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Abstract. Combinatorial structures called stopping sets are useful in analyzing the per-
formance of a linear code when coupled with an iterative decoding algorithm over an erasure
channel. In this paper, we consider stopping sets of Hermitian codes.

1. Introduction

Combinatorial structures called stopping sets are useful in analyzing the performance of
a linear code when coupled with an iterative decoding algorithm over an erasure channel
[5, 20]. Given a code C with an r ⇥ n parity-check matrix H and a set S of column indices
of H, S is a stopping set of C if and only if the r ⇥ |S| matrix formed from H by deleting
those columns with indices not in S does not have a row of weight 1. Iterative decoding
is typically applied to codes defined by sparse matrices, meaning low-density parity-check
(LDPC) codes. Even so, the algorithms themselves apply to any linear code. Perhaps it
is for this reason that stopping sets have been studied for a number of codes, including
Hamming codes [1]; Reed-Muller codes [9]; the Simplex codes, the Hamming codes, the first
order Reed-Muller codes and the extended Hamming codes [12]; and array codes [7, 8].

The study of stopping sets of algebraic geometric codes was initiated by Zhang, Fu, and
Wan [24]. They demonstrate that Riemann-Roch spaces may be used to determine if a set
of column indices of the parity-check matrix whose rows are precisely the nonzero codewords
of the dual is a stopping set. Using these ideas, they consider algebraic geometric codes
from function fields of low genus, meaning those from the rational function field and elliptic
function fields. They observe that stopping sets of Reed-Solomon codes are completely
determined by their cardinalities and give a characterization of stopping sets of algebraic
geometric codes from elliptic function fields.

There are several motivations for our examination of stopping sets of algebraic geometric
codes. First, iterative decoding algorithms, though best suited to low-density parity-check
codes, apply to any linear code, and adaptations have been suggested to handle codes defined
by dense matrices. Moreover, every linear code can be viewed as an algebraic geometric code
[18]. Second, since the columns of a parity-check matrix for an algebraic geometric code
correspond to rational points on a curve, one might expect certain configurations of points
to produce stopping sets; that is, the structure of the stopping set may be linked to that of the
underlying curve. Third, there are recent applications of algebraic geometric codes to polar
coding. In particular, polar codes depend on a kernel matrix used, which may arise from

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975; email:
gmatthe@clemson.edu
G. L. Matthews’ work is supported in part by NSA MSP-111006 and NSF DMS-1403062.

1



2 ANDERSON AND MATTHEWS

algebraic -geometric codes. Recent work on graph representations of polar codes suggests
new ties between these kernels, iterative decoding, and stopping sets [3]. Furthermore, the
performance of finite-length polar codes over the binary erasure channel when coupled with
belief propagation decoding has recently been analyzed along with stopping sets of these
codes. Specifically, Eslami and Pishro-Nik proposed a polar-LDPC concatenation using belief
propagation decoding for the polar and LDPC codes to use in optical transport networks
and showed these codes outperform current coding schemes [6]. Finally, while stopping sets
of algebraic geometric codes have been considered for low genus curves (i.e., 0 and 1), a
hallmark of the algebraic geometric construction is the ability to produce long codes with a
variety of parameters, which relies on the use of curves of larger genus.

Other than the Reed-Solomon codes, Hermitian codes are the best understood class of
algebraic geometric codes. Moreover, Hermitian codes are known to have excellent param-
eters and can outperform Reed-Solomon codes over the same field. Hermitain codes have
much longer codewords and larger Hamming minimum distance than Reed-Solomon codes.
As a result, Hermitain codes have good bit-error correction [23] as well as significantly better
burst error correction [4] compared to Reed-Solomon codes over the same field size. However,
Hermitian codes have higher decoding complexity [10, 14].

In this paper, we consider stopping sets of Hermitian codes. We construct stopping sets
corresponding to collections of points, which in some cases are collinear in a certain sense.
This suggests a relationship between stopping sets, which are combinatorial structures, and
the underlying geometry of the curve. In [24], Zhang et al. use the group structure of the
set of points on an elliptic curve to provide conditions for whether a collection of points
corresponds to a stopping set. In the absence of this structure for curves of larger genus,
we rely on explicit bases for Riemann-Roch spaces associated with the Hermitian curve. A
benefit of this approach is that particular collections of points are identified as giving rise to
stopping sets whereas others are ruled out as stopping sets.

This paper is organized as follows. Section 2 contains background information on stopping
sets, especially those of algebraic geometric codes and their dependence on related Riemann-
Roch spaces. Our main results are featured in Section 3 where we study stopping sets of
Hermitian codes. Examples are found in Section 4, followed by closing comments found in
Section 5.

2. Riemann-Roch spaces and stopping sets of algebraic geometric codes

The structure of an algebraic geometric code reveals information about its stopping sets,
as demonstrated in [24]. In particular, dimensions of Riemann-Roch spaces can be used to
determine if a set is a stopping set. In this section, we review the relevant results of [24],
extending and supplementing them as necessary.

In this paper, we consider linear codes. Let H be a parity-check matrix of an [n, k, d]-code
C over Fq, the finite field with q elements, and let [n] = {1, . . . , n} denote the set of column
indices of H.

Definition. A stopping set S of the code C with parity-check matrix H is a subset of [n]
such that the restriction of H to S does not contain a row of weight 1.
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Notice that stopping sets depend not just on the code but also on the choice of parity-
check matrix of the code. Hence, we write C = �(H) to mean a code C with parity-check
matrix H. If H is an r ⇥ n matrix and S ✓ [n], we write H|S to denote the restriction of
H to S, meaning the r⇥ |S| matrix formed from H by deleting those columns of H indexed
by elements of [n] \ S.

Given a code C, let H⇤ denote a parity-check matrix whose rows are precisely the nonzero
codewords of the dual code C?. As shown in the next result, determining stopping sets of
C = �(H⇤) allows one to find stopping sets of �(H) where H is an arbitrary parity-check
matrix of C. Considering codes represented by H⇤ is not a new notion. For instance, it was
noted by Kelley and Sridhara [13] that adding all possible check nodes to a Tanner graph
gives a graph with the smallest number of lift-realizable pseudocodewords among all possible
representations of the code and that if this graph does not have any bad noncodeword-
pseudocodewords then the performance obtained with iterative decoding is the same as the
optimal ML performance. Schwartz and Vardy used the matrix H⇤ to show that the stopping
redundancy of a code, which is smallest number of rows in a parity-check matrix for a code
whose stopping distance is equal to the minimum distance, is well defined [20].

Proposition 2.1. If S is a stopping set of C? = �(H⇤) and C 0 is a subcode of C, then S is
a stopping set of C 0? = �(H 0) for any parity-check matrix H 0 of C 0?. In particular, if S is a
stopping set of �(H⇤), then S is a stopping set of �(H) for any parity-check matrix H of C.

