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Abstract. We construct algebraic geometry codes from the function field

F22n+1 (x, y)/F22n+1 defined by y22n+1 − y = x2n
(x22n+1 − x) where n is a

positive integer. These codes are supported by two places, and many have
parameters that are better than those of any comparable code supported by
one place of the same function field. To define such codes, we determine and
exploit the structure of the Weierstrass gap set of an arbitrary pair of rational
places of F22n+1 (x, y)/F22n+1 . Moreover, we find some codes over F8 with
parameters that are better than any known code.

1. Introduction

In [3], the function field F8(x, y)/F8 defined by

y8 − y = x2(x8 − x)

is used to construct codes supported by a single place that have better parameters
than any known code. Such codes are sometimes referred to as one-point codes.
In [14], it is shown that there are m-point codes with m ≥ 2, that is algebraic
geometry codes supported by m places where m ≥ 2, that have better parameters
than any comparable one-point code constructed from the same curve. In this
correspondence, we combine these ideas to find such two-point codes over F22n+1

where n is a positive integer. Of those we find, some have better parameters than
any comparable one-point code and some have better parameters than any known
code.

We consider the function field F := Fq(x, y)/Fq defined by

yq − y = xq0(xq − x)

where q0 = 2n, q = 22n+1, and n is a positive integer. The projective curve X
defined by the above equation was considered in [8] as an example of a curve with
an automorphism group that is large with respect to its genus. The curve X (resp.
function field F ) is sometimes called the Suzuki curve (resp. Suzuki function field)
as the automorphism group of X (resp. F ) is the Suzuki group of order q2(q2 +
1)(q − 1). In [10], Hansen and Stichtenoth considered this curve and applications
to algebraic geometry codes. More recently, Kirfel and Pellikaan determined the
Feng-Rao bound on the minimum distances of some of these algebraic geometry
codes [12]. The case where n = 1 has been examined by Chen and Duursma as
mentioned above. Here, we use the structure of Weierstrass gap sets to construct
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codes and estimate their parameters. This method was first suggested by Goppa
([6], [7]) and later made more explicit in [5], [14], [9], [4], and [13]. We see that
these new codes compare quite favorably with those studied in [10], [12], and [3].

This work is organized as follows. Section 2 contains the necessary background
information on the Suzuki function field. In Section 3, we determine the Weierstrass
gap set of any pair of rational places. In Section 4, this gap set is used to define two-
point algebraic geometry codes. These codes are compared with one-point codes
constructed from the Suzuki function field. In addition, we find codes over F8 other
than those in [3] with better parameters than any known code.

2. Suzuki function fields

Let F := Fq(x, y)/Fq denote the algebraic function field defined by

yq − y = xq0(xq − x)

where q0 = 2n and q = 22n+1 for some positive integer n. Let us review some facts
about F/Fq found in [10]. The notation we use is as in [16]. A place of F/Fq of
degree one will be called a rational place. The set of all rational places of F/Fq is
denoted by PF , and the divisor (resp. pole divisor) of a function f ∈ F is denoted
by (f) (resp. (f)∞). The function field F/Fq has exactly q2 + 1 rational places.
In fact, for each a, b ∈ Fq there exists a unique rational place Pab ∈ PF that is a
common zero of x− a and y − b. In addition, F has a single place at infinity, P∞.
The genus of F is g := q0(q − 1). Moreover, the explicit formulas of Weil can be
used to show that F is an optimal function field.

It will be convenient at times to view F as an extension of the rational function
field Fq(x). Then [F : Fq(x)] = q (see [10, Lemma 1.8]). Let Qa ∈ PFq(x) denote
the zero of x−a and Q∞ ∈ PFq(x) denote the place at infinity. It will also be useful
to consider the functions

x, y, v := y
q

q0 − x
q

q0
+1, w := y

q
q0 x

q

q2
0
−1

+ v
q

q0 ∈ F

along with their pole divisors as given in [10, Proposition 1.3]:

(x)∞ = qP∞
(y)∞ = (q + q0)P∞
(v)∞ = (q + q

q0
)P∞

(w)∞ = (q + q
q0

+ 1)P∞.

