ON TRIPLY-GENERATED TELESCOPIC SEMIGROUPS AND CHAINS OF SEMIGROUPS

GRETCHEN L. MATTHEWS

Abstract

Given a numerical semigroup $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$ in canonical form, let $M(S):=S \backslash\{0\}$. Define associated numerical semigroups $B(S):=\left\{x \in \mathbb{N}_{0}: x+M(S) \subseteq M(S)\right\}$ and $L(S):=$ $\left\langle a_{1}, a_{2}-a_{1}, \ldots, a_{\nu}-a_{1}\right\rangle$. Set $B_{0}(S)=S$, and for $i \geq 1$, define $B_{i}(S):=B\left(B_{i-1}(S)\right)$. Similarly, set $L_{0}(S)=S$, and for $i \geq 1$, define $L_{i}(S):=L\left(L_{i-1}(S)\right)$. These constructions define finite ascending chains of semigroups $S=B_{0}(S) \subseteq B_{1}(S) \subseteq \cdots \subseteq B_{\beta(S)}(S)=\mathbb{N}_{0}$ and $S=L_{0}(S) \subseteq L_{1}(S) \subseteq \cdots \subseteq L_{\lambda(S)}(S)=\mathbb{N}_{0}$. It is shown that if S is a triply-generated telescopic semigroup, then $B_{j}(S)=L_{1}(S)$ for some $j, 1 \leq j \leq \beta(S)$. From this, it follows that certain triplygenerated telescopic semigroups S satisfy $B_{i}(S) \subseteq L_{i}(S)$ for all $0 \leq i \leq \beta(S)$.

1. Introduction

A numerical semigroup is a submonoid of the moniod \mathbb{N}_{0} of non-negative integers under addition. It is well known that each numerical semigroup is finitely generated. More precisely, given a numerical semigroup S, there exist $a_{1}, a_{2}, \ldots, a_{\nu} \in \mathbb{N}$ such that $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$; that is $S=\left\{\sum_{i=1}^{\nu} c_{i} a_{i}\right.$: $\left.c_{i} \in \mathbb{N}_{0}\right\}$. We adopt the conventions of [1] and [2]. In particular, we will consider those numerical semigroups S with the property that the set of elements of S has greatest common divisor 1. (Note that while not every numerical semigroup satisfies this property, every numerical semigroup is isomorphic to one that does.) Then each numerical semigroup S has a canonical form description so that $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$ where $a_{1}<a_{2}<\cdots<a_{\nu}$, $a_{j} \notin\left\langle\left\{a_{i}: 1 \leq i \leq \nu, i \neq j\right\}\right\rangle$ for all $1 \leq j \leq \nu$, and $\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{\nu}\right\}=1$. The embedding dimension of S, denoted $e(S)$, is the number of generators of S in its canonical form description; that is, $e(S)=\nu$. It can be shown that $e(S) \leq a_{1}$. Thus, a numerical semigroup is said to be of maximal embedding dimension if $e(S)=a_{1}$, the least positive element of S. The assumption that $\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{\nu}\right\}=1$ ensures that $\mathbb{N}_{0} \backslash S$ is finite. The Frobenius number of S, denoted $g(S)$, is the largest integer in $\mathbb{N}_{0} \backslash S$.

Suppose $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$ is a canonical form description of a numerical semigroup S. Let $M:=S \backslash\{0\}$. One may consider associated numerical semigroups

$$
B(S):=\left\{x \in \mathbb{N}_{0}: x+M \subseteq M\right\}
$$

and

$$
L(S):=\left\langle a_{1}, a_{2}-a_{1}, \ldots, a_{\nu}-a_{1}\right\rangle .
$$

Clearly, $S \subseteq B(S)$ and $S \subseteq L(S)$. It is also not hard to see that $B(S) \subseteq$ $L(S)$ since $\bar{x} \in B(S)$ implies $x+a_{1}=\sum_{i=1}^{\nu} c_{i} a_{i}$ for some $c_{i} \in \mathbb{N}_{0}$. As in [1], one may iterate the B and L constructions to obtain two ascending chains of numerical semigroups

$$
B_{0}(S):=S \subseteq B_{1}(S):=B\left(B_{0}(S)\right) \subseteq \cdots \subseteq B_{h+1}(S):=B\left(B_{h}(S)\right) \subseteq \ldots
$$

and

$$
L_{0}(S):=S \subseteq L_{1}(S):=L\left(L_{0}(S)\right) \subseteq \cdots \subseteq L_{h+1}(S):=L\left(L_{h}(S)\right) \subseteq \ldots
$$

