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Abstract

As demonstrated by Naor and Naor [11] among others [1, 2], the con-
struction of small-bias probability spaces, or small-bias sets, is connected
to that of error-correcting codes. Small-bias sets are probability spaces
that in some sense approximate larger ones. Error-correcting codes have
provided explicit constructions of such spaces. For instance, the concate-
nation of a Reed-Solomon code with a Hadamard code provides a now
standard construction. Recently, Ben-Aroya and Ta-Shma used Hermi-
tian codes to construct small-bias sets [4]. In this paper, we consider
small-bias sets constructed from the extended norm-trace function field
Fyr(z,y)/Fqr defined by T're , /5, (y) = 2 where g is a power of a prime,
r > 2, and u\%; here, Tre . /v, denotes the trace with respect to the
extension Fyr/F,. The Hermitian function field y¢ +y = x9, its quo-
tient y? + y = = where u|g + 1, and the norm-trace function field given
by Trqu/]Fq(y) = NFqT/Fq(x) are special cases of the extended norm-trace
function field. We detail the resulting small-bias sets.

1 Introduction and preliminaries

Consider a binary random variable X := x1, ..., xy. Let {2 denote the associated
sample space. As shown by Varizani in 1986 [13], the bits z1,...,z of X are
independent and uniformly distributed if and only if for all nonempty T C

{1,...,k},
Prob (Z T; = 0) = Prob (Z T; = 1)

i€T ieT
where the sums are taken in Fs, the finite field with two elements. Of course, if

these equivalent conditions are satisfied, then Q = F’;, the set of binary vectors
of length k, with the uniform distribution.

*Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
email: gmatthe@clemson.edu

TG, L. Matthews’ work is supported in part by NSF DMS-090169.

tDepartment of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
email: jpeache@clemson.edu



For a fixed k, it is useful in a number of applications to have a sample space
that is smaller than IF§ yet retains some of its randomness properties. These
applications include derandomization of algorithms, testing of combinatorial
circuits, and automated theorem proving [11]. This need for probability spaces
that, in some sense, approximate larger ones prompted the notion of a small-bias
set.

Definition 1.1. A subset X C F% is e-biased if and only if for all nonempty

TC1,... k),
Z (_1)Zi€T Z;

zeX

1

— <e.
| X

Example 1.2. 1. Fiz a positive integer k. Then the set F5 is 0-biased
whereas the set {v}, for any v € F, is 1-biased and is not e-biased for

any € < 1.
0 1 1 1
2. Let X = 1{,/0]|,[{1],]0 C F3. Then X is %-biased.
0 1 1 0
To see this, consider a nonempty subset T C {1,2,3}, and let
1 S
S1 = T |3 (cpper|
|X| reX

Note that if T C {2,3}, then Sy = 0. In addition,

Sty = 1D+ D+ D+ (DY = 5

More generally, it is easy to check that 1 € T implies ST = % Thus, S is
L biased
5 -biased.

Given an e-biased set X, e provides a measure of how far from uniform
the distribution associated with X is. To make this precise, let Uj denote the
uniform distribution on a variable with k£ bits, and let

1
AXY) =5 > |Prob[X =a]— Prob[Y = q
ae{0,1}F

be the statistical difference between two k-bit random variables X and Y (equiv-
alently, the statistical difference between their distributions).

Remark 1.3. [8] Suppose X C F% is an e-biased set. Then

e <2A(X,U) < 2%,



Certainly, a set is O-biased if and only if the associated random variable is
uniformly distributed.

While a random set of size O (6%) is e-biased [5], there is a need for explicit
constructions of small-bias sets. The goal of this paper is to construct e-biased
sets X C F% for fixed k and e with | X| small.

Our primary tool in the construction of small-bias sets is error-correcting
codes. Thus, this section concludes with terminology and notation from coding
theory. Section 2 contains a tutorial on the construction of small-bias sets
from linear codes, focusing on algebraic geometric codes in particular. This is
followed by Section 3 detailing the application of algebraic geometric codes from
the extended norm-trace function field.

