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Abstract

As demonstrated by Naor and Naor [11] among others [1, 2], the con-
struction of small-bias probability spaces, or small-bias sets, is connected
to that of error-correcting codes. Small-bias sets are probability spaces
that in some sense approximate larger ones. Error-correcting codes have
provided explicit constructions of such spaces. For instance, the concate-
nation of a Reed-Solomon code with a Hadamard code provides a now
standard construction. Recently, Ben-Aroya and Ta-Shma used Hermi-
tian codes to construct small-bias sets [4]. In this paper, we consider
small-bias sets constructed from the extended norm-trace function field
Fqr (x, y)/Fqr defined by TrFqr /Fq (y) = xu where q is a power of a prime,

r ≥ 2, and u| q
r−1
q−1

; here, TrFqr /Fq denotes the trace with respect to the

extension Fqr/Fq. The Hermitian function field yq + y = xq+1, its quo-
tient yq + y = xu where u|q + 1, and the norm-trace function field given
by TrFqr /Fq (y) = NFqr /Fq (x) are special cases of the extended norm-trace
function field. We detail the resulting small-bias sets.

1 Introduction and preliminaries

Consider a binary random variable X := x1, . . . , xk. Let Ω denote the associated
sample space. As shown by Varizani in 1986 [13], the bits x1, . . . , xk of X are
independent and uniformly distributed if and only if for all nonempty T ⊆
{1, . . . , k},

Prob

(∑
i∈T

xi = 0

)
= Prob

(∑
i∈T

xi = 1

)
where the sums are taken in F2, the finite field with two elements. Of course, if
these equivalent conditions are satisfied, then Ω = Fk2 , the set of binary vectors
of length k, with the uniform distribution.
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For a fixed k, it is useful in a number of applications to have a sample space
that is smaller than Fk2 yet retains some of its randomness properties. These
applications include derandomization of algorithms, testing of combinatorial
circuits, and automated theorem proving [11]. This need for probability spaces
that, in some sense, approximate larger ones prompted the notion of a small-bias
set.

Definition 1.1. A subset X ⊆ Fk2 is ε-biased if and only if for all nonempty
T ⊆ {1, . . . , k},

1

|X|

∣∣∣∣∣∑
x∈X

(−1)
∑
i∈T xi

∣∣∣∣∣ ≤ ε.
Example 1.2. 1. Fix a positive integer k. Then the set Fk2 is 0-biased

whereas the set {v}, for any v ∈ Fk2 , is 1-biased and is not ε-biased for
any ε < 1.

2. Let X =


 0

1
0

 ,
 1

0
1

 ,
 1

1
1

 ,
 1

0
0

 ⊆ F3
2. Then X is 1

2 -biased.

To see this, consider a nonempty subset T ⊆ {1, 2, 3}, and let

ST =
1

|X|

∣∣∣∣∣∑
x∈X

(−1)
∑
i∈T xi

∣∣∣∣∣ .
Note that if T ⊆ {2, 3}, then ST = 0. In addition,

S{1} =
1

4

∣∣(−1)1 + (−1)1 + (−1)0 + (−1)1
∣∣ =

1

2
.

More generally, it is easy to check that 1 ∈ T implies ST = 1
2 . Thus, S is

1
2 -biased.

Given an ε-biased set X, ε provides a measure of how far from uniform
the distribution associated with X is. To make this precise, let Uk denote the
uniform distribution on a variable with k bits, and let

∆(X,Y ) :=
1

2

∑
α∈{0,1}k

|Prob [X = α]− Prob [Y = α]|

be the statistical difference between two k-bit random variables X and Y (equiv-
alently, the statistical difference between their distributions).

Remark 1.3. [8] Suppose X ⊆ Fk2 is an ε-biased set. Then

ε ≤ 2∆(X,Uk) ≤ 2
k
2 ε.
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Certainly, a set is 0-biased if and only if the associated random variable is
uniformly distributed.

While a random set of size O
(
k
ε2

)
is ε-biased [5], there is a need for explicit

constructions of small-bias sets. The goal of this paper is to construct ε-biased
sets X ⊆ Fk2 for fixed k and ε with |X| small.