Note that $S \varsubsetneqq B(S)$ and $S \varsubsetneqq L(S)$ for all numerical semigroups $S \neq$ \mathbb{N}_{0}. This, together with the fact that $\mathbb{N}_{0} \backslash S$ is finite, implies that there exist smallest non-negative integers $\beta(S)$ and $\lambda(S)$ such that $B_{\beta(S)}(S)=$ $\mathbb{N}_{0}=L_{\lambda(S)}(S)$. Thus, the B and L constructions give rise to finite strictly increasing chains of numerical semigroups. Since $B_{0}(S)=S=L_{0}(S)$, $B_{1}(S) \subseteq L_{1}(S)$, and $B_{\beta(S)}(S)=\mathbb{N}_{0}=L_{\lambda(S)}(S)$, it is natural to compare the two chains. In particular, it is natural to ask, as in [1], if $B_{i}(S) \subseteq L_{i}(S)$ for all $0 \leq i \leq \beta(S)$. In [2], we show that while this containment does not hold for all numerical semigroups S, it does hold if S is a doubly-generated semigroup $\left\langle a_{1}, a_{2}\right\rangle$.

This brings us to the focus of this work. Doubly-generated semigroups $S=\left\langle a_{1}, a_{2}\right\rangle$ are examples of so-called telescopic semigroups. A numerical semigroup $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$ in canonical form is telescopic if $\frac{a_{i}}{d_{i}} \in S_{i-1}$ for all $2 \leq i \leq \nu$, where $d_{i}:=\operatorname{gcd}\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$ and $S_{i}:=\left\langle\frac{a_{1}}{d_{i}}, \frac{a_{2}}{d_{i}}, \ldots, \frac{a_{i}}{d_{i}}\right\rangle$. In this paper, we consider triply-generated telescopic semigroups; that is, numerical semigroups $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ such that $a_{3} \in\left\langle\frac{a_{1}}{d}, \frac{a_{2}}{d}\right\rangle$ where $d:=\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$. The main result, Theorem 2.3, states that for such S, $B_{\frac{a_{1}}{d}+d-2}(S)=L_{1}(S)$. It follows immediately that $B_{i}(S) \subseteq L_{i}(S)$ for $0 \leq i \leq \frac{a_{1}}{d}+d-2$. As a consequence, we see in Corollary 2.4 that for certain triply-generated telescopic semigroups $S, B_{i}(S) \subseteq L_{i}(S)$ for all $0 \leq i \leq \beta(S)$.

For background on numerical semigroups, see [4], [1]. For background on telescopic semigroups, see [3].

2. Results

We collect some results on numerical semigroups from [1] that will be used in the proof of the main result. Recall that a numerical semigroup S
is symmetric if the map $S \cap\{0,1, \ldots, g(S)\} \rightarrow\left(\mathbb{N}_{0} \backslash S\right) \cap\{0,1, \ldots, g(S)\}$ defined by $s \mapsto g(S)-s$ is a bijection.

Proposition 2.1. Let $S=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}\right\rangle$ be a numerical semigroup in canonical form. Then:
(a) $g\left(B_{1}(S)\right)=g(S)-a_{1}$.
(b) If S is symmetric, then $B_{1}(S)=\left\langle a_{1}, a_{2}, \ldots, a_{\nu}, g(S)\right\rangle$.
(c) S is of maximal embedding dimension if and only if $B_{1}(S)=L_{1}(S)$.

The next proposition contains some useful results on telescopic semigroups from [3].
Proposition 2.2. (a) Suppose $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is a canonical form description of a numerical semigroup S. If S is telescopic, then $g(S)=$ $\frac{a_{1} a_{2}}{d}+(d-1) a_{3}-a_{1}-a_{2}$ where $d:=\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$.
(b) If a numerical semigroup S is telescopic, then S is symmetric.