Proof. Suppose C 0 ✓ C. Let H 0 be a parity-check matrix of C 0?, meaning C 0? = �(H 0).
Then H 0 is a generator matrix for C 0. Let H⇤ denote a matrix whose rows are precisely the
nonzero codewords of C. It follows that H 0 is a submatrix of H⇤, because C 0 ✓ C. Suppose
that S is a stopping set of C? = �(H⇤). By definition, H⇤|S has no rows of weight 1. Since
H 0|S is a submatrix of H⇤|S with the same column indices, H 0|S has no rows of weight 1.
Thus, S is a stopping set of �(H 0) = C 0?. ⇤

Stopping sets of algebraic geometric codes were first studied by Zhang, Fu, and Wan [24],
and their work focuses on codes �(H⇤). In this section, we review their results and extend
some to �(H) where H is an arbitrary parity-check matrix of C. This lays the groundwork
for studying stopping sets of Hermitian codes in the next section. We begin by setting up
notation to be used for algebraic geometric codes.

Let F be a function field over Fq of genus g. Let PF denote the set of places of the function
field F . Given a divisor G =

P

P2PF
aPP of F , vP (G) := aP . If f 2 F \ {0}, we write vP (f)

to mean vP ((f)) where (f) denotes the principal divisor of the function f . Given two divisors
G and G0 of F , we write G 6 G0 if and only if vP (G) 6 vP (G0) for all P 2 PF . The support
of a divisor G is supp G = {P 2 PF : vP (G) 6= 0}.

An algebraic geometric (or AG) code CL(D,G) is constructed using two divisors G and
D = P1 + · · · + Pn on F with disjoint supports, where the Pi are distinct places of F of
degree 1. The algebraic geometric code CL(D,G) is

CL(D,G) = {ev(f) : f 2 L(G)} ✓ Fn
q ,

where

ev(f) = (f(P1), . . . , f(Pn))
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and
L(G) = {f 2 F | (f) > �G} [ {0}

is the Riemann-Roch space of G. Let `(G) := dim(L(G)). Its dual is

C⌦(D,G) = CL(D,G)?.

A parity-check matrix of C⌦(D,G) is a generator matrix for CL(D,G); hence, it has the
form

2

6

6

4

f1(P1) f1(P2) · · · f1(Pn)
f2(P1) f2(P2) · · · f2(Pn)

...
...

...
fk(P1) fk(P2) · · · fk(Pn)

3

7

7

5

where {f1, . . . , fk} spans L(G) as an Fq-vector space. Notice that the columns of a parity-
check matrix of C⌦(D,G) correspond to the places in the support of the divisor D. Hence,
at times, we sometimes speak of stopping sets of such codes as being sets of places in the
support of D, rather than the indices of the places.

In this paper, we consider strongly algebraic geometric codes, meaning those satisfying
2g � 2 < degG < n, as coined by Pellikaan, Shen, and van Wee [18].

The following result is similar to [24, Theorem 6]; in fact, Lemma 2.2(2) is a restatement.

Lemma 2.2. Let C = C⌦(D,G) be a code of length n and S ✓ [n].

(1) If

L
 

G�
X

j2S

Pj

!

= L

0

@G�
X

j2S\{i}

Pj

1

A

for all i 2 S, then S is a stopping set of �(H) for any parity-check matrix H of C.
(2) The set S is a stopping set of �(H⇤) if and only if

L
 

G�
X

j2S

Pj

!

= L

0

@G�
X

j2S\{i}

Pj

1

A

for all i 2 S.
(3) Let H be a parity-check matrix of C. If S is a stopping set of �(H), then ev(f) is

not a row of H for any

f 2 L

0

@G�
X

j2S\{i}

Pj

1

A \ L
 

G�
X

j2S

Pj

!

and i 2 S.

Proof. Let C = C⌦(D,G) be a code of length n and S ✓ [n].

(1) Fix a parity-check matrix H of C. Suppose S = {i1, . . . , ij} is not a stopping set of
�(H). Then H|S contains a row of weight 1. Hence, there exists f 2 L(G) such that

wt
�

(f(Pi1), . . . , f(Pij))
�

= 1.
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Therefore, there exists i 2 S such that f(Pi) 6= 0 and f(Pj) = 0 for all j 2 S \ {i}.
Then

(f) >
X

j2S\{i}

Pj �G

and vPi(f) = 0, which implies

f 2 L

0

@G�
X

j2S\{i}

Pj

1

A \ L
 

G�
X

j2S

Pj

!

.

(2) According to (1), if L
⇣

G�
P

j2S Pj

⌘

= L
⇣

G�
P

j2S\{i} Pj

⌘

for all i 2 S, then S is

a stopping set of �(H⇤).
Now assume S = {i1, . . . , ij} is a stopping set of �(H⇤). Suppose

L
 

G�
X

j2S

Pj

!

6= L

0

@G�
X

j2S\{i}

Pj

1

A

for some i 2 S. Then there exists

f 2 L

0

@G�
X

j2S\{i}

Pj

1

A \ L
 

G�
X

j2S

Pj

!

.

As a result, there exists an e↵ective divisor M with Pi /2 suppM such that

(f) =
X

j2S\{i}

Pj �G+M.

Notice that wt
�

(f(Pi1), . . . , f(Pij))
�

= 1 since f(Pj) = 0 for all j 2 S \ {i} and
f(Pi) 6= 0. This is a contradiction as H⇤|S does not contain a row of weight one.
Therefore,

L
 

G�
X

j2S

Pj

!

= L

0

@G�
X

j2S\{i}

Pj

1

A

for all i 2 S.
(3) Let H be a parity-check matrix of C and S be a stopping set of �(H). Sup-

pose ev(f) is a row of H where f 2 L
⇣

G�
P

j2S\{i} Pj

⌘

\ L
⇣

G�
P

j2S Pj

⌘

for

some i 2 S. As in the proof of (2), this implies wt
�

(f(Pi1), . . . , f(Pij))
�

= 1
which yields a contradiction. Hence, H has no rows of the form ev(f) where f 2
L
⇣

G�
P

j2S\{i} Pj

⌘

\ L
⇣

G�
P

j2S Pj

⌘

.

⇤
Lemma 2.2 indicates that the cardinality of a set plays a role in whether or not it is a

stopping set, as shown in Figure 1 for the parity-check martix H⇤. This is stated in the next
result (cf. [24, Corollary 7] which applies to the parity-check matrix H⇤.)



6 ANDERSON AND MATTHEWS

𝑖 0                                     degG – 2g + 1                     degG + 2                                    n
n 

|𝑆| = 𝑖
𝑆 is not a stopping set 𝑆 is a stopping set

Figure 1. For very small and very large sets S, | S | determines whether or
not S is a stopping set of C⌦(D,G) with parity-check matrix H⇤.

Proposition 2.3. Let C = C⌦(D,G) be a code of length n and S ✓ [n].

(1) If |S| > degG + 2, then S is a stopping set of �(H) for any parity-check matrix H
of C.

(2) If |S| 6 degG� 2g + 1, then S is not a stopping set of �(H⇤).
(3) If |S| 6 degG � 2g + 1, then S is not a stopping set of �(H) for any parity-check

matrix H of C that has a row given by ev(f) where f 2 L
⇣

G�
P

j2S\{i} Pj

⌘

\

L
⇣

G�
P

j2S Pj

⌘

for some i 2 S.

Proof. Let C = C⌦(D,G) be a code of length n and S ✓ [n].

(1) Let H be a parity-check matrix of C. Suppose |S| > degG+ 2. Then

deg

 

G�
X

j2S

Pj

!