Since P0b lies over Q0 for all b ∈ Fq and F/Fq(x) is an extension of degree q, the
place Q0 splits completely in F . This implies

(x) =
∑

b∈Fq

P0b − qP∞

as the pole divisor of x is of degree q. Thus, vP00(y) = vQ0(y) as e(P00 | Q0) = 1.
Notice that vQ0(y) = (q0 +1)vQ0(x)+

∑
a∈F∗q vQ0(x−a)−vQ0(y

q−1−1) = q0 +1 as
y(yq−1 − 1) = xq0+1

∏
a∈F∗q (x− a). Hence, vP00(y) = q0 + 1. It follows immediately

that vP00(v) = q
q0

+1 and vP00(w) = (q + q
q0

+1). Moreover, since the degree of the
pole divisor of w is q + q

q0
+ 1, we have that

(w) = (q +
q

q0
+ 1)P00 − (q +

q

q0
+ 1)P∞.
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Now fix a, b ∈ Fq. According to [10, Proposition 3.2], there is an automorphism
σ ∈ Aut(F/Fq) such that

σ : x 7→ x− a
y 7→ y − b + aq0(x− a).

As a result, we have the following principal divisors:

(x− a) =
∑

c∈Fq
Pac − qP∞

(y − b) = (q0 + 1)P0b +
∑

c∈F∗q Pcb − (q + q0)P∞
(uab) = (q0 + 1)Pab + A − (q + q0)P∞
(vab) = ( q

q0
+ 1)Pab + A′ − (q + q

q0
)P∞

(wab) = (q + q
q0

+ 1)Pab − (q + q
q0

+ 1)P∞,

where
uab := y − b + aq0(x− a)
vab := (y − b)

q
q0 − (x− a)

q
q0

+1

wab := (y − b)
q

q0 (x− a)
q

q2
0
−1

+ v
q

q0
ab

and A and A′ are effective divisors whose supports contain neither Pab nor P∞.
Thus, we conclude that for all a, b ∈ Fq,(

vabw
−1
ab

)
∞ = qPab(

uabw
−1
ab

)
∞ = (q + q0)Pab(

(x− a)w−1
ab

)
∞ = (q + q

q0
)Pab(

w−1
ab

)
∞ = (q + q

q0
+ 1)Pab

As we will see in Section 3, these functions will be enough to determine the Weier-
strass semigroup of any pair of rational places of the Suzuki function field.

3. The Weierstrass gap set of pairs of places

Let N0 (resp. N) denote the set of nonnegative integers (resp. positive integers).
Let P1 and P2 be distinct rational places of F . The Weierstrass semigroup of the
place P1 is

H(P1) = {α ∈ N0 : ∃f ∈ Fq(X) with (f)∞ = αP1}
and the Weierstrass semigroup of the pair (P1, P2) is

H(P1, P2) = {(α1, α2) ∈ N2
0 : ∃f ∈ Fq(X) with (f)∞ = α1P1 + α2P2}.

We will write 〈a1, . . . , ak〉 := {∑k
i=1 ciai : ci ∈ N0} to denote the subsemigroup of

nonnegative integers generated by a1, . . . , ak ∈ N. The Weierstrass gap sets G(P1)
and G(P1, P2) are defined by

G(P1) = N0 \H(P1)

and
G(P1, P2) = N2

0 \H(P1, P2).
These two sets differ in that for any rational place P1, |G(P1)| = g, but |G(P1, P2)|
depends on the choice of rational places P1 and P2 [1]. Using the fact that
|G(P1)| = g and the functions described in the previous section one can prove
the following.

Lemma 3.1. Let P be any rational place of the Suzuki function field F/Fq. Then

the Weierstrass semigroup of P is H(P ) =
〈
q, q + q0, q + q

q0
, q + q

q0
+ 1

〉
.
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Next, we consider Weierstrass gap sets of pairs of rational places of F . Let
(P1, P2) ∈ PF be a pair of distinct rational places of F . According to [11], to
determine H(P1, P2), we need only find

Γ(P1, P2) := {(α, βα) : α ∈ G(P1)},
where

βα := min{β ∈ N0 : (α, β) ∈ H(P1, P2)}.
Given u = (u1, u2),v = (v1, v2) ∈ N2

0, define the least upper bound of u and v by

lub{u,v} = (max{u1, v1}, max{u2, v2}) ∈ N2
0.

The following lemma, found in [11] and generalized in [15], describes how the sets
Γ(P1, P2), H(P1), and H(P2) generate the entire Weierstrass semigroup H(P1, P2).

Lemma 3.2. Let P1 and P2 be distinct rational places of a function field F . The
Weierstrass semigroup of the pair (P1, P2) ∈ P2

F is

H(P1, P2) = {lub{γ1, γ2} : γ1, γ2 ∈ S}
where S := Γ(P1, P2) ∪ (H(P1)× {0}) ∪ ({0} ×H(P2)).