Theorem 2.3. If $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is a telescopic semigroup and $d:=$ $\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$, then $B_{i}(S) \subseteq L_{i}(S)$ for $0 \leq i \leq \frac{a_{1}}{d}+d-2$. Moreover, $B_{\frac{a_{1}}{d}+d-2}(S)=L_{1}(S)$.
Proof. It will be convenient to write B_{i} and L_{i} instead of $B_{i}(S)$ and $L_{i}(S)$, respectively. Let $g:=g(S)$ and $d:=\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$. According to Proposition 2.2(a),

$$
g(S)=\frac{a_{1} a_{2}}{d}+(d-1) a_{3}-a_{1}-a_{2}
$$

Much of the proof is devoted to proving the claim that if $1 \leq i \leq \frac{a_{1}}{d}+d-3$, then

$$
B_{i}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle
$$

where

$$
T_{i}:=\left\{\begin{array}{ll}
g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}: & r_{1}+r_{2}+r_{3}=i-1, \\
& 0 \leq r_{1} \leq i-1, \\
& 0 \leq r_{2} \leq \frac{a_{1}}{d}-1, \\
& 0 \leq r_{3} \leq d-1
\end{array}\right\}
$$

First, we establish the claim in the case $i=1$. According to Proposition $2.2(\mathrm{~b}), S$ is symmetric since S is telescopic. This implies that $B_{1}=$ $\left\langle a_{1}, 2, a_{3}, g\right\rangle$ by Proposition 2.1(b). It follows that $\left.B_{1}=\left\langle a_{1}, a_{2}, a_{3}\right\} \cup T_{1}\right\rangle$ as $T_{1}=\{g\}$, and the claim holds in the case $i=1$.

We now proceed by induction on $i \geq 1$. Suppose the claim holds for all $j, 1 \leq j \leq i-1$; that is, assume that $B_{j}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{j}\right\rangle$ for all j, $1 \leq j \leq i-1$. By definition of B_{i}, to show that $\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle \subseteq B_{i}$, it suffices to show that $T_{i} \subseteq B_{i}$. Let $x \in T_{i}$. Then

$$
x:=g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3},
$$

where $r_{1}+r_{2}+r_{3}=i-1,0 \leq r_{1} \leq i-1,0 \leq r_{2} \leq \frac{a_{1}}{d}-1$, and $0 \leq r_{3} \leq d-1$. We must show that $x+B_{i-1} \subseteq B_{i-1}$. Since $B_{i-1}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i-1}\right\rangle$
by the induction hypothesis, it suffices to show that $x+S \subseteq B_{i-1}$ and $x+T_{i-1} \subseteq B_{i-1}$. Note that $x+a_{1}=g-\left(r_{1}-1\right) a_{1}-r_{2} a_{2}-r_{3} a_{3}$. If $0<r_{1} \leq i-1$, then $x+a_{1} \in T_{i-1}$. If $r_{1}=0$, then $x+a_{1}=g+a_{1}-r_{2} a_{2}-$ $r_{3} a_{3}=\left(\frac{a_{1}}{d}-1-r_{2}\right) a_{2}+\left(d-1-r_{3}\right) a_{3} \in S$. Thus, $x+a_{1} \in B_{i-1}$. Similarly, one may check that $x+a_{2}, x+a_{3} \in B_{i-1}$. Then $x+S \subseteq B_{i-1}$.

It remains to show that $x+T_{i-1} \subseteq B_{i-1}$. Let $y \in T_{i-1}$. Then

$$
y:=g-l_{1} a_{1}-l_{2} a_{2}-l_{3} a_{3},
$$

where $l_{1}+l_{2}+l_{3}=i-2,0 \leq l_{1} \leq i-2,0 \leq l_{2} \leq \frac{a_{1}}{d}-1$, and $0 \leq l_{3} \leq d-1$. We will show that $x+y \in B_{i-1}$. Notice that $x+y$

$$
\begin{aligned}
& =g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}+g-l_{1} a_{1}-l_{2} a_{2}-l_{3} a_{3} \\
& =g-\left(r_{1}+l_{1}+1\right) a_{1}-\left(r_{2}+l_{2}-\left(\frac{a_{1}}{d}-1\right)\right) a_{2}-\left(r_{3}+l_{3}-(d-1)\right) a_{3}
\end{aligned}
$$

