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Abstract. Given a numerical semigroup S = 〈a1, a2, . . . , aν〉 in
canonical form, let M(S) := S \ {0}. Define associated numerical
semigroups B(S) := {x ∈ N0 : x + M(S) ⊆ M(S)} and L(S) :=
〈a1, a2 − a1, . . . , aν − a1〉 . Set B0(S) = S, and for i ≥ 1, define
Bi(S) := B(Bi−1(S)). Similarly, set L0(S) = S, and for i ≥ 1, de-
fine Li(S) := L(Li−1(S)). These constructions define finite ascend-
ing chains of semigroups S = B0(S) ⊆ B1(S) ⊆ · · · ⊆ Bβ(S)(S) = N0

and S = L0(S) ⊆ L1(S) ⊆ · · · ⊆ Lλ(S)(S) = N0. It is shown that if

S is a triply-generated telescopic semigroup, then Bj(S) = L1(S) for
some j, 1 ≤ j ≤ β(S). From this, it follows that certain triply-
generated telescopic semigroups S satisfy Bi(S) ⊆ Li(S) for all
0 ≤ i ≤ β(S).

1. Introduction

A numerical semigroup is a submonoid of the moniod N0 of non-negative
integers under addition. It is well known that each numerical semigroup is
finitely generated. More precisely, given a numerical semigroup S, there ex-
ist a1, a2, . . . , aν ∈ N such that S = 〈a1, a2, . . . , aν〉; that is S = {∑ν

i=1 ciai :
ci ∈ N0}. We adopt the conventions of [1] and [2]. In particular, we will
consider those numerical semigroups S with the property that the set of
elements of S has greatest common divisor 1. (Note that while not every nu-
merical semigroup satisfies this property, every numerical semigroup is iso-
morphic to one that does.) Then each numerical semigroup S has a canon-
ical form description so that S = 〈a1, a2, . . . , aν〉 where a1 < a2 < · · · < aν ,
aj /∈ 〈{ai : 1 ≤ i ≤ ν, i 6= j}〉 for all 1 ≤ j ≤ ν, and gcd{a1, a2, . . . , aν} = 1.
The embedding dimension of S, denoted e(S), is the number of generators
of S in its canonical form description; that is, e(S) = ν. It can be shown
that e(S) ≤ a1. Thus, a numerical semigroup is said to be of maximal
embedding dimension if e(S) = a1, the least positive element of S. The
assumption that gcd{a1, a2, . . . , aν} = 1 ensures that N0 \ S is finite. The
Frobenius number of S, denoted g(S), is the largest integer in N0 \ S.
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Suppose S = 〈a1, a2, . . . , aν〉 is a canonical form description of a numeri-
cal semigroup S. Let M := S \{0}. One may consider associated numerical
semigroups

B(S) := {x ∈ N0 : x + M ⊆ M}
and

L(S) := 〈a1, a2 − a1, . . . , aν − a1〉 .
Clearly, S ⊆ B(S) and S ⊆ L(S). It is also not hard to see that B(S) ⊆
L(S) since x ∈ B(S) implies x+a1 =

∑ν
i=1 ciai for some ci ∈ N0. As in [1],

one may iterate the B and L constructions to obtain two ascending chains
of numerical semigroups

B0(S) := S ⊆ B1(S) := B(B0(S)) ⊆ · · · ⊆ Bh+1(S) := B(Bh(S)) ⊆ . . .

and

L0(S) := S ⊆ L1(S) := L(L0(S)) ⊆ · · · ⊆ Lh+1(S) := L(Lh(S)) ⊆ . . . .

Note that S $ B(S) and S $ L(S) for all numerical semigroups S 6=
N0. This, together with the fact that N0 \ S is finite, implies that there
exist smallest non-negative integers β(S) and λ(S) such that Bβ(S)(S) =
N0 = Lλ(S)(S). Thus, the B and L constructions give rise to finite strictly
increasing chains of numerical semigroups. Since B0(S) = S = L0(S),
B1(S) ⊆ L1(S), and Bβ(S)(S) = N0 = Lλ(S)(S), it is natural to compare
the two chains. In particular, it is natural to ask, as in [1], if Bi(S) ⊆ Li(S)
for all 0 ≤ i ≤ β(S). In [2], we show that while this containment does not
hold for all numerical semigroups S, it does hold if S is a doubly-generated
semigroup 〈a1, a2〉.