Since Aut(F/Fq) is doubly transitive, there exists an automorphism σ ∈ Aut(F/Fq)
such that σ(P00) = P1 and σ(P∞) = P2. It follows that

G(P1, P2) = G(P00, P∞).

Hence, we may assume that P1 = P00 and P2 = P∞. To determine G(P1, P2), we
only need to determine βα for all α ∈ G(P1). It will be convenient to partition the
elements of the Weierstrass gap set G(P1) into blocks

Bb := {α ∈ G(P1) : (q +
q

q0
+ 1)b + 1 ≤ α ≤ (q +

q

q0
+ 1)(b + 1)− 1}

where 0 ≤ b ≤ 2q0 − 2. For each 0 ≤ b ≤ 2q0 − 2, we organize the elements of the
block Bb into rows and columns. If α ∈ Bb, then

α = b α

q + q
q0

+ 1
c(q +

q

q0
+ 1) + mq0 + s

for some 0 ≤ s ≤ q0 − 1. Place α in row

r :=

{
m if 0 ≤ s ≤ bm−1

2 c+ 1
m + 1 if bm−1

2 c+ 2 ≤ s ≤ q0 − 1

and in column j := α−b α
q+ q

q0
+1c(q + q

q0
+1)− (r−1)q0. For an illustration of this,

see Example 3.4.

Theorem 3.3. Let P1 and P2 be distinct rational places of the Suzuki function field
F/Fq. If α ∈ G(P1) , then

βα = 2g − 1 + q − (q − 1)j − α

where j denotes the column of α. Therefore, the Weierstrass semigroup of any pair
of rational places of F is generated by

{(α, 2g − 1 + q − (q − 1)j − α) : α ∈ G(P1)} ∪ (H(P1)× {0}) ∪ ({0} ×H(P2)) .
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Proof. Without loss of generality, we may assume that P1 = P00 and P2 = P∞.
Suppose α ∈ G(P00) is in block Bb, row r, and column j. Let

fα =





vj−ry
q

q0
+1+r−2j

w
b α

q+q0+1 c+1 if r ≤ j.

xr−jy
q

q0
+1−r

w
b α

q+q0+1 c+1 if r > j.

Notice that

α = b α

q + q
q0

+ 1
c(q +

q

q0
+ 1) + (r − 1)q0 + j.

If r ≤ j, then
(

vj−ry
q

q0
+1+r−2j

wb
α

q+q0+1 c+1

)

∞
= αP00 + (2g − 1 + q − (q − 1)j − α)P∞.

If r > j, then
(

xr−jy
q

q0
+1−r

wb
α

q+q0+1 c+1

)

∞
= αP00 + (2g − 1 + q − (q − 1)j − α)P∞.

This yields

(fα)∞ = αP00 + (2g − 1 + q − (q − 1)j − α)P∞.

Hence, (α, 2g − 1 + q − (q − 1)j − α) ∈ H(P00, P∞) for all α ∈ G(P00). Using the
fact that

G(P00) → G(P∞)
α 7→ βα

is a one-to-one correspondence [11, Lemma 2.6], we conclude that βα = 2g − 1 +
q − (q − 1)j − α as desired. ¤

Example 3.4. Consider the function field F := F8(x, y)/F8 defined by the equa-
tion y8− y = x2(x8−x). Note that the genus of F is 14. According to Lemma 3.1,
the Weierstrass semigroup of each rational place P ∈ PF is

H(P ) = 〈8, 10, 12, 13〉
and the elements of the gap set G(P ) are as follows:

1 2 3
4 5
6 7

9
11

14 15
17
19

27.
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The divisors of the functions fα, α ∈ G(P00), given in the proof of Theorem 3.3 are
listed here:(

y4

w

)
∞

= P00 + 27P∞
(

vy2

w

)
∞

= 2P00 + 19P∞
(

v2

w

)
∞

= 3P00 + 11P∞(
y3

w

)
∞

= 4P00 + 17P∞
(

vy
w

)
∞ = 5P00 + 9P∞(

xy2

w

)
∞

= 6P00 + 15P∞
(

y2

w

)
∞

= 7P00 + 7P∞(
xy
w

)
∞ = 9P00 + 5P∞(

x2

w

)
∞

= 11P00 + 3P∞(
y4

w2

)
∞

= 14P00 + 14P∞
(

vy2

w2

)
∞

= 15P00 + 6P∞(
y3

w2

)
∞

= 17P00 + 4P∞(
xy2

w2

)
∞

= 19P00 + 2P∞(
y4

w3

)
∞

= 27P00 + P∞.