Notation. The set of positive integers is denoted ZT. Given a prime power
g and a positive integer k, F, denotes the field with ¢ elements and F’; denotes
the set of vectors of length k with coordinates in F,. As usual, given v € F¥,
the i*" coordinate of v is denoted by v;. The weight of a vector v € FF is

wt(v) = ‘ {i:v; #0} ’ Given a matrix A, Row; A denotes the i*" row of A and

Col; A denotes the 4t column of A.

A linear code over F, of length n and dimension k is called an [n, k], code.
The Hamming distance between words w, w’ € F™is d (w,w') := |{i : w; # w}}|.
A linear code over F, of length n, dimension k, and minimum distance d (resp.
at least d) is called an [n, k,d], (resp. [n,k,> d],) code.

Let F/F, be an algebraic function field of genus g. Given a divisor A on F
defined over F,, let £(A) denote the set of rational functions f on X defined
over F, such that (f)+ A is an effective divisor together with the zero function.
Let ¢(A) denote the dimension of £(A) as an F,-vector space. An algebraic ge-
ometric (or AG) code Cz(D, G) can be constructed using divisors D = Y"1 | P,
and G on F where Pj,..., P, are pairwise distinct places of F' of degree one
none of which are in the support of G. In particular,

Ce(D,G):=A{(f(P1),.... f(Pn)): fe L(G)}.

If deg G < n, then Cz(D,G) is an [n,{(G),> n — deg G, code. If {f1,..., fr}
is a basis for £(G), then

fi(P) AR) o fi(P)
fo(P1)  fa(P2) ... fo(Pn)

fe(P) f(Py) . Fu(Pa)

is a generator matrix for Cz(D,G). General references for AG codes include
[9, 12].
2 Balanced codes and small-bias sets

In this section, we review the explicit construction of small-bias sets from bal-
anced codes.



Definition 2.1. An e-balanced code is a binary code C of length n such that
for all nonzero c € C

1—e¢ < wit(c) < ].-I-E.
2 - n - 2
The relationship between e-balanced codes and e-biased sets may be seen in
the following lemma.

Lemma 2.2. Suppose C is an [n,k]s code which is e-balanced and M is a
generator matrix for C. Then

X ={ColyM,ColyM, ... ,Col,M} C F%
is an e-biased set with cardinality | X| < n.
Proof. Suppose C' is an [n, k]a code which is e-balanced, and let
X ={ColyM,ColsM,...,Col, M}

be the set of columns of a generator matrix M of C'. Given nonempty T C
{1,...,k}, define v € F§ by v; = 1 if and only if i € T. Then

] T; n vCol; M
\71| > eex (_1)21@ ; Zj:l (1)

n

= Lin—2wt(vM)|
< %ne =€
Therefore, X is an e-biased set. O

To obtain e-balanced codes, we utilize a Walsh-Hadamard code. Given a
positive integer s, the Walsh-Hadamard code Cj is a [2%, s]3 code with generator
matrix | | |

M/ = V1 V2 s Ugs
. |
where F§ = {vy,...,v9:}. It is well-known that Cs is a constant-weight code,
and
wt(c) = 2571

for all codewords ¢ € C'\ {0} [3]. The concatenation of an [n, k, > d]ss code C’
with Cy is an ”;d-balanced code C of length 2°n. To see this, let ¢ : Fos — F§
be an isomorphism and ¢ : F5 — Cs be an encoding map for Cs. Suppose

c € C\{0}. Then
c= (s (p(ch)), b5 (0(c2)),-- -, b5 (0 ()

for some nonzero codeword ¢’ € C’. Notice that

257 1g < 25 tt () < 25t



since wt (¢ (¢ (c}))) = 2571 for each nonzero coordinate ¢, of the codeword ¢/
and d < wt(c’) < n. Hence, the criteria in Definition 2.1 are satisfied, and C
is an [n2°, sk, > 2°~'d]; code which is “=2-balanced. This observation paired
with Lemma 2.2 yields the following result.