This brings us to the focus of this work. Doubly-generated semigroups
S = 〈a1, a2〉 are examples of so-called telescopic semigroups. A numerical
semigroup S = 〈a1, a2, . . . , aν〉 in canonical form is telescopic if ai

di
∈ Si−1

for all 2 ≤ i ≤ ν, where di := gcd{a1, a2, . . . , ai} and Si :=
〈

a1
di

, a2
di

, . . . , ai

di

〉
.

In this paper, we consider triply-generated telescopic semigroups; that
is, numerical semigroups S = 〈a1, a2, a3〉 such that a3 ∈

〈
a1
d , a2

d

〉
where

d := gcd{a1, a2}. The main result, Theorem 2.3, states that for such S,
B a1

d +d−2(S) = L1(S). It follows immediately that Bi(S) ⊆ Li(S) for
0 ≤ i ≤ a1

d + d − 2. As a consequence, we see in Corollary 2.4 that for
certain triply-generated telescopic semigroups S, Bi(S) ⊆ Li(S) for all
0 ≤ i ≤ β(S).

For background on numerical semigroups, see [4], [1]. For background
on telescopic semigroups, see [3].

2. Results

We collect some results on numerical semigroups from [1] that will be
used in the proof of the main result. Recall that a numerical semigroup S
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is symmetric if the map S ∩ {0, 1, . . . , g(S)} → (N0 \ S) ∩ {0, 1, . . . , g(S)}
defined by s 7→ g(S)− s is a bijection.

Proposition 2.1. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup in
canonical form. Then:
(a) g(B1(S)) = g(S)− a1.
(b) If S is symmetric, then B1(S) = 〈a1, a2, . . . , aν , g(S)〉.
(c) S is of maximal embedding dimension if and only if B1(S) = L1(S).

The next proposition contains some useful results on telescopic semi-
groups from [3].

Proposition 2.2. (a) Suppose S = 〈a1, a2, a3〉 is a canonical form de-
scription of a numerical semigroup S. If S is telescopic, then g(S) =
a1a2

d + (d− 1)a3 − a1 − a2 where d := gcd{a1, a2}.
(b) If a numerical semigroup S is telescopic, then S is symmetric.

Theorem 2.3. If S = 〈a1, a2, a3〉 is a telescopic semigroup and d :=
gcd{a1, a2}, then Bi(S) ⊆ Li(S) for 0 ≤ i ≤ a1

d + d − 2. Moreover,
B a1

d +d−2(S) = L1(S).

Proof. It will be convenient to write Bi and Li instead of Bi(S) and Li(S),
respectively. Let g := g(S) and d := gcd{a1, a2}. According to Proposition
2.2(a),

g(S) =
a1a2

d
+ (d− 1)a3 − a1 − a2.

Much of the proof is devoted to proving the claim that if 1 ≤ i ≤ a1
d +d−3,

then
Bi = 〈{a1, a2, a3} ∪ Ti〉

where

Ti :=





g − r1a1 − r2a2 − r3a3 : r1 + r2 + r3 = i− 1,
0 ≤ r1 ≤ i− 1,
0 ≤ r2 ≤ a1

d − 1,
0 ≤ r3 ≤ d− 1





.

First, we establish the claim in the case i = 1. According to Proposi-
tion 2.2(b), S is symmetric since S is telescopic. This implies that B1 =
〈a1,2 , a3, g〉 by Proposition 2.1(b). It follows that B1 = 〈a1, a2, a3} ∪ T1〉
as T1 = {g}, and the claim holds in the case i = 1.

We now proceed by induction on i ≥ 1. Suppose the claim holds for all
j, 1 ≤ j ≤ i − 1; that is, assume that Bj = 〈{a1, a2, a3} ∪ Tj〉 for all j,
1 ≤ j ≤ i− 1. By definition of Bi, to show that 〈{a1, a2, a3} ∪ Ti〉 ⊆ Bi, it
suffices to show that Ti ⊆ Bi. Let x ∈ Ti. Then

x := g − r1a1 − r2a2 − r3a3,

where r1+r2+r3 = i−1, 0 ≤ r1 ≤ i−1, 0 ≤ r2 ≤ a1
d −1, and 0 ≤ r3 ≤ d−1.