This gives
{

(1, 27), (2, 19), (3, 11), (4, 17), (5, 9), (6, 15), (7, 7),
(27, 1), (19, 2), (11, 3), (17, 4), (9, 5), (15, 6), (14, 14)

}
⊆ H(P00, P∞).

Now, since (27, 1) ∈ H(P00, P∞), β27 = 1. This implies β19 ≥ 2. Since (19, 2) ∈
H(P00, P∞), β19 = 2. Then β11 ≥ 3 implies that β11 = 3 as (11, 3) ∈ H(P00, P∞).
Continuing in this manner, we see that

Γ(P00, P∞) =
{

(1, 27), (2, 19), (3, 11), (4, 17), (5, 9), (6, 15), (7, 7),
(27, 1), (19, 2), (11, 3), (17, 4), (9, 5), (15, 6), (14, 14)

}
.

Therefore, the Weierstrass semigroup H(P00, P∞) is generated by

Γ(P00, P∞) ∪ (〈8, 10, 12, 13〉 × {0}) ∪ ({0} × 〈8, 10, 12, 13〉) .

In fact, this set is a minimal generating set for the Weierstrass semigroup of any
pair of rational places of F.

Since we now know the functions that generate the Weierstrass semigroup of a
pair (P1, P2) of rational places, we can construct spanning sets for the vector spaces
L(αP1 + γP2). Recall that if A is a divisor of F/Fq, L(A) is the Fq-vector space
of rational functions f ∈ F with divisor (f) ≥ −A together with the zero function.
Let `(A) denote the dimension of L(A).

Let
S := Γ(P1, P2) ∪ (H(P1)× {0}) ∪ ({0} ×H(P2))

as in Lemma 3.2. Since S ⊆ H(P1, P2), (a, b) ∈ S implies that there exists fa ∈ F
such that

(fa)∞ = aP1 + bP2.

Now suppose (a, b) ∈ H(P1, P2). According to Lemma 3.2,

(a, b) = lub {(a′, b′), (a′′, b′′)}
for some (a′, b′), (a′′, b′′) ∈ S. Then there are constants c′, c′′ ∈ Fq such that the
function fa,b := c′fa′ + c′′fa′′ has pole divisor

(1) (fa,b)∞ = aP1 + bP2.
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Define a partial order ¹ on N2
0 by (n1, n2) ¹ (p1, p2) if and only if n1 ≤ p1 and

n2 ≤ p2. Then we obtain the following result.

Proposition 3.5. Let P1 and P2 be distinct rational places of the Suzuki function
field F/Fq and let α, γ ∈ N. The vector space L(αP1 + γP2) is spanned by

{fa,b : (a, b) ∈ H(P1, P2), (a, b) ¹ (α, γ)}
where fa,b is as defined in (1).

In the next section, we will see how this proposition enables one to construct
spanning sets for certain algebraic geometry codes.

4. Codes from the Suzuki function field

In this section, we will use information about the Weierstrass gap set obtained
in Section 3 to study algebraic geometry codes from the Suzuki function field. Let
G be a divisor of F/Fq and let D = Q1 + · · · + Ql be another divisor of F where
Q1, . . . , Ql are distinct rational places, each not belonging to the support of G. The
algebraic geometry codes CL(D,G) and CΩ(D, G) are constructed as follows:

CL(D,G) := {(f(Q1), f(Q2), . . . , f(Ql)) : f ∈ L(G)}
CΩ(D, G) := {(resQ1(η), resQ2(η), . . . , resQl

(η)) : η ∈ Ω(G−D)} ,

where Ω(G − D) denotes the set of rational differentials η of F/Fq with divisor
(η) ≥ G − D together with the zero differential. If deg G < l, then the code
CL(D, G) has dimension `(G) ≥ deg G + 1 − g and minimum distance at least
l−deg G. If 2g−2 < deg G , then the code CΩ(D, G) has dimension `(K+D−G) ≥
l − deg G + g − 1, where K is a canonical divisor of F , and minimum distance at
least deg G− (2g − 2). The codes CL(D, G) and CΩ(D,G) are sometimes referred
to as m-point codes where m is the number of rational places in the support of G.