Proposition 2.3. Given an [n,k,d]ss code C, the set of columns of a generator
matrixz for the concatenation of C with the Walsh-Hadamard code Cy is an "T_d—

biased set X C F5F with | X| < n2°.

Example 2.4. Consider the [2°,k,2° — k + 1],. Reed-Solomon code. According
to Proposition 2.3, this results in a z%—bias set X C F% of cardinality ‘X’ < 2%,

This now standard construction first appeared in [2].

Of course, one may apply Proposition 2.3 to AG codes over finite fields
of characteristic 2. The motivation for doing so is that Hermitian codes have
produced explicit small-bias sets which improve over previously known con-
structions in the range k=% < € < k%%, Moreover, the small-bias set given
by an AG code Cz(D,G) may be described explicitly from the divisors G and
D =Q1+ -+ Q,. For easy reference, we record here the corollary one obtains
from Proposition 2.3 when C' is an AG code over Fas.

Corollary 2.5. An AG code Cr (D,G) of length n over Fos, with degG < n,
sl(G)

gives rise to a %—biased set X CF, with | X| < n2%.

Proof. Fix an algebraic function field F/Fys. Consider the AG code Cr (D, G)
where G and D := P; + --- + P, are divisors on F' with P; ¢ supp G for all i
and deg G < n. Then C (D,G) is an [n,4(G),> n — deg G]2- code, and the
result follows from Proposition 2.3. O

To describe explicity the elements of the set X given in Corollary 2.5, let
{f1,--., fx} be abasis for L(G), and let C be the concatenation of C(D,G) and
C, as described above. Fix a generator v of F5. := Fa. \ {0}. Let ¢ : Fa: — F§
be the isomorphism given by ¢ (fyl) = Row; 1M’ for 0 < i < s—1. Then a
generator matrix M for the concatenated code C' is

b5 (p(f1(Q1))) b5 ((f1(Q2))) b (2(f1(Qn))) ]
b5 (p(7f1(Q1))) ¢s (p(1f1(Q2))) - &5 (p(vf1(Qn)))
by (PP L A(@Q)) 6y (PP AQ)) e e (P LA(Q0))
M = : : :
bs (p(fx(Q1))) b5 ((fr(Q2))) v 95 (0(fe(Qn)))

b5 (0(7fe(Q1))) o5 (p(1fr(@2))) oo ds (P(Vfr(Qn)))

6 (0 Q1) b (0 R(Q2)) - bs (v fe(Qn))) |



The elements of the small-bias set X given in Corollary 2.5 are the columns of
the matrix M. Therefore,

(e @), e ]
@5 (80 (’Yfl (Q[;fs])) i—([4]-1)2¢

R

6 (o (1 (Qry 1)))j_([L1_1)2s
X = : 11<j<n2® ) CF3F
s (i (5 (Qf%)))j_([;ﬂ_l)zs
o (2 (9 (@121))) - 70

s—1 )
o (e 05 (@ra1))), g |
def;G—bias set with cardinality | X| < n2°.
In the next section, we apply the construction in Corollary 2.5 to extended
norm-trace codes. This is prompted by the fact that Hermitian codes, which are
known to produce improved small-bias sets, are among the extended norm-trace
codes. Because the family of extended norm-trace codes is larger, there is the
opportunity to obtain new small-bias sets with known parameters.

is a

3 Extended norm-trace codes and associated e-
biased sets

In this section, we consider a generalization of the Hermitian function field,
associated AG codes, and resulting small-bias sets. The extended norm-trace
function field is studied in [6, 7, 10]. While the Hermitian function field is
defined over 2, the extended norm-trace function field may be defined over
Fgr for any » > 2. Hence, this broader family of function fields provides codes
over a wider range of alphabets than the Hermitian function field as well as a
larger class of small-bias sets.