We must show that x + Bi−1 ⊆ Bi−1. Since Bi−1 = 〈{a1, a2, a3} ∪ Ti−1〉
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by the induction hypothesis, it suffices to show that x + S ⊆ Bi−1 and
x + Ti−1 ⊆ Bi−1. Note that x + a1 = g − (r1 − 1)a1 − r2a2 − r3a3. If
0 < r1 ≤ i− 1, then x + a1 ∈ Ti−1. If r1 = 0, then x + a1 = g + a1− r2a2−
r3a3 = (a1

d −1− r2)a2 +(d−1− r3)a3 ∈ S. Thus, x+a1 ∈ Bi−1. Similarly,
one may check that x + a2, x + a3 ∈ Bi−1. Then x + S ⊆ Bi−1.

It remains to show that x + Ti−1 ⊆ Bi−1. Let y ∈ Ti−1. Then

y := g − l1a1 − l2a2 − l3a3,

where l1 + l2 + l3 = i−2, 0 ≤ l1 ≤ i−2, 0 ≤ l2 ≤ a1
d −1, and 0 ≤ l3 ≤ d−1.

We will show that x + y ∈ Bi−1. Notice that x + y

= g − r1a1 − r2a2 − r3a3 + g − l1a1 − l2a2 − l3a3

= g − (r1 + l1 + 1)a1 − (r2 + l2 − (a1
d − 1))a2 − (r3 + l3 − (d− 1))a3.

If r1 + l1 ≤ i−3, then (r1 + l1 +1)+(r2 + l2−(a1
d −1))+(r3 + l3−(d−1)) =

(r1 + r2 + r3) + (l1 + l2 + l3) − (a1
d + d − 3) = (i − 1) + (i − 2) − (a1

d +
d − 3) ≤ i − 1 + i − 2 − i = i − 3 and 0 ≤ r1 + l1 + 1 ≤ i − 2. Since
0 ≤ r2, l2 ≤ a1

d − 1, 0 ≤ r2 + l2− (a1
d − 1) ≤ a1

d − 1. Since 0 ≤ r3, l3 ≤ d− 1,
0 ≤ r3 + l3 − (d − 1) ≤ d − 1. By definition of Ti−1, this implies that
x + y ∈ Ti−1 ⊆ Bi−1 in the case r1 + l1 ≤ i− 3.

We now assume that r1 + l1 ≥ i−2. Notice that x+y > g(Bi−1) implies
x + y ∈ Bi−1. Thus, we only need to consider the case in which x + y ≤
g(Bi−1). Repeated applications of Proposition 2.1(a) lead to g(Bi−1) =
g − (i − 1)a1 since a1 < g − (a1

d − 3)a2 − (d − 1)a3 ≤ z for all z ∈ Ti−1.
Thus, x + y ≤ g − (i− 1)a1. This implies

(1) A2a2 + A3a3 ≤ A1a1,

where A1 := r1+l1−(i−2), A2 := a1
d −1−(r2+l2), and A3 := d−1−(r3+l3).

Note that
A2 + A3 > A1.

Otherwise, A2 + A3 ≤ A1, which implies that
a1

d
− 1− (r2 + l2) + d− 1− (r3 + l3) ≤ r1 + l1 − (i− 2).

As a result, a1
d + d− 3+ i− 2 ≤ (r1 + r2 + r3)+ (l1 + l2 + l3) = i− 1+ i− 1,

and so a1
d +d− 3 ≤ i− 2. This contradicts the fact that 1 ≤ i ≤ a1

d +d− 3.
If A2 ≤ 0, then a2 < a3 implies that A2a2 ≥ A2a3. Then (1) gives

(A2 + A3)a3 ≤ A2a2 + A3a3 ≤ A1a1 ≤ A1a3.

It follows that A2 + A3 ≤ A1, which is a contradiction. Thus, A2 > 0. If
A3 ≥ 0, then (A2 + A3)a1 ≤ A2a2 + A3a3 ≤ A1a1. This implies A2 + A3 ≤
A1, which is a contradiction.