< deg

0

@G�
X

j2S\{i}

Pj

1

A = degG� (|S|� 1) 6 �1 < 0.

Consequently,

L
 

G�
X

j2S

Pj

!

= L

0

@G�
X

j2S\{i}

Pj

1

A = {0}.

By Lemma 2.2(1), S is a stopping set of �(H).
(2) Suppose |S| 6 degG� 2g + 1. For any i 2 S,

deg

0

@G�
X

j2S\{i}

Pj

1

A > deg

 

G�
X

j2S

Pj

!

> 2g � 1.

By the Riemann-Roch Theorem,

`

 

G�
X

j2S

Pj

!

= degG� |S|+ 1� g 6= degG� |S|+ 2� g = `

0

@G�
X

j2S\{i}

Pj

1

A .

Thus, S is not a stopping set of �(H⇤) by Lemma 2.2(2).
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(3) Notice that if ev(f) is a row of H, where C = �(H) and f 2 L
⇣

G�
P

j2S\{i} Pj

⌘

\

L
⇣

G�
P

j2S Pj

⌘

, then Lemma 2.2(3) combined with the argument in (2) above

indicates that S is not a stopping set of �(H).

⇤
Next, we provide a result which is useful in finding stopping sets of algebraic geometric

codes. This is determined for �(H⇤) by Zhang et. al. [24, Theorem 8].

Lemma 2.4. Let H be a parity-check matrix of a code C = C⌦(D,G) of length n and
S ✓ [n]. If for all i 2 S, there exists a function h with

(h) = K +
X

j2S

Pj �G�M

where K is a canonical divisor and M is an e↵ective divisor such that Pi /2 suppM, then S
is a stopping set of �(H). The converse holds for �(H⇤) as well as for �(H) where H has
no rows of the form ev(f) with (f) > P

j2S\{i} Pj �G and vPi(f) = 0 for all i 2 S.

Proof. Let H be a parity-check matrix of C = C⌦(D,G) and i 2 S. Suppose there exists a
function h with

(h) = K +
X

j2S

Pj �G�M

where K is a canonical divisor and M is an e↵ective divisor with Pi /2 suppM. Then

(h�1) = G+M �K �
X

j2S

Pj,

which implies

h�1 2 L
 

K +
X

j2S

Pj �G

!

\ L

0

@K +
X

j2S\{i}

Pj �G

1

A .

Thus,

`

 

K +
X

j2S

Pj �G

!

= `

0

@K +
X

j2S\{i}

Pj �G

1

A+ 1.

By the Riemann-Roch Theorem,

`
⇣

G�
P

j2S Pj

⌘

= degG� |S|+ 1� g + `
⇣

K �G+
P

j2S Pj

⌘

= degG� |S|+ 1� g + `
⇣

K �G+
P

j2S\{i} Pj

⌘

+ 1

= degG� (|S|� 1) + 1� g + `
⇣

K �G+
P

j2S\{i} Pj

⌘

= `
⇣

G�
P

j2S\{i} Pj

⌘

.

Thus, S is a stopping set by Lemma 2.2(1).
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Assume S is a stopping set of �(H⇤). According to Lemma 2.2(2),

`

 

G�
X

j2S

Pj

!

= `

0

@G�
X

j2S\{i}

Pj

1

A

for all i 2 S. It follows from the Riemann-Roch Theorem that

`
⇣

K �G+
P

j2S Pj

⌘

= `
⇣

G�
P

j2S Pj

⌘

� degG+ |S|� 1 + g

= `
⇣

G�
P

j2S\{i} Pj

⌘

� degG+ |S|� 1 + g

= `
⇣

K �G+
P

j2S\{i} Pj

⌘

+ 1,

where K is a canonical divisor of F . Hence, there exists

h 2 L
 

K �G+
X

j2S

Pj

!

\ L

0

@K �G+
X

j2S\{i}

Pj

1

A .

Consequently,

(h) > G�K �
X

j2S

Pj

and vPi(h) = �1. Thus, there exists an e↵ective divisor M with Pi /2 supp M such that
(h) = M +G�K �

P

j2S Pj; that is, (h�1) = K +
P

j2S Pj �G�M .
Note that if H has no rows of the form ev(f) with (f) =

P

j2S\{i} Pj � G for all i 2 S,
then Lemma 2.2(3) combined with the argument above gives the desired result. ⇤
Proposition 2.5. Suppose CL(D,G0) and CL(D,G) are algebraic geometric codes with G0 6
G. If S is a stopping set of �(H⇤) where C = C⌦(D,G), then S is a stopping set of C⌦(D,G0)
with any choice of parity-check matrix H 0.

Proof. This follows immediately from Proposition 2.1. ⇤

3. Stopping sets of Hermitian codes

In this section, we consider stopping sets of Hermitian codes, meaning algebraic geometric
codes on the Hermitian function field. Throughout, we take q to be a power of a prime. Let
F = Fq2(x, y) be the function field with defining equation yq + y = xq+1 where q is a power
of a prime. We consider the Hermitian code C⌦(D,mP1) over Fq2 where m is a positive
integer, D =

P

↵,�2Fq2 ,�
q+�=↵q+1 P↵,� and P↵,� is a common zero of x� ↵ and y� �, and P1

is the infinite place of F . Recall that the Hermitian function field F has genus

g =
q(q � 1)

2
.

The code C⌦(D,mP1) has length n = q3.
Keeping in mind Proposition 2.3 and the fact that we are interested in strongly algebraic

geometric codes, in all that follows, we consider codes C⌦(D,mP1) and S ✓ [n] where
2g � 2 < m < n and m� 2g + 1 < |S| < m+ 1.
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Corollary 3.1. Consider the Hermitian code C = C⌦(D,mP1) over Fq2. Given any parity-
check matrix H of C, any subset of [n] with cardinality at least m + 2 is a stopping set of
�(H). Any non-empty subset of [n] with cardinality at most m� q2 + q+1 is not a stopping
set of �(H⇤).

Proof. This follows immediately from Proposition 2.3. ⇤
To say more about stopping sets of Hermitian codes, we will need some additional tools

that are useful in studying Hermitian codes. One such object is the Weierstrass semigroup
of places of the function field F . Let N denote the set of nonnegative integers. Given distinct
rational places P1, . . . , Pm, the Weierstrass semigroup of the m-tuple of places (P1, . . . , Pm)
is

H(P1, . . . , Pm) = {(↵1, . . . ,↵m) 2 Nm : 9f 2 F with (f)1 = ↵1P1 + · · ·+ ↵mPm}.

We will write ha1, . . . , aki := {
Pk

i=1 ciai : ci 2 N} to denote the subsemigroup of nonnegative
integers generated by a1, . . . , ak 2 N. It is well known that H(P ) = hq, q + 1i for any place
P of degree one of the Hermitian function field over Fq2 . In addition, H(P1, P2) has been
completely determined [17]. Given ↵ 2 N,

�↵ := min{� 2 N : (↵, �) 2 H(P1, P2)}.