If $r_{1}+l_{1} \leq i-3$, then $\left(r_{1}+l_{1}+1\right)+\left(r_{2}+l_{2}-\left(\frac{a_{1}}{d}-1\right)\right)+\left(r_{3}+l_{3}-(d-1)\right)=$ $\left(r_{1}+r_{2}+r_{3}\right)+\left(l_{1}+l_{2}+l_{3}\right)-\left(\frac{a_{1}}{d}+d-3\right)=(i-1)+(i-2)-\left(\frac{a_{1}}{d}+\right.$ $d-3) \leq i-1+i-2-i=i-3$ and $0 \leq r_{1}+l_{1}+1 \leq i-2$. Since $0 \leq r_{2}, l_{2} \leq \frac{a_{1}}{d}-1,0 \leq r_{2}+l_{2}-\left(\frac{a_{1}}{d}-1\right) \leq \frac{a_{1}}{d}-1$. Since $0 \leq r_{3}, l_{3} \leq d-1$, $0 \leq r_{3}+l_{3}-(d-1) \leq d-1$. By definition of T_{i-1}, this implies that $x+y \in T_{i-1} \subseteq B_{i-1}$ in the case $r_{1}+l_{1} \leq i-3$.

We now assume that $r_{1}+l_{1} \geq i-2$. Notice that $x+y>g\left(B_{i-1}\right)$ implies $x+y \in B_{i-1}$. Thus, we only need to consider the case in which $x+y \leq$ $g\left(B_{i-1}\right)$. Repeated applications of Proposition 2.1(a) lead to $g\left(B_{i-1}\right)=$ $g-(i-1) a_{1}$ since $a_{1}<g-\left(\frac{a_{1}}{d}-3\right) a_{2}-(d-1) a_{3} \leq z$ for all $z \in T_{i-1}$. Thus, $x+y \leq g-(i-1) a_{1}$. This implies

$$
\begin{equation*}
A_{2} a_{2}+A_{3} a_{3} \leq A_{1} a_{1} \tag{1}
\end{equation*}
$$

where $A_{1}:=r_{1}+l_{1}-(i-2), A_{2}:=\frac{a_{1}}{d}-1-\left(r_{2}+l_{2}\right)$, and $A_{3}:=d-1-\left(r_{3}+l_{3}\right)$. Note that

$$
A_{2}+A_{3}>A_{1}
$$

Otherwise, $A_{2}+A_{3} \leq A_{1}$, which implies that

$$
\frac{a_{1}}{d}-1-\left(r_{2}+l_{2}\right)+d-1-\left(r_{3}+l_{3}\right) \leq r_{1}+l_{1}-(i-2) .
$$

As a result, $\frac{a_{1}}{d}+d-3+i-2 \leq\left(r_{1}+r_{2}+r_{3}\right)+\left(l_{1}+l_{2}+l_{3}\right)=i-1+i-1$, and so $\frac{a_{1}}{d}+d-3 \leq i-2$. This contradicts the fact that $1 \leq i \leq \frac{a_{1}}{d}+d-3$. If $A_{2} \leq 0$, then $a_{2}<a_{3}$ implies that $A_{2} a_{2} \geq A_{2} a_{3}$. Then (1) gives

$$
\left(A_{2}+A_{3}\right) a_{3} \leq A_{2} a_{2}+A_{3} a_{3} \leq A_{1} a_{1} \leq A_{1} a_{3}
$$

It follows that $A_{2}+A_{3} \leq A_{1}$, which is a contradiction. Thus, $A_{2}>0$. If $A_{3} \geq 0$, then $\left(A_{2}+A_{3}\right) a_{1} \leq A_{2} a_{2}+A_{3} a_{3} \leq A_{1} a_{1}$. This implies $A_{2}+A_{3} \leq$ A_{1}, which is a contradiction.