Thus, we have reduced to the case where A1 ≥ 0, A2 > 0, and A3 < 0;
that is, r1 + l1 ≥ i− 2, a1

d − 1 > r2 + l2, and r3 + l3 > d− 1. Then x + y

= g − r1a1 − r2a2 − r3a3 + g − l1a1 − l2a2 − l3a3

= g − (r1 + l1 − a2
d + 1)a1 − (r2 + l2 + 1)a2 − (r3 + l3 − (d− 1))a3.
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If r1 + l1− a2
d +1 < 0, then substituting for g and simplifying gives x+ y =

(a1
d −1−(r2+l2+1))a2+((d−1)−(r3+l3−(d−1)))a3−(r1+l1− a2

d +1+1)a1 ∈
S. Thus, the only case left to consider is r1 + l1 − a2

d + 1 ≥ 0. Here,
r1 + l1 − a2

d + 1 = (i − 1 − (r2 + r3)) + (i − 2 − (l2 + l3)) − a2
d + 1 <

i− 1+ i− 2− (d− 1)− a2
d +1 < i− 1+ i− 1− (a1

d + d− 3) < i− 2. We also
have that (r1+l1− a2

d +1)+(r2+l2+1)+(r3+l3−(d−1)) ≤ i−3. Therefore,
x + y ∈ S ∪ Ti−1 ⊆ Bi−1. This shows that x + Ti−1 ⊆ Bi−1. It follows that
x + Bi−1 ⊆ Bi−1, and so x ∈ Bi. Therefore, 〈{a1, a2, a3} ∪ Ti〉 ⊆ Bi.

In order to complete the proof of the claim, we must show that Bi ⊆
〈{a1, a2, a3} ∪ Ti〉. Clearly, by the induction hypothesis,

Bi−1 = 〈{a1, a2, a3} ∪ Ti−1〉 ⊆ 〈{a1, a2, a3} ∪ Ti〉 .

Next, we show that Bi \ Bi−1 ⊆ 〈{a1, a2, a3} ∪ Ti〉. Let z ∈ Bi \ Bi−1.
Then z + Bi−1 ⊆ Bi−1. Since z /∈ B1, there exists j ∈ {1, 2, 3} such
that z + aj ∈ Bi−1 \ S = 〈{a1, a2, a3} ∪ Ti−1〉 \ S. This leads to z + aj =
g−r1a1−r2a2−r3a3+m for some g−r1a1−r2a2−r3a3 ∈ Ti−1 and m ∈ Bi−1.
Note that r1+r2+r3 = i−2. Thus, z = g−r1a1−r2a2−r3a3−aj+m. Using
the definition of Ti together with the fact that Ti + Bi−1 ⊆ Bi−1, we see
that z ∈ Ti∪(Ti+Bi−1) ⊆ Ti∪Bi−1 ⊆ 〈{a1, a2, a3} ∪ Ti〉 except in the cases
j = 2 with r2 = a1

d −1 and j = 3 with r3 = d−1. If z = g−r1a1− a1
d a2−r3a3,

then g = z + r1a1 + a1
d a2 + r3a3 = z + r1a1 + a2

d a1 + r3a3 ∈ z + (r1 + a2
d +

r3)M ∈ z + (i − 2 − (a1
d − 1) + a2

d )M ∈ z + iM ∈ Bi + iM ∈ S, where
M := S \ {0}. This is a contradiction, since by definition g /∈ S. Thus,
z 6= g−r1a1− a1

d a2−r3a3. Similarly, z = g−r1a1−r2a2−da3 implies g ∈ S.
Thus, z 6= g−r1a1−r2a2−da3. It follows that z ∈ 〈{a1, a2, a3} ∪ Ti〉. This
proves that Bi ⊆ 〈{a1, a2, a3} ∪ Ti〉. Therefore, Bi = 〈{a1, a2, a3} ∪ Ti〉. By
induction, this completes the proof of the claim that Bi = 〈{a1, a2, a3} ∪ Ti〉
for 1 ≤ i ≤ a1