For any two distinct rational points P1 and P2 on the Hermitian function field over Fq2 ,

(1) �(t�j)(q+1)+j = (q � t� 1)(q + 1) + j

for 1 6 j 6 t 6 q � 1 [17, Theorem 3.4]. Let F/K be a function field with distinct places
P1, . . . , Pm of degree one and � denote its gonality, meaning � is the minimum degree of a
field extension F/K(z) where z 2 F . Then as stated in [2]

� 6 min {↵1 + · · ·+ ↵m : (↵1, . . . ,↵m) 2 H(P1, . . . , Pm) \ {(0, . . . , 0)}} .

Hence, for the Hermitian function field over Fq2 ,

(2) q 6 min {↵1 + · · ·+ ↵m : (↵1, . . . ,↵m) 2 H(P1, . . . , Pm) \ {(0, . . . , 0)}} .

Next, we describe important families of places of the Hermitian function field, because
they will often make up large parts of stopping sets of Hermitian codes. Given ↵ 2 Fq2 , let

K↵ :=
�

� 2 Fq2 | �q + � = ↵q+1
 

.

Then P↵� is a place of degree one of F , for all � 2 K↵. Similarly, for � 2 Fq2 , set

L� :=
�

↵ 2 Fq2 : �
q + � = ↵q+1

 

.

Notice that |K↵| = q and |L�| = q + 1.
We say that a set S ✓ [q3] is a collinear set if the columns of the parity-check matrix of

C⌦(D,mP1) indexed by S correspond to places in the set

(3) {P1, . . . , Pt} [ {P↵s� : 1 6 s 6 b, � 2 K↵s}

where b is a nonnegative integer, Pj 2 {P↵,� 2 PF | � 2 K↵} for some ↵ 2 Fq2 , and
|S| = bq + t with 0 6 t 6 q � 1. If S is not of the form given in (3), we say that S is a



10 ANDERSON AND MATTHEWS

noncollinear set. In [15, Theorem 3.6], the authors determine that

(4) `

 

rP1 +
X

�2K↵

k�P↵,�

!

=
q
X

i=0

max

(

�

r � iq

q + 1

⌫

+
X

�2K↵

�

k� + i

q + 1

⌫

+ 1, 0

)

for any r, k� 2 Z. This allows us to verify the existence of collinear stopping sets of
C⌦(D,mP1) of sizes a for m � q2 + q + 2 6 a 6 m + 1. These stopping sets consist of
either:

• all columns corresponding to points with x = ↵ for b values ↵ 2 {↵1, . . . ,↵b} ✓ Fq2 ,
or

• all columns corresponding to points with x = ↵ for b values ↵ 2 {↵1, . . . ,↵b} ✓ Fq2

along with “enough” columns corresponding to points with x = ↵0 for some ↵0 2
Fq2 \ {↵1, . . . ,↵b}

where b =
j

a
q

k

. We will see that any collection consisting of all columns corresponding to

points with x = ↵i for b values ↵1, . . . ,↵b 2 Fq2 forms a stopping set and that if one adds
“enough” additional columns corresponding to another value x = ↵0 this also constitutes a
stopping set. This is made precise in the next argument.

Theorem 3.2. Consider the Hermitian code C = C⌦(D,mP1) over Fq2. Let b and t be
nonnegative integers with 0 6 t 6 q � 1. There exists a collinear stopping set of �(H⇤) of

size bq+t where m�2g+2 6 bq+t 6 m+1 if and only if
j

m�bq
q+1

k

+2 6 t or t = 0. Given any

parity-check matrix H of C, if
j

m�bq
q+1

k

+ 2 6 t or t = 0 where m� 2g + 2 6 bq + t 6 m+ 1,

then �(H) has a stopping set of size bq + t.

Proof. Fix a parity-check matrix H of C. Let n = q3. Suppose S ✓ [n] is a collinear set as in
(3). Let S 0 ✓ S denote the set of column indices corresponding to [i2{1,...,b}{P↵i,� | � 2 K↵i},
and let S 00 ✓ S denote those corresponding to {P1, . . . , Pt}; that is, abusing notation,

S 0 = [i2{1,...,b}{P↵i,� | � 2 K↵i}

and

S 00 = {P1, . . . , Pt}.

First, observe that

L
 

mP1 �
X

j2S

Pj

!

⇠= L
 

(m� bq)P1 �
X

j2S00

Pj

!

.

To see this, consider f 2 L
⇣

mP1 �
P

j2S Pj

⌘

. Notice that

f

b
Y

s=1

(x� ↵s)
�1 2 L

 

(m� bq)P1 �
X

j2S00

Pk

!

.
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Furthermore, multiplication by
Qb

s=1(x � ↵s)�1 defines the desired isomorphism. Similarly,
one may check that for all i 2 S 00,

L

0

@mP1 �
X

j2S\{i}

Pj

1

A

⇠= L

0

@(m� bq)P1 �
X

j2S00\{i}

Pj

1

A .

Moreover, if i 2 S 0, then

L

0

@mP1 �
X

j2S\{i}

Pj

1

A

⇠= L
 

(m� bq)P1 + Pi �
X

j2S00

Pj

!

.

Next, assume t = 0. Let h =
Qb

s=1(x� ↵s). Then

(h) = (2g � 2)P1 +
X

j2S

Pj �mP1 � (bq + 2g � 2�m)P1

satisfies the conditions of Lemma 2.4, because |S| > m� (2g � 2) which implies (bq + 2g �
2 � m)P1 is an e↵ective divisor. Thus, S is a stopping set of �(H). Hence, in the rest of
the proof, we assume 1 6 t 6 q � 1.

Now, assume that
j

m�bq
q+1

k

+ 2 6 t. According to Equation (4),

`
⇣

(m� bq)P1 �
P

j2S00 Pj

⌘

= max
nj

m�bq
q+1

k

� t+ 1, 0
o

+
Pq

r=1 max
nj

m�bq�rq
q+1

k

+ 1, 0
o

.

If i 2 S 00, then

`
⇣

(m� bq)P1 �
P

j2S00\{i} Pj

⌘

= max
nj

m�bq
q+1

k

� t+ 2, 0
o

+
Pq

r=1 max
nj

m�bq�rq
q+1

k

+ 1, 0
o

= 0 +
Pq

r=1 max
nj

m�bq�rq
q+1

k

+ 1, 0
o

= max
nj

m�bq
q+1

k

� t+ 1, 0
o

+
Pq

r=1 max
nj

m�bq�rq
q+1

k

+ 1, 0
o

= `
⇣

(m� bq)P1 �
P

j2S00 Pj

⌘

,

since
j

m�bq
q+1

k

+ 1 6
j

m�bq
q+1

k

+ 2 6 t. Now consider i 2 S 0. Recall that

L
 

(m� bq)P1 �
X

j2S00

Pj

!

✓ L
 

(m� bq)P1 + Pi �
X

j2S00

Pj

!

.

If

`

 

(m� bq)P1 �
X

j2S00

Pj

!

6= `

 

(m� bq)P1 + Pi �
X

j2S00

Pj

!

,
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then there exists f 2 F with (f)1 = Pi+aP1 for some a 2 N with a 6 m�bq. Consequently,
Equation (1) implies a > �1 = (q�2)(q+1)+1. It follows that (q�2)(q+1)+1 6 a 6 m�bq
and

q 6
�

(q � 2)(q + 1) + 1

q + 1

⌫

+ 2 6
�

m� bq

q + 1

⌫

+ 2 6 t,

which is a contradiction as 1 6 t 6 q � 1. Thus, S is a stopping set of �(H) by Lemma 2.2.