Thus, we have reduced to the case where $A_{1} \geq 0, A_{2}>0$, and $A_{3}<0$; that is, $r_{1}+l_{1} \geq i-2, \frac{a_{1}}{d}-1>r_{2}+l_{2}$, and $r_{3}+l_{3}>d-1$. Then $x+y$

$$
\begin{aligned}
& =g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}+g-l_{1} a_{1}-l_{2} a_{2}-l_{3} a_{3} \\
& =g-\left(r_{1}+l_{1}-\frac{a_{2}}{d}+1\right) a_{1}-\left(r_{2}+l_{2}+1\right) a_{2}-\left(r_{3}+l_{3}-(d-1)\right) a_{3}
\end{aligned}
$$

If $r_{1}+l_{1}-\frac{a_{2}}{d}+1<0$, then substituting for g and simplifying gives $x+y=$ $\left(\frac{a_{1}}{d}-1-\left(r_{2}+l_{2}+1\right)\right) a_{2}+\left((d-1)-\left(r_{3}+l_{3}-(d-1)\right)\right) a_{3}-\left(r_{1}+l_{1}-\frac{a_{2}}{d}+1+1\right) a_{1} \in$ S. Thus, the only case left to consider is $r_{1}+l_{1}-\frac{a_{2}}{d}+1 \geq 0$. Here, $r_{1}+l_{1}-\frac{a_{2}}{d}+1=\left(i-1-\left(r_{2}+r_{3}\right)\right)+\left(i-2-\left(l_{2}+l_{3}\right)\right)-\frac{a_{2}}{d}+1<$ $i-1+i-2-(d-1)-\frac{a_{2}}{d}+1<i-1+i-1-\left(\frac{a_{1}}{d}+d-3\right)<i-2$. We also have that $\left(r_{1}+l_{1}-\frac{a_{2}}{d}+1\right)+\left(r_{2}+l_{2}+1\right)+\left(r_{3}+l_{3}-(d-1)\right) \leq i-3$. Therefore, $x+y \in S \cup T_{i-1} \subseteq B_{i-1}$. This shows that $x+T_{i-1} \subseteq B_{i-1}$. It follows that $x+B_{i-1} \subseteq B_{i-1}$, and so $x \in B_{i}$. Therefore, $\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle \subseteq B_{i}$.

In order to complete the proof of the claim, we must show that $B_{i} \subseteq$ $\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$. Clearly, by the induction hypothesis,

$$
B_{i-1}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i-1}\right\rangle \subseteq\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle .
$$

Next, we show that $B_{i} \backslash B_{i-1} \subseteq\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$. Let $z \in B_{i} \backslash B_{i-1}$. Then $z+B_{i-1} \subseteq B_{i-1}$. Since $z \notin B_{1}$, there exists $j \in\{1,2,3\}$ such that $z+a_{j} \in B_{i-1} \backslash S=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i-1}\right\rangle \backslash S$. This leads to $z+a_{j}=$ $g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}+m$ for some $g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3} \in T_{i-1}$ and $m \in B_{i-1}$. Note that $r_{1}+r_{2}+r_{3}=i-2$. Thus, $z=g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}-a_{j}+m$. Using the definition of T_{i} together with the fact that $T_{i}+B_{i-1} \subseteq B_{i-1}$, we see that $z \in T_{i} \cup\left(T_{i}+B_{i-1}\right) \subseteq T_{i} \cup B_{i-1} \subseteq\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$ except in the cases $j=2$ with $r_{2}=\frac{a_{1}}{d}-1$ and $j=3$ with $r_{3}=d-1$. If $z=g-r_{1} a_{1}-\frac{a_{1}}{d} a_{2}-r_{3} a_{3}$, then $g=z+r_{1} a_{1}+\frac{a_{1}}{d} a_{2}+r_{3} a_{3}=z+r_{1} a_{1}+\frac{a_{2}}{d} a_{1}+r_{3} a_{3} \in z+\left(r_{1}+\frac{a_{2}}{d}+\right.$ $\left.r_{3}\right) M \in z+\left(i-2-\left(\frac{a_{1}}{d}-1\right)+\frac{a_{2}}{d}\right) M \in z+i M \in B_{i}+i M \in S$, where $M:=S \backslash\{0\}$. This is a contradiction, since by definition $g \notin S$. Thus, $z \neq g-r_{1} a_{1}-\frac{a_{1}}{d} a_{2}-r_{3} a_{3}$. Similarly, $z=g-r_{1} a_{1}-r_{2} a_{2}-d a_{3}$ implies $g \in S$. Thus, $z \neq g-r_{1} a_{1}-r_{2} a_{2}-d a_{3}$. It follows that $z \in\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$. This proves that $B_{i} \subseteq\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$. Therefore, $B_{i}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$. By induction, this completes the proof of the claim that $B_{i}=\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{i}\right\rangle$ for $1 \leq i \leq \frac{a_{1}}{d}+d-3$.

