1, and so x € B;. Therefore, ({a1,a2,a3} UT;) C B;.

In order to complete the proof of the claim, we must show that B; C
({a1,a9,a3} UT;). Clearly, by the induction hypothesis,

Bi—1 = ({a1,a2,a3} UT;—1) C ({a1,az,a3} UT;) .

Next, we show that B; \ B;—1 C {{a1,a2,a3} UT;). Let z € B; \ B;_1.
Then z + B;—1 C B;_;. Since z ¢ By, there exists j € {1,2,3} such
that z+a; € Bi_1\ S = ({a1,a2,a3} UT;_1) \ S. This leads to z + a; =
g—ria1—Treas—rzaz+m for some g—ria; —roas—rzaz € T;_1 andm € B;_;.
Note that r1+7y+1r3 = i—2. Thus, z = g—r1a1 —r2a2—r303—a;+m. Using
the definition of T; together with the fact that 7; + B;_1 C B;_1, we see
that z € T;U(T;+B;—1) C T,UB;_1 C {{a1,az2,a3} UT;) except in the cases
Jj=2withry = %4 —land j = 3withrg = d—1. If 2 = g—ria1— % az—73a3,
then g = z +ria; + %az +rzaz = z +ria; + Fa; +rzaz € z4(r1 + @+
r3)M € 24 (i —2— (% - 1)+ %)M € z+iM € B; +iM € S, where
M := S\ {0}. This is a contradiction, since by definition g ¢ S. Thus,
2 # g—ria1—Gaz—r3ag. Similarly, z = g—7r1a1 —reaz —daz implies g € S.
Thus, z # g—ria; —reas —dag. It follows that z € ({a1,a2,a3} UT;). This
proves that B; C ({a1,az2,a3} UT;). Therefore, B; = ({a1,a2,a3} UT;). By
induction, this completes the proof of the claim that B; = ({a1, as, a3} U T;)
for1<i< %l—i—d—?).

Since we have shown the claim holds for i = %4 +d =3, By 4 3 =

<{a1, as,as} U T%+d73>. Note that <{a1, ag,asz} U T%+d73> gives a canon-

ical form description of Bay 4 5. Hence e(Bay 4 5) = [{a1,a2,a3} U
Toy g3l =3+ |Tey 4 5| Using the fact that [Ty 4 4

g —Tria1 — 7202 —713as: 7“1—1—7“2—|—T3:%+d_4,
0<m <% +d-4
0<ry <4 -—
0§7"3§d—1

i

(ri,ro,m3) 1 ri4r2+r3 =% +d—4,

_ 0<r <% +d—4, a3
- 0<r, <% 1, R
0§r3§d—1
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we conclude that e(Bxy 4 3) = 3+ (a1 — 3) = a1. Therefore, Bay ;43 is
of maximal embedding dimension.

By Proposition 2.1(c), since B%l+d73 is of maximal embedding dimen-
sion, we have that B%+d_2 =

B(B%-s-d_g) = L(B‘%l-g-d_g) = <{a1,a2 —a1,a3 — al} U {171+d73>,

! .—
where T%er_3 =

g —Tia1 —To02 —T3a3 — Ay : r1+r2+r3:%+df3,1’
0<rm <% +d-3-1,
0<r <4 —
0<r3<d-1

)

In particular,
L1 = <a1,a2 —ap,as — a1> Q B%+d72.

We claim that Ly = Bay , 4_5. To show this, we must show that T%+d_3

N

(a1,a2 —ai,a3 —ay) = L.

Let z € T’ail+d_3. Then z = g—(r1+1)a; —reas—r3as, where ri+rotrs =
d
U+d-—4,0<r <D 4+d-40<rn <Y -1land0<r3 <d-1
Substituting for g yields z = (%4 —r1 —1)(a2 —a1) +(d—r3 —1)(az —a1) €
(a1,a2 — a1,as3 — aq). This gives Téﬁl+d73 C Ly, which leads to
d
Bay g 9= <{a1,a2 —a1,a3 —apU 271+d_3> =L,.
Since B;(S) € Bi41(S) for all i > 0 and Bey 45 = Ly, we have
BoCB1 S By S-S Beyyg o= L.

Since L;(S) C L;y1(S) for all ¢ > 0, this implies that B;(S) C L1(S) C
Li(S) forall0 <i< % +d—2. O
Corollary 2.4. If S = (a1,a2,a3) is a telescopic semigroup and a; €

(ag — a1, a3 — a1), then B;(S) C L;(S) for all 0 < i < 3(S).
To prove this corollary, we will use the following result from [2].

Proposition 2.5. Let S be a numerical semigroup of embedding dimension
e(S) = 2; that is, S = (a1, az) where a; and ay are relatively prime natural
numbers greater than 1. Then B;(S) C L;(S) for all 0 <14 < 3(S).

Proof of Corollary 2.4. As before, let d := ged{as,az}. Then B;(S) C L;(S)
for 0 <4 < % +d — 2 by Theorem 2.3. In addition, B%+d—2(s) = L1(S).
By definition,

Ll(S) = <01702 — Q1,03 — a1> = <a2 —a1,as — a1>
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since a1 € (a2 — a1, a3 — a1). The fact that B;(S) C L;(S) for 4 +d—2 <
i < 3(S) now follows immediately from Proposition 2.5 since L; is doubly-
generated. [J
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