Finally, we claim that if S is a collinear stopping set of �(H⇤), then
j

m�bq
q+1

k

+ 2 6 t or

t = 0. Suppose

`

 

G�
X

j2S

Pj

!

= `

0

@G�
X

j2S\{i}

Pj

1

A

for all i 2 S. Then either t = 0 or

`
⇣

(m� bq)P1 �
P

j2S00 Pj

⌘

= `
⇣

(m� bq)P1 �
P

j2S00\{i} Pj

⌘

= `
⇣

(m� bq)P1 + Pi �
P

j2S00 Pj

⌘

.

According to Equation (4), this implies t = 0 or

max

⇢�

m� bq

q + 1

⌫

� t+ 1, 0

�

= max

⇢�

m� bq

q + 1

⌫

� t+ 2, 0

�

.

Thus, t = 0 or
j

m�bq
q+1

k

+ 2 6 t. ⇤

Next, we find some noncollinear stopping sets of certain Hermitian codes. Here, the
stopping sets are consist of all columns corresponding to points with x = ↵i for b values
↵1, . . . ,↵b 2 Fq2 along with all columns corresponding to points with y = �i for t values
�1, . . . , �t 2 Fq2 , provided b 6 q2 � q. One may think of the stopping set as consisting of b
sets of columns that are collinear in x and t sets of columns that are collinear in y. This is
made precise in the following argument.

Theorem 3.3. Let b and t be nonnegative integers with 1 6 t 6 q� 1. If 0 6 b� t 6 q2� q,
then there exists a stopping set of the Hermitian code C⌦(D,mP1) over Fq2 of size bq + t
where m� 2g + 2 6 bq + t 6 m+ 1 for any choice of parity-check matrix.

Proof. Write bq + t = (b� t)q + t(q + 1). Label the elements of Fq2 so that ↵0 = 0,

↵q+1
i = · · · = ↵q+1

(i�1)(q+1)+j

for 1 6 i 6 q � 2 and 1 6 j 6 q + 1, L�i =
�

↵(i�1)(q+1)+j : 1 6 j 6 q + 1
 

, and

Fq2 = [̇q�1
i=0L�i ;

that is, the sets L0, L�1 , . . . , L�q�2 form a partition of Fq2 . Let

S =
�

[b�t�1
s=0

�

[�2K↵s
P↵s�

��

[
�

[t
s=1

�

[↵2L�s
P↵�s

��

.

Then |S| = bq + t. We claim that S is a stopping set of �(H).
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Define

h :=

 

b�t�1
Y

s=0

(x� ↵s)

!

·
 

t
Y

s=1

(y � �s)

!

.

Observe that if b = t, h =
�

Qt
s=1 (y � �s)

�

; if t = 0, then h =
⇣

Qb�t�1
s=0 (x� ↵s)

⌘

. Then

supp

 

b�t�1
Y

s=0

(x� ↵s)

!

\ supp

 

t
Y

s=1

(y � �s)

!

= ;

by construction. In fact,

(h) =
b�t�1
X

s=0

0

@

X

�2K↵s

P↵s�

1

A+
t

X

s=1

0

@

X

↵2L�s

P↵�s

1

A� ((b� t)q + t(q + 1))P1.

To demonstrate that h satisfies the conditions of Lemma 2.4, we write

(h) =
X

j2S

Pj + (2g � 2)P1 �mP1 �M

where K = (2g � 2)P1 and M = ((b� t)q + t(q + 1) + (2g � 2)�m)P1. Then M is an
e↵ective divisor as m� (2g � 2) 6 bq + t. By Lemma 2.4, S is a stopping set of �(H). ⇤

Theorem 3.2 proves that if a is a multiple of q, then C⌦(D,mP1) has a stopping set of
size a. In the next result, consider stopping sets of size a ⌘ 1 mod q. Here, we assume that
m is a multiple of q. The stopping sets described here consist of

• all columns corresponding to points with x = ↵ for b�1 values ↵ 2 {↵1, . . . ,↵b�1} ✓
Fq2 together with

• all but one column corresponding to points with x = ↵b 2 Fq2 \ {↵1, . . . ,↵b�1} and
• two columns corresponding to points with x = ↵b+1 2 Fq2 \ {↵1, . . . ,↵b}.

This is made precise in the next argument.

Theorem 3.4. Consider C⌦(D,mP1) over Fq2. Then there exists a stopping set of size
m+ 1 if m is multiple of q and any choice of parity-check matrix.

Proof. Let C = C⌦(D,mP1) and m = bq for 0 6 b < q2. Let S 0 = [b�1
s=1{P↵s,� | � 2 K↵s},

and let S 00 = {P1, . . . , Pq�1} such that Pj 2 {P↵0,� 2 PF | � 2 K↵0} for some ↵0 2 Fq2 such
that ↵0 /2 {↵1,↵2, . . . ,↵b�1}. Let S = S 0[S 00[{P,Q}, where P,Q 2 {P↵00,� 2 PF | � 2 K↵00}
for some ↵00 2 Fq2 such that ↵00 /2 {↵1,↵2, . . . ,↵b�1,↵

0}. Notice the size of S is m+ 1.

Observe that `
⇣

mP1 �
P

j2S Pj

⌘

= ` (R� P �Q) where K↵0 = S 00 [ {R}. To see this,

consider f 2 L
⇣

mP1 �
P

j2S Pj

⌘

. Then (f) > P

j2S Pj �mP1. Hence, since m = bq,
 

f

✓

1

x� ↵0

◆ b�1
Y

s=1

1

x� ↵s

!

> �R + P +Q�mP1 + bqP1 = �R + P +Q.

To find `
⇣

mP1 �
P

j2S\i Pj

⌘

, there are three cases to consider: Pi 2 S 0, Pi 2 S 00, or

Pi = P or Q.
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Case 1: Suppose Pi 2 S 0. Then `
⇣

mP1 �
P

j2S\{i} Pj

⌘

= `(R + Pi � P � Q) since if

f 2 L
⇣

mP1 �
P

j2S Pj

⌘

, then
 

f

✓

1

x� ↵0

◆ b�1
Y

s=1

1

x� ↵s

!

> �R� Pi + P +Q.

Case 2: Suppose Pi 2 S 00. Using the same techniques as above, `
⇣

mP1 �
P

j2S\{i} Pj

⌘

=

`(R + Pi � P �Q).

Case 3: Suppose Pi 2 {P,Q}. Then, as above, `
⇣

mP1 �
P

j2S\{i} Pj

⌘

= `(R � Q) or

`
⇣

mP1 �
P

j2S\{i} Pj

⌘

= `(R� P ).

Putting this all together, we see that `
⇣

mP1 �
P

j2S Pj

⌘

= `
⇣

mP1 �
P

j2S\{i} Pj

⌘

if

and only if
` (R� P �Q) = `(R + Pi � P �Q) = `(R� P ).