d + d− 3.
Since we have shown the claim holds for i = a1

d + d − 3, B a1
d +d−3 =〈

{a1, a2, a3} ∪ T a1
d +d−3

〉
. Note that

〈
{a1, a2, a3} ∪ T a1

d +d−3

〉
gives a canon-

ical form description of B a1
d +d−3. Hence e(B a1

d +d−3) = |{a1, a2, a3} ∪
T a1

d +d−3| = 3 + |T a1
d +d−3|. Using the fact that |T a1

d +d−3|

=

∣∣∣∣∣∣∣∣





g − r1a1 − r2a2 − r3a3 : r1 + r2 + r3 = a1
d + d− 4,

0 ≤ r1 ≤ a1
d + d− 4,

0 ≤ r2 ≤ a1
d − 1,

0 ≤ r3 ≤ d− 1





∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣





(r1, r2, r3) : r1 + r2 + r3 = a1
d + d− 4,

0 ≤ r1 ≤ a1
d + d− 4,

0 ≤ r2 ≤ a1
d − 1,

0 ≤ r3 ≤ d− 1





∣∣∣∣∣∣∣∣
= a1 − 3,
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we conclude that e(B a1
d +d−3) = 3 + (a1 − 3) = a1. Therefore, B a1

d +d−3 is
of maximal embedding dimension.

By Proposition 2.1(c), since B a1
d +d−3 is of maximal embedding dimen-

sion, we have that B a1
d +d−2 =

B(B a1
d +d−3) = L(B a1

d +d−3) =
〈
{a1, a2 − a1, a3 − a1} ∪ T ′a1

d +d−3

〉
,

where T ′a1
d +d−3

:=




g − r1a1 − r2a2 − r3a3 − a1 : r1 + r2 + r3 = a1
d + d− 3− 1,

0 ≤ r1 ≤ a1
d + d− 3− 1,

0 ≤ r2 ≤ a1
d − 1,

0 ≤ r3 ≤ d− 1





.

In particular,

L1 = 〈a1, a2 − a1, a3 − a1〉 ⊆ B a1
d +d−2.

We claim that L1 = B a1
d +d−2. To show this, we must show that T ′a1

d +d−3
⊆

〈a1, a2 − a1, a3 − a1〉 = L1.
Let z ∈ T ′a1

d +d−3
. Then z = g−(r1+1)a1−r2a2−r3a3, where r1+r2+r3 =

a1
d + d − 4, 0 ≤ r1 ≤ a1

d + d − 4, 0 ≤ r2 ≤ a1
d − 1, and 0 ≤ r3 ≤ d − 1.

Substituting for g yields z = (a1
d − r1− 1)(a2−a1)+ (d− r3− 1)(a3−a1) ∈

〈a1, a2 − a1, a3 − a1〉. This gives T ′a1
d +d−3

⊆ L1, which leads to

B a1
d +d−2 =

〈
{a1, a2 − a1, a3 − a1} ∪ T ′a1

d +d−3

〉
= L1.

Since Bi(S) ⊆ Bi+1(S) for all i ≥ 0 and B a1
d +d−2 = L1, we have

B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ B a1
d +d−2 = L1.

Since Li(S) ⊆ Li+1(S) for all i ≥ 0, this implies that Bi(S) ⊆ L1(S) ⊆
Li(S) for all 0 ≤ i ≤ a1

d + d− 2. ¤

Corollary 2.4. If S = 〈a1, a2, a3〉 is a telescopic semigroup and a1 ∈
〈a2 − a1, a3 − a1〉, then Bi(S) ⊆ Li(S) for all 0 ≤ i ≤ β(S).

To prove this corollary, we will use the following result from [2].

Proposition 2.5. Let S be a numerical semigroup of embedding dimension
e(S) = 2; that is, S = 〈a1, a2〉 where a1 and a2 are relatively prime natural
numbers greater than 1. Then Bi(S) ⊆ Li(S) for all 0 ≤ i ≤ β(S).

Proof of Corollary 2.4. As before, let d := gcd{a1, a2}. Then Bi(S) ⊆ Li(S)
for 0 ≤ i ≤ a1

d + d− 2 by Theorem 2.3. In addition, B a1
d +d−2(S) = L1(S).

By definition,

L1(S) = 〈a1, a2 − a1, a3 − a1〉 = 〈a2 − a1, a3 − a1〉
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since a1 ∈ 〈a2 − a1, a3 − a1〉. The fact that Bi(S) ⊆ Li(S) for a1
d + d− 2 <

i ≤ β(S) now follows immediately from Proposition 2.5 since L1 is doubly-
generated. ¤
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