Since we have shown the claim holds for $i=\frac{a_{1}}{d}+d-3, B \frac{a_{1}}{d}+d-3=$ $\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{\frac{a_{1}}{d}+d-3}\right\rangle$. Note that $\left\langle\left\{a_{1}, a_{2}, a_{3}\right\} \cup T_{\frac{a_{1}}{d}+d-3}\right\rangle$ gives a canonical form description of $B \frac{a_{1}}{d}+d-3$. Hence $e\left(B_{\frac{a_{1}}{d}+d-3}\right)=\mid\left\{a_{1}, a_{2}, a_{3}\right\} \cup$ $\left.T_{\frac{a_{1}}{d}+d-3}\left|=3+\left|T_{\frac{a_{1}}{d}+d-3}\right|\right.$. Using the fact that $| T_{\frac{a_{1}}{d}+d-3} \right\rvert\,$

$$
\begin{aligned}
& =\left|\left\{\begin{array}{cl}
g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}: & r_{1}+r_{2}+r_{3}=\frac{a_{1}}{d}+d-4, \\
& 0 \leq r_{1} \leq \frac{a_{1}}{d}+d-4, \\
0 \leq r_{2} \leq \frac{d_{1}}{d}-1, \\
0 \leq r_{3} \leq d-1
\end{array}\right\}\right| \\
& =\left|\left\{\begin{array}{cl}
\left(r_{1}, r_{2}, r_{3}\right): & r_{1}+r_{2}+r_{3}=\frac{a_{1}}{d}+d-4, \\
0 \leq r_{1} \leq \frac{a_{1}}{d}+d-4, \\
0 \leq r_{2} \leq \frac{a_{1}}{d}-1, \\
0 \leq r_{3} \leq d-1
\end{array}\right\}\right|=a_{1}-3,
\end{aligned}
$$

we conclude that $e\left(B \frac{a_{1}}{d}+d-3\right)=3+\left(a_{1}-3\right)=a_{1}$. Therefore, $B \frac{a_{1}}{d}+d-3$ is of maximal embedding dimension.

By Proposition 2.1(c), since $B \frac{a_{1}}{d}+d-3$ is of maximal embedding dimension, we have that $B \frac{a_{1}}{d}+d-2=$

$$
B\left(B_{\frac{a_{1}}{d}+d-3}\right)=L\left(B_{\frac{a_{1}}{d}+d-3}\right)=\left\langle\left\{a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\} \cup T_{\frac{a_{1}}{d}+d-3}^{\prime}\right\rangle,
$$

where $T_{\frac{a_{1}}{d}+d-3}^{\prime}:=$

$$
\left\{\begin{array}{cl}
g-r_{1} a_{1}-r_{2} a_{2}-r_{3} a_{3}-a_{1}: & r_{1}+r_{2}+r_{3}=\frac{a_{1}}{d}+d-3-1, \\
& 0 \leq r_{1} \leq \frac{a_{1}}{d}+d-3-1, \\
& 0 \leq r_{2} \leq \frac{a_{1}}{d}-1, \\
& 0 \leq r_{3} \leq d-1
\end{array}\right\}
$$

In particular,

$$
L_{1}=\left\langle a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\rangle \subseteq B \frac{a_{1}}{d}+d-2 .
$$

We claim that $L_{1}=B \frac{a_{1}}{d}+d-2$. To show this, we must show that $T_{\frac{a_{1}}{d}+d-3}^{\prime} \subseteq$ $\left\langle a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\rangle=L_{1}$.