Clearly, L (R� P �Q) = {0} as deg(R � P � Q) = �1. Because 1 /2 H(P ) = hq, q + 1i,
L(R � P ) = {0}. Similarly, L (R + Pi � P �Q) = {0} as �1 > 1. Thus, S is a stopping set
of �(H) of size m+ 1 by Lemma 2.2. ⇤
Theorem 3.5. Consider the Hermitian code C = C⌦(D,mP1) over Fq2. If 2(q2 � q �
1) 6 m 6 q3 � q2 + 2q � 1, then there exists a stopping set of �(H) of size a for all
a 2 [m� 2g + 2,m+ 1] for any choice of parity-check matrix H.

Proof. Let 2(q2� q� 1) 6 m 6 q3� q2+2q� 1 and a 2 [m� 2g+2,m+1]. Write a = bq+ t
with 0 6 t 6 q � 1. If t = 0, then there exists a stopping set of cardinality a by Theorem
3.2. Hence, we assume 1 6 t 6 q� 1 in the rest of the argument. If 0 6 b� t 6 q2 � q, then
then there exists a collinear stopping set of cardinality a by Theorem 3.3. Suppose b� t < 0
or q2 � q < b� t. If b� t < 0, then

a = bq + t

= (b� t)q + t(q + 1)

6 �q + t(q + 1) since b� q 6 �1

6 �q + (q � 1)(q + 1) since t 6 q � 1

= q2 � q � 1.

However, this is a contradiction, since

a > m� 2g + 2 > (2q2 � 2q � 2)� 2g + 2 = q2 � q.

Similarly, if q2 � q < b� t, then

a = bq+t = (b�t)q+t(q+1) > (q2�q+1)q+t(q+1) > q3�q2+q+(q+1) = q3�q2+2q+1.

However,
a 6 m+ 1 6 q3 � q2 + 2q � 1 + 1 = q3 � q2 + 2q.

Therefore, 0 6 b� t 6 q2 � q and there exists a stopping set of size a according to Theorem
3.3. ⇤
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Next, we consider small values of m, meaning 2g � 1 6 m 6 2(2g � 1).

Theorem 3.6. Consider the Hermitian code C = C⌦(D,mP1) over Fq2 where q2 � q� 1 6
m 6 2q2�2q�3. Then there exists a stopping set of �(H) of size a for all a 2 [2g,m+1] for
any choice of parity-check matrix H of C. In addition, there exists a stopping set of �(H)
of size a for all a 2 [m� 2g + 2, 2g � 1] \ hq, q + 1i for any choice of parity-check matrix H
of C.

Proof. Let m = 2q2 � 2q � 3, and consider a 2 [2g,m + 1]. Write a = bq + t where b, t 2 Z
with 0 6 t 6 q � 1. If t = 0, then there exists a stopping set of size a by Theorem 3.2.
Note that b > t; otherwise, a = bq + t 6 (q � 2)q + q � 1 < 2g � 1 which contradicts
a > m� 2g+3 = q2 � q. One may also observe that b� t 6 q2 � q. Indeed, if b� t > q2 � q,
then

q3 � q2 + q + t(q + 1) 6 (b� t)q + t(q + 1) = a 6 m+ 1 6 2q2 � 2q � 2

which is a contradiction. According to Theorem 3.3, there exists a stopping set S of �(H)
of size a. Now by Proposition 2.5, if q2 � q � 1 6 m0 6 m, then S is a stopping set of �(H 0)
where H 0 is any parity-check matrix of C = C⌦(D,m0P1).

Again let m = 2q2�2q�3, and now consider a 2 [m�2g+2, 2g�1]\hq, q + 1i As above,
write a = bq + t where b, t 2 Z with 0 6 t 6 q � 1. If t = 0, then there exists a stopping set
of C of size a by Theorem 3.2. Thus, we may assume 1 6 t 6 q � 1. If b � t > q2 � q + 1,
then

q3 � q2 + 2q + 1 6 (b� t)q + t(q + 1) = a 6 2g � 1 = q2 � q � 1

which is a contradiction as above. Now suppose that b� t < 0. It follows that t = q � 1 as

q2 � q � 1 = m� 2g + 2 6 a = (b� t)q + t(q + 1) 6 �q + t(q + 1).

Then b 6 q � 2. However, according to [19, Lemma 1] (see also [16, Proposition 2.5]),
this implies b /2 hq, q + 1i. Thus, we conclude that the hypotheses of Theorem 3.3 apply
and there exists a stopping set S of C⌦(D,mP1) of size a. Now by Proposition 2.5, if
q2 � q� 1 6 m0 6 m, then S is a stopping set of �(H 0) where H 0 is any parity-check matrix
of C = C⌦(D,m0P1). ⇤

Notice that in the previous result, we found stopping sets of size a for semigroup elements
a 2 hq, q + 1i, meaning elements of the gap set of H(P ) where P is a rational place of
F . Next, we consider a 2 N \ hq, q + 1i. As the next two results show, whether or not
C⌦(D,mP1) has a stopping set of size a depends on both a and m.

Theorem 3.7. Consider the Hermitian code C = C⌦(D,mP1) over Fq2 where q2 � q� 1 6
m 6 2q2 � 2q � 3 and m = 2q2 � 2q � (2k + i� 3)q � k � 1 for some 0 6 i 6 q � k � 1 and
2 6 k 6 q. Then there exists a stopping set of �(H) of size a for all a = (q�k�i)q+q�k+1,
for any choice of parity-check matrix H of C.

Proof. Let a = (q � k � i)q + q � k + 1 and m = 2q2 � 2q � (2k + i � 3)q � k + 1 where
0 6 i 6 q � k � 1 and 2 6 k 6 q. Because m� (q � k � i)q = (q + 1)(q � k � 1) + q,

�

m� (q � k � i)q

q + 1

⌫

+ 2 = (q � k � 1) + 2 = q � k + 1.
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Hence, Theorem 3.2 applies and C has a stopping set of size a for all 2g � 1 6 m0 6 m by
Proposition 2.5. ⇤
Theorem 3.8. Consider the Hermitian code C = C⌦(D,mP1) over Fq2 with parity-check
matrix H. If 1 6 a 6 q � 1, then there are no stopping sets of �(H⇤) size a for any m. If
a 2 N \ hq, q + 1i and m 2 [a+ 2g � 3, a+ 2g � 2], then there is no stopping set of �(H) of
size a.

Proof. Let C = C⌦(D,mP1) and 1 6 a 6 q�1. Suppose there exists a stopping set of �(H⇤)
of size a. By Lemma 2.4, there exists a function h 2 F with (h) = K+

P

j2S Pj �mP1�M
for some canonical divisor K and e↵ective divisor M of F . Since any two canonical divisors
of F are linearly equivalent, we may assume that K = (2g � 2)P1. Then

�

h�1
�

= M + (m� (2g � 2))P1 �
X

j2S

Pj.

It follows that there exist {i1, . . . , is} ✓ S such that

(1, . . . , 1) 2 H(Pi1 , . . . , Pis).

This is a contradiction to Equation (2), as s 6 a 6 q� 1. Hence, �(H⇤) has no stopping set
of size a.