One-point codes defined using the Suzuki function field were first studied in [10].
Bases for one-point codes CL(D,αP∞) are given. By using the automorphism group
of F/Fq, or, more explicitly, using the functions x − a, uab, vab, and wab, one can
obtain a basis for any one-point code CL(D,αPab) constructed from the Suzuki
function field.

We will now describe spanning sets for two-point codes of the form CL(D,G).
Since the automorphism group of F/Fq is doubly transitive, we may restrict our
attention to codes of the form CL(D, αP1 + γP2) where P1 = P00 and P2 = P∞.
Then it only remains to describe a spanning set for the vector space L(αP1 + γP2).
Recall that this was established in Proposition 3.5.

Proposition 4.1. Let F/Fq denote the Suzuki function field, P1 and P2 be distinct
rational places of F , and α, γ ∈ N. Set D := Q1 + · · · + Ql to be the sum of
all rational places of F other than P1 and P2. Then the algebraic geometry code
CL(D, αP1 + γP2) is generated by

{(fa,b(Q1), . . . , fa,b(Ql)) : (a, b) ∈ H(P1, P2), (a, b) ¹ (α, γ)} ⊆ CL(D, αP1 + γP2)

where fa,b is as defined in (1).

Next, we turn our attention to codes of the form CΩ(D, αP1+γP2). In estimating
the parameters of these codes, we will use the following result.
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Proposition 4.2. [14, Theorem 2.1] Let α1, α2 ∈ N. Assume that

(α1, α), (γ1, γ2 − t− 1) ∈ G(P1, P2)

for 0 ≤ α ≤ α2 and 0 ≤ t ≤ min{γ2 − 1, 2g − 1− α1 − α2}. Set

G = (α1 + γ1 − 1)P1 + (α2 + γ2 − 1)P2

and D = Q1 + · · ·+ Ql, where each Qi is a rational place not in the support of G.
If the dimension of CΩ(D,G) is positive, then CΩ(D, G) has minimum distance at
least deg G− 2g + 3.

Proposition 4.3. For each positive integer n, there are two-point codes constructed
from the Suzuki function field F/F22n+1 that have better parameters than any com-
parable one-point code constructed from F .

Proof. Set P1 = P00 and P2 = P∞. Let m be an integer such that q− q−1
q0

≤ m < q.
Set (α1, α2) = (1, 2g−2) and (γ1, γ2) = (1, q2−mq−1). According to Theorem 3.3,
β1 = 2g − 1. Hence, (1, γ) ∈ G(P1, P2) for all γ ≤ 2g − 2. Let

G := P1 + (q2 + 2g −mq − 4)P2

and D be the sum of all rational places of F other than P1 and P2. Applying
Proposition 4.2 we see that CΩ(D, G) is a [q2 − 1, mq + 1 − g,≥ q(q − m)] code.
The one-point code CL(D + P1,mqP2) is a [q2,mq + 1 − g,≥ q(q −m)] code. To
see that the minimum distance of CL(D + P1, mqP2) is exactly q(q −m), consider

f :=
m∏

i=1

(x− ωi)

where ω is a primitive element of F22n+1 . Clearly, f gives rise to a codeword of
weight q(q − m) and so CL(D + P1,mqP2) is a [q2 − 1,mq + 1 − g, q(q − m)]
code. ¤

Example 4.4. Consider the function field F/F8 defined by

y8 − y = x2(x8 − x).

Take (α1, α2) = (14, 9) and (β1, β2) = (14, 14). Then Proposition 4.2 applies with
G = 27P00 + 22P∞ and D the sum of the remaining rational places of F/F8. As a
result, CΩ(D,G) is a [63, 27,≥ 24] code. According to the Brouwer tables [2], the
best known code over F8 of length 63 and dimension 27 has minimum distance 23.

Now take (α1, α2) = (14, 13) and (β1, β2) = (14, 11) in Proposition 4.2. Then
CΩ(D, 27P00 + 23P∞) is a [63, 26,≥ 25] code over F8. According to the Brouwer
tables [2], the best known code over F8 of length 63 and dimension 26 has minimum
distance 24.

Remark 4.5. We note that there are a number of two-point codes constructed
using the Suzuki function field over F8 with the same parameters as those of the best
known comparable code found in [2]. There are several two-point codes constructed
from the Suzuki function field over F8 that have parameters [63, 27,≥ 24] and
[63, 26,≥ 25]. In addition, there are a number of two-point codes (in addition to
those mentioned in the proof of Proposition 4.3) with minimum distance at least
that of the one-point code of the same dimension.
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