Let $z \in T_{\frac{a_{1}}{d}+d-3}^{\prime}$. Then $z=g-\left(r_{1}+1\right) a_{1}-r_{2} a_{2}-r_{3} a_{3}$, where $r_{1}+r_{2}+r_{3}=$ $\frac{a_{1}}{d}+d-4,0 \leq r_{1} \leq \frac{a_{1}}{d}+d-4,0 \leq r_{2} \leq \frac{a_{1}}{d}-1$, and $0 \leq r_{3} \leq d-1$. Substituting for g yields $z=\left(\frac{a_{1}}{d}-r_{1}-1\right)\left(a_{2}-a_{1}\right)+\left(d-r_{3}-1\right)\left(a_{3}-a_{1}\right) \in$ $\left\langle a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\rangle$. This gives $T_{\frac{a_{1}}{d}+d-3}^{\prime} \subseteq L_{1}$, which leads to

$$
B_{\frac{a_{1}}{d}+d-2}=\left\langle\left\{a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\} \cup T_{\frac{a_{1}}{d}+d-3}^{\prime}\right\rangle=L_{1} .
$$

Since $B_{i}(S) \subseteq B_{i+1}(S)$ for all $i \geq 0$ and $B \frac{a_{1}}{d}+d-2=L_{1}$, we have

$$
B_{0} \subseteq B_{1} \subseteq B_{2} \subseteq \cdots \subseteq B_{\frac{a_{1}}{d}+d-2}=L_{1}
$$

Since $L_{i}(S) \subseteq L_{i+1}(S)$ for all $i \geq 0$, this implies that $B_{i}(S) \subseteq L_{1}(S) \subseteq$ $L_{i}(S)$ for all $0 \leq i \leq \frac{a_{1}}{d}+d-2$.

Corollary 2.4. If $S=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is a telescopic semigroup and $a_{1} \in$ $\left\langle a_{2}-a_{1}, a_{3}-a_{1}\right\rangle$, then $B_{i}(S) \subseteq L_{i}(S)$ for all $0 \leq i \leq \beta(S)$.

To prove this corollary, we will use the following result from [2].
Proposition 2.5. Let S be a numerical semigroup of embedding dimension $e(S)=2$; that is, $S=\left\langle a_{1}, a_{2}\right\rangle$ where a_{1} and a_{2} are relatively prime natural numbers greater than 1 . Then $B_{i}(S) \subseteq L_{i}(S)$ for all $0 \leq i \leq \beta(S)$.
Proof of Corollary 2.4. As before, let $d:=\operatorname{gcd}\left\{a_{1}, a_{2}\right\}$. Then $B_{i}(S) \subseteq L_{i}(S)$ for $0 \leq i \leq \frac{a_{1}}{d}+d-2$ by Theorem 2.3. In addition, $B \frac{a_{1}}{d}+d-2 ~(S)=L_{1}(S)$. By definition,

$$
L_{1}(S)=\left\langle a_{1}, a_{2}-a_{1}, a_{3}-a_{1}\right\rangle=\left\langle a_{2}-a_{1}, a_{3}-a_{1}\right\rangle
$$

since $a_{1} \in\left\langle a_{2}-a_{1}, a_{3}-a_{1}\right\rangle$. The fact that $B_{i}(S) \subseteq L_{i}(S)$ for $\frac{a_{1}}{d}+d-2<$ $i \leq \beta(S)$ now follows immediately from Proposition 2.5 since L_{1} is doublygenerated.

References

[1] V. Barucci, D. E. Dobbs and M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Memoirs Amer. Math. Soc., 125/598 (1997).
[2] D. E. Dobbs and G. L. Matthews, On comparing two chains of numerical semigroups and detecting Arf semigroups, Semigroup Forum, 63 (2001), 237-246.
[3] C. Kirfel and R. Pellikaan, The minimum distance of codes in an array coming from telescopic semigroups, Special issue on algebraic geometry codes, IEEE Trans. Inform. Theory, 41 (1995), 1720-1732.
[4] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum, 35 (1987), no. 1, 63-83.

Department of Mathematical Sciences
Clemson University
Clemson, SC 29634-0975
U.S.A.

E-MAIL: GMATTHE@CLEMSON.EDU