Letm = a+2g�3, and assume a 2 N\hq, q + 1i. Express a as a = bq+t with 0 6 t 6 q�1.
Then 0 6 b 6 t�1 6 q�2, since otherwise a = (b� t)q+ t(q+1) 2 hq, q + qi. Suppose there
exists a stopping set of �(H) of size a. According to Lemma 2.4, there exists a function h
such that

(h) = K +
X

j2S

Pj �mP1 �M

for some canonical divisorK and e↵ective divisorM with Pj /2 suppF for all j 2 S. Using the
fact that any two canonical divisors are linearly equivalent, we may assume K = (2g�2)P1.
Observe that degM = (2g�2)+|S|�m = (2g�2)+a�(a+2g�3) = 1. Hence, M is a place
of degree one. Observe that (h) =

P

j2S Pj �M � (a� 1)P1 implies (1, a� 1) 2 H(M,P1).
Consequently, a� 1 > �1 = q2 � q � 1, so a > q2 � q. Recall that the Frobenius number of
hq, q + 1i is q(q+1)� q� (q+1) = q2 � q� 1, meaning every integer greater than q2 � q� 1
is an element of hq, q + 1i. This yields a contradiction as a /2 hq, q + 1i. Therefore, no such
stopping set exists.

The result holds for m = a+ 2g � 2 by Proposition 2.5.
⇤

We will now consider the existence of stopping sets for large values of m; that is, q3� q2+
2q 6 m 6 q3 � 1.

Theorem 3.9. Let q3 � q2 + 2q 6 m 6 q3 � 1, and set a = m� 2g+ 2. Then C⌦(D,m0P1)
has a stopping set of size a for all q3 � q2 + 2q 6 m0 6 m for any choice of parity-check
matrix.

Proof. Let m = q3 � q2 + 2q + s, where 0 6 s 6 q2 � 2q � 1, and

a = m� 2g + 2 = q3 � 2q2 + 3q + s+ 2.
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Write a = bq + t where 0 6 t 6 q � 1. If t = 0, then there exists a stopping set of size a
by Theorem 3.2. Thus, we may assume 1 6 t 6 q � 1. Notice that b = q2 � 2q + 3 + i and
t = s+ 2� iq, where 0 6 s+ 2� iq 6 q � 1. Then

b� t = q2 � 2q + 3 + i� (s+ 2� iq) > q2 � 2q + 3� (q � 1) > 0.

Furthermore,

b� t = q2 � 2q + 3 + i� t 6 q2 � 2q + 3 + i� 1 6 q2 � q

since i 6 q � 2. By Theorem 3.3, C⌦(D,mP1) has stopping set of size a = m � 2g + 2 for
q3 � q2 + 2q 6 m 6 q3 � 1. Applying Proposition 2.5, we conclude that C⌦(D,m0P1) has
stopping set of size a = m� 2g + 2 for q3 � q2 + 2q 6 m0 6 m. ⇤
Theorem 3.10. Let a = q3 � q2 + q + cq + d where 1 6 cq + d 6 q2 � q and 0 6 d 6 q � 1.
If d = 0, q 6 c + d, or c + 1 6 d, then C⌦(D,mP1) has a stopping set of size a for all
q3� q2+2q 6 m 6 q3�1 with m�2g+2 6 a 6 m+1 for any choice of parity-check matrix.

Proof. Let a = q3 � q2 + q + cq + d where 1 6 cq + d 6 q2 � 1 and 0 6 d 6 q � 1, and let
C = C⌦(D,mP1) where m = q3 � 1. Fix a parity-check matrix H for C. If d = 0, then
�(H) has a stopping set of size a. Thus, in the following, we assume 1 6 d 6 q � 1. Notice
that this implies c 6 q � 2; otherwise cq + d > (q � 1)q + d > q2 � q + 1.

Suppose q 6 c+ d. Since
�

m� (q3 � q2 + q + cq)

q + 1

⌫

+ 2 6
�

(q + 1)(q � (c+ 2)) + q � 1

q + 1

⌫

+ 2 = q � c 6 d,

Theorem 3.2 applies. Thus, �(H) has a stopping set of size a.
Now assume that c + 1 6 d. Expressing a as a = bq + t with 0 6 t 6 q � 1, we see that

b = q2 � q + 1 + c and d = t. Clearly, b > t. Furthermore, b � t = q2 � q + 1 + c � d 6
q2 � q + d� d = q2 � q. Consequently, Theorem 3.3 applies and �(H) has a stopping set of
size a.

The result for m 6 q3 � 1 follows immediately from Proposition 2.5. ⇤
Corollary 3.11. Let q3 � q2 + 2q 6 m 6 q3 � 1. Then C⌦(D,mP1) has a stopping set of
size a for all m� 2g + 2 6 a 6 q3 � q2 + 2q for any choice of parity-check matrix.

Proof. This result follows immediately from Theorem 3.9 and Theorem 3.10. ⇤

4. Examples

In this section, we consider codes Cm := C⌦(D,mP1) on the Hermitian function field
Fq2(x, y) with yq + y = xq+1 for small values of q.

Example 1. Consider the function field F = F16(x, y) where y4 + y = x5; that is, let F be
the Hermitian function field with q = 4. The genus of F is g = 6, and we consider codes
Cm with 11 6 m 6 63. As we detail now, the results presented in Section 3 determine the
existence (or nonexistence) of stopping sets of strongly algebraic geometric codes Cm of size
a for almost all pairs (m, a).

For 11 6 m 6 21, Theorem 3.6 guarantees the existence of a stopping set of size a for all
a 2 [12,m+1] and for all a 2 [m� 10, 11]\ {4, 5, 8, 9, 10}. According to Theorem 3.8, there
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are no stopping sets of sizes 1, 2, or 3. Theorem 3.8 also shows that the codes C15 and C16

have no stopping sets of size 6, C16 and C17 have no stopping sets of size 7, and C20 and C21

have no stopping sets of size 11. Stopping sets of sizes 6, 7, and 11 exist for the Cm with
m 6 12, m 6 13, and m 6 17, respectively, according to Theorem 3.7. Using SAGE [21],
one may find stopping sets of size 6 for C13. By Theorem 3.5, for 22 6 m 6 55, there exists
a stopping set of Cm of size a for all a 2 [m � 2g + 2,m + 1]. For 56 6 m 6 63, Cm has a
stopping set of size a for all a 2 [m� 2g + 2, 56] by Corollary 3.11. By Theorem 3.10, there
exists a stopping set of Cm of size 59 for 58 6 m 6 63, of size 60 for 59 6 m 6 63, of size 62
for 61 6 m 6 63, of size 63 for 62 6 m 6 63, and of size 64 for m = 63. For 57 6 m 6 60,
there exists a stopping set of Cm of size 58 by Theorem 3.2. In addition, by Theorem 3.4,
stopping sets of sizes 57 and 61 exist for the Cm with m = 56 and m = 60, respectively.
One may find stopping sets using SAGE [21] of Cm of size 57 for 57 6 m 6 61, of size 58 for
61 6 m 6 62, and of size 61 for 61 6 m 6 63.

It remains to determine whether stopping sets of Cm of size a exist for the following pairs
(m, a): (14, 6), (14, 7), (15, 7), (18, 11), (19, 11), (62, 57), (63, 57), (63, 58).

Example 2. Consider the function field F = F25(x, y) where y5+y = x6; that is, let F be the
Hermitian function field with q = 5. The genus of F is g = 10, and we consider the strongly
algebraic geometric codes Cm on F , meaning those with 19 6 m 6 124.