Definition 3.1. Let g be a power of a prime, r > 2, and x be transcendental
over Fyr. The extended norm-trace function field over Fyr is For (x,y) where
r—1 r—2
yq +yq _A'_...J'_y::Eu

q -1
qg—1"

and u > 1 is a divisor of

T_

Example 3.2. 1. Ifu= qqfll, then Fyr (z,y)/Fyr is the norm-trace function
field defined by

Try /v, (y) = N0 v, (2),



where Try . /v, (y) (resp., Nr,, /v, (7)) denotes the trace of y (resp., norm
of x) with respect to a degree-r extension of Fy.
2. Ifr=2andu = q;__ll = q+1, thenFp2(x,y) is the well-studied Hermitian

function field with defining equation y9 +y = z971.

3. Taking r = 2 and u | q2:11 yields the quotient of the Hermitian function

field defined by y? +y = x* over Fye.

The extended norm-trace function field F/F, has genus g = %

and exactly
7 (ug—u+1)+1

places of degree one. Moreover, it was shown in [10] that the dimension of the
divisor aPs,, where o € ZT and P, denotes the infinite place of F is

((aPy) _gmax“o‘i‘flJ +1,o}. (1)

Consider the AG code Cr(D,aPs) over the extended norm-trace function
field, where D = Q1 + -+ + Qgr—1(ug—u+1) is the sum of all places of de-
gree one other than P, and a < ¢" ! (ug—u+1). Then Cz(D,aPy) is a

¢t (ug—u+1) ,Z;:Ol max{ {%J + 1,0} > ¢ (ug—u+1) — a}
code.

Taking g to be a power of 2 and applying Corollary 2.5 to the code above
yields a small-bias set as detailed in the next result.

q"

Theorem 3.3. Let ¢ = 2%, r > 2, and u|q(;:11. For every positive integer o <
i et 110

¢ Y (ug —u+1), there exists an e-biased set X C IF;S ’ max“ J }

with | X| < ¢*Yug—u+1) and e = m.

Example 3.4. [}] Take F to be the Hermitian function field defined by y9+y =

x4t over Fg2, where q® = 25. The Hermitian code Cr(D,aPs,) gives Tise to a

o5 -biased set X C F5P=) with | X| < ¢°.

A key difference in the small-bias sets given in Theorem 3.3 and those in
Example 3.4 is the range of values of k allowed in each construction. Theorem 3.3
yields small-bias sets X C F5 where k = rlogq ¢(G), given that Cz (D, aPs) is
a code over Fy- and ¢ is a power of two. Recall that as one considers divisors G =
aPs, a € ZT, £(G) takes on all positive integer values in the interval [1,n — g].
Hence, the small-bias sets X constructed from Hermitian codes (meaning those
in Example 3.4) have the property that X C F5 where k is an even multiple
of log ¢ whereas those given by the more general family of extended norm-trace
codes in Theorem 3.3 allow for k € rlogq Z where r > 2. The following example
illustrates this more general situation.



Example 3.5. Consider the function field F := Fg(x,y)/Fs where
vyt ry=2".

Let G = 15P,, and let D be the sum of all places of F' of degree one other than
those in the support of G. Thus, Cr (D, G) has length 32.

By [10], a basis for L(G) is {1,x,x2,x3,y,y2,xy,9:2y}. Thus, a generator
matriz for Cr (D, G) is

1(Py) 1(P) 1(Ps2)

Z’(Pl) x(Pg) {E(Pg,g)

$2(P1> .’L‘Q(PQ) $2(P32>

M o Z‘S(Pl) JTS(PQ) $3(P32)

' y(P1)  y(P) y(Ps2)
v:(P1)  y*(P) y?(Ps2)
zy(P1)  zy(P) xy(Ps2)

| 2?y(P)  2?y(Py) 2%y (Ps) |

Using the above information, we can construct a small-bias set by concate-
nating Cr (D, G) with the appropriate Walsh-Hadamard code. Let Fg = Fa(7)
where v is a root of x> + x + 1. Let M’ be a generator matriz for the Walsh-
Hadamard code C3. Define the map « as follows:

a:1— Row, M’ v — RowyM',v* — RowsM'.