For 38 6 m 6 111, there exist stopping sets of every size a 2 [m � 18,m + 1], according
to Theorem 3.5. By Theorem 3.6, for 19 6 m 6 37, there exist stopping sets of sizes
a 2 [20,m + 1] as well as of sizes a 2 [m � 18, 19] \ {5, 6, 10, 11, 12, 15, 16, 17, 18}. From
Theorem 3.8 we see that there are no stopping sets of sizes 1, 2, 3, or 4. Theorem 3.8 also
shows that the codes C24 and C25 have no stopping sets of size 7; C25 and C26 have no
stopping sets of size 8; and C26 and C27 have no stopping sets of size 9; C30 and C31 have no
stopping sets of size 13; C31 and C32 have no stopping sets of size 14; and C36 and C37 have no
stopping sets of size 19. By Theorem 3.7, Cm has a stopping set of size 9, for 19 6 m 6 22,
of size 13 for 19 6 m 6 23, of size 14 for 19 6 m 6 27, and of size 19 for 19 6 m 6 32.
Using SAGE [21], one may find stopping sets of Cm of size 8 for 19 6 m 6 22 and of size 13
for 22 6 m 6 27. By Corollary3.11, Cm has a stopping set of size a for 110 6 m 6 124 of
size m � 2q + 1 6 a 6 110. By Theorem 3.10, there exists a stopping set of Cm of size 112
for 111 6 m 6 124, of size 113 for 112 6 m 6 124, of size 114 for 113 6 m 6 124, of size
115 for 114 6 m 6 124, of size 118 for 117 6 m 6 124, of size 119 for 118 6 m 6 124, of
size 120 for 119 6 m 6 124, of size 122 for 121 6 m 6 124, of size 123 for 122 6 m 6 124,
of size 124 for 124 6 m 6 124, and of size 125 for m = 124. By Theorem 3.2, there exists a
stopping set of Cm of size 117 for 116 6 120. By Theorem 3.4, stopping sets of sizes 111, 116
and 121 exist for the Cm with m = 110, m = 115 and m = 120, respectively. In addition,
using SAGE [21], one may find stopping sets of Cm of size 111 for 111 6 m 6 121, of size
116 for 116 6 m 6 124, of size 117 for 121 6 m 6 124, and of size 121 for 121 6 m 6 124.

It remains to determine if Cm has a stopping set of size 7 for 19 6 m 6 23, of size 8
for 23 6 m 6 24, of size 9 for 23 6 m 6 25, of size 13 for 28 6 m 6 29, of size 14 for
28 6 m 6 30, of size 19 for 33 6 m 6 35, and of size 111 for 122 6 m 6 124.
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5. Conclusion

In this paper, we study stopping sets of Hermitian codes, C = C⌦(D,mP1). If (q2 � q �
1) 6 m 6 q3�q2+2q�1, we prove that a stopping set of size a exists for m�2g+2 6 a 6 q3

for any choice of parity-check matrix. For 2(q2 � q � 1) 6 m 6 q3 � q2 + 2q � 1, we have
completely determined if �(H⇤) has stopping set of any size. For small and large values of
m, meaning m satisfying 2g � 1 6 m 6 2(2g � 1) or q3 � q2 + 2q 6 m 6 q3 � 1, we find
stoppings sets for certain m and a values for any choice of parity-check matrix. In addition,
for specific small m and a values, we have shown stopping sets do not exist.

References

[1] K. Abdel-Gha↵ar and J. Weber, Complete enumeration of stopping sets of full-rank parity-check matrices
of Hamming codes, IEEE Trans. Inform. Theory 53 (2007), no. 9, 3196-3201.
[2] E. Ballico, On the Weierstrass semigroups of n points of a smooth curve, Arch. Math. 104 (2015), 207-215.
[3] J. Bolkema, K. Morrison, and J. L. Walker, Graph Realizations of Polar Codes, preprint.
[4] R. Carrasco and M. Johnston, Non-Binary Error Control Coding for Wireless Communication and Data

Storage, Wiley, 2009.
[5] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, Finite-length analysis of low-
density parity-check codes on the binary erasure channel, IEEE Trans. Inform. Theory 48 (2002), no. 6,
1570-1579.
[6] A. Eslami and H. Pishro-Nik, On Finite-Length Performance of Polar Codes: Stopping Sets, Error Floor,
and Concatenated Design, IEEE Trans. Comm. 61 (2013), no. 3, 919–929.
[7] M. Esmaeili and M. Amoshahy, On the stopping distance of array code parity-check matrices, IEEE
Trans. Inform. Theory 55 (2009), no. 8, 3488-3493
[8] M. Esmaeili, M. Tadayon, and T. Gulliver, More on the stopping and minimum distances of array codes,
IEEE Trans. Commun. 59 (2011), no. 3, 750-757.
[9] T. Etzion, On the stopping redundancy of Reed-Muller codes, IEEE Trans. Inform. Theory 52 (2006),
no. 11, 4867–4879.
[10] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE
Trans. Inform. Theory 45 (1999), no. 6, 17571767.
[11] M. Homma and S. J. Kim, Goppa Codes with Weierstrass Pairs, J. Pure Appl. Algebra 162 (2001), no.
2, 273–290.
[12] Y. Jiang, S.-T. Xia, F.-W. Fu, Stopping Set Distributions of Some Reed-Muller Codes, IEEE Trans.
Inform. Theory 57 (2011), no. 9, 6078–6088..
[13] C. Kelley and D. Sridhara, Pseudocodewords of Tanner graphs, IEEE Trans. Inform. Theory 53 (2007),
no. 11, 4013–4038.
[14] K. Lee and M. E. OSullivan, Algebraic Soft-Decision Decoding of Hermitian Codes, IEEE Trans. on
Inform. Theory 56 (2010), no 6, 2587 2600.
[15] H. Maharaj, G. Matthews, and G. Pirsic, Riemann-Roch spaces of the Hermitian function field with
applications to algebraic-geometric codes and low-discrepancy sequences, J. Pure Appl. Algebra 195 (2005),
no. 3, 261–280.
[16] G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences, Comm. Al-
gebra 32 (2004), no. 9, 3459–3469.
[17] G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes Cryptogr. 22
(2001), 107–121.
[18] R. Pellikaan, B.-Z. Shen, and G. J. M. van Wee, Which linear codes are algebraic-geometric? IEEE
Trans. Inform. Theory 37 (1991), no. 3, part 1, 583–602.
[19] J. B. Roberts, Note on linear forms. Proc. Amer. Math. Soc. 7 (1956), 465–469.
[20] M. Schwartz and A. Vardy, On the stopping distance and the stop- ping redundancy of codes, IEEE
Trans. Inform. Theory 52 (2006), no. 3, 922–932.



20 ANDERSON AND MATTHEWS

[21] W.A. Stein et al. Sage Mathematics Software (Version 5.11), The Sage Development Team, 2014,
http://www.sagemath.org.
[22] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
[23] B. E. Whalen and J. Jimenez, Performance comparison of Hermitian and ReedSolomon codes, Proc.
1997 IEEE Military Communications Conf. 1 (1997), 15 - 19.
[24] J. Zhang, F.-W. Fu, and D. Wan, Stopping sets of algebraic geometry codes, IEEE Trans. Inform.
Theory 60 (2014), no. 3, 1488-1495.