The rows of the generator matrix for the concatenated code are the images under
«a applied to the entries of the following rows:

Row, M, yRow, M, ~*>Row M, . .., Row; M, ~yRow; M, v*> Row; M.

The columns of this generator matrix for the concatenated code are the elements
of the associated small-bias set.

Every e-biased set X C F} satisfies ‘X‘ > (min {ﬁ, 2’“}) [2]. With
this in mind, we fix k£ and e and consider |X| for the construction given in
Theorem 3.3. As we are interested in finding sets whose size is as small as
possible and are given a lower bound on the size of these sets, we now give
an upper bound on |X|. Moreover, for the sake of comparison with the lower
bounds, we make use of big-O notation. Also, note that utilizing these bounds,
we may compare our result to previous results given in [4]. Notice, for example,

that the small-bias set X given in Example 2.4 has | X| = O (5—;)

Theorem 3.6. For all k and € such that —&—F < k% for some inte-

(10 2)
ger | > 4, there exists an e- biased set X C Fg(k) with cardinality | X| =

O(@vﬁa)w)



-1
< k VT for some positive integer [ > 4.

k
2 (el_‘ﬂlog 1)

Proof. Fix k and € so that
(o227

e+
q El—\ﬁ]ogl

to be a power of 2, say ¢ = 2°. Then

el

Choose

1
[

~

Q=
IV
N|—=
N

m&.

|

= S

—

o

o

o I
D= S— N———

v

We also have that

. log 1\ Vi
since (%) < 1. Hence,

and

1 <1 *1 (l )1
(0] O (0] .

It follows that log 1 = © (log q).

o l+2 . €q2'r'71 . .
Set r = L—J, and let a = . Consider the norm-trace function field

3 2

over F/Fy». We claim that the set X of columns of a generator matrix for
231

Cr(D,aPy) is an e-biased set with X C IF ") and |X| = ((Mklogl) J )

First, we prove that X C IFQ( ). Let u = q;

—, and set m = |5, As

stated in Equation (1),

r—1

Zmax{ el j+1,0}

which gives
_ qu 1
l(aPy) > Z

since m < u — 1. Simplifying, we see that

Sone ) - D

l(aPx) >

> 5—(m+ 1)



As a result,
ko 1=V k

{(aP,
(aPo) 2 32 log 320 logq’

(k)

and £ (aPs) € Q (logq This implies X C Fy
Next, we note that X is §-biased as & = 5. Because € > §, X is certainly
e-biased by definition.

Finally, it follows from Theorem 3.3 that | X |< ¢3~!. Therefore, |X| =

o (=) ) .

By taking [ = 4 in the previous theorem, one may recover the following
result due to Ben-Aroya and Ta-Shma. The result when [ > 5 is not covered in
[4] and thus is a contribution on this work.

Corollary 3.7. [4] For all k and € such that

th ST -
\f

\/ og 1 k

k) with cardinality | X| = O ( 2log 4)

biased set X C Fy

Theorem 3.6 is an extension of Corollary 3.7 in that it applies to a wider
range of values of k and €. To see this, let [ > 4. If

< —, (2)

but
< —, (3)

then we may apply Theorem 3.6, but Corollary 3.7 does not apply. Hence,
Theorem 3.6 allows for the construction of larger families of small-bias sets
than previously identified. Specifically, if we fix € and choose k so that

1 1
v leld) o
k
then (2 ) and (3) hold. The following example provides an instance of this.

Example 3.8. Let e = 1,1 = 9, and k = 33. Then (2) and (3) hold as

o < 2 < 15. Applying Theorem 3.6 results in a small-bias set X with |X| =

o) (67584%0) .

10
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