Our primary tool in the construction of small-bias sets is error-correcting
codes. Thus, this section concludes with terminology and notation from coding
theory. Section 2 contains a tutorial on the construction of small-bias sets
from linear codes, focusing on algebraic geometric codes in particular. This is
followed by Section 3 detailing the application of algebraic geometric codes from
the extended norm-trace function field.

Notation. The set of positive integers is denoted Z+. Given a prime power
q and a positive integer k, Fq denotes the field with q elements and Fkq denotes

the set of vectors of length k with coordinates in Fq. As usual, given v ∈ Fk,
the ith coordinate of v is denoted by vi. The weight of a vector v ∈ Fk is

wt(v) =
∣∣∣ {i : vi 6= 0}

∣∣∣. Given a matrix A, RowiA denotes the ith row of A and

ColjA denotes the jth column of A.
A linear code over Fq of length n and dimension k is called an [n, k]q code.

The Hamming distance between words w,w′ ∈ Fn is d (w,w′) := | {i : wi 6= w′i} |.
A linear code over Fq of length n, dimension k, and minimum distance d (resp.
at least d) is called an [n, k, d]q (resp. [n, k,≥ d]q) code.

Let F/Fq be an algebraic function field of genus g. Given a divisor A on F
defined over Fq, let L(A) denote the set of rational functions f on X defined
over Fq such that (f) +A is an effective divisor together with the zero function.
Let `(A) denote the dimension of L(A) as an Fq-vector space. An algebraic ge-
ometric (or AG) code CL(D,G) can be constructed using divisors D =

∑n
i=1 Pi

and G on F where P1, . . . , Pn are pairwise distinct places of F of degree one
none of which are in the support of G. In particular,

CL(D,G) := {(f (P1) , . . . , f (Pn)) : f ∈ L(G)} .

If degG < n, then CL(D,G) is an [n, `(G),≥ n − degG]q code. If {f1, . . . , fk}
is a basis for L(G), then

f1(P1) f1(P2) . . . f1(Pn)
f2(P1) f2(P2) . . . f2(Pn)

...
...

...
fk(P1) fk(P2) . . . fk(Pn)


is a generator matrix for CL(D,G). General references for AG codes include
[9, 12].

2 Balanced codes and small-bias sets

In this section, we review the explicit construction of small-bias sets from bal-
anced codes.
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Definition 2.1. An ε-balanced code is a binary code C of length n such that
for all nonzero c ∈ C

1− ε
2
≤ wt(c)

n
≤ 1 + ε

2
.

The relationship between ε-balanced codes and ε-biased sets may be seen in
the following lemma.

Lemma 2.2. Suppose C is an [n, k]2 code which is ε-balanced and M is a
generator matrix for C. Then

X = {Col1M,Col2M, . . . , ColnM} ⊆ Fk2

is an ε-biased set with cardinality |X| ≤ n.

Proof. Suppose C is an [n, k]2 code which is ε-balanced, and let

X = {Col1M,Col2M, . . . , ColnM}

be the set of columns of a generator matrix M of C. Given nonempty T ⊆
{1, . . . , k}, define v ∈ Fk2 by vi = 1 if and only if i ∈ T . Then

1
|X|

∣∣∣∑x∈X (−1)
∑
i∈T xi

∣∣∣ = 1
n

∣∣∣∑n
j=1 (−1)

vColjM
∣∣∣

= 1
n |n− 2 wt(vM)|

≤ 1
nnε = ε.

Therefore, X is an ε-biased set.

To obtain ε-balanced codes, we utilize a Walsh-Hadamard code. Given a
positive integer s, the Walsh-Hadamard code Cs is a [2s, s]2 code with generator
matrix

M ′ =

 | | |
v1 v2 · · · v2s

| | |


where Fs2 = {v1, . . . , v2s}. It is well-known that Cs is a constant-weight code,
and

wt(c) = 2s−1

for all codewords c ∈ C \ {0} [3]. The concatenation of an [n, k,≥ d]2s code C ′

with Cs is an n−d
n -balanced code C of length 2sn. To see this, let ϕ : F2s → Fs2

be an isomorphism and φs : Fs2 → Cs be an encoding map for Cs. Suppose
c ∈ C \ {0}. Then

c = (φs (ϕ (c′1)) , φs (ϕ (c′2)) , . . . , φs (ϕ (c′n)))

for some nonzero codeword c′ ∈ C ′. Notice that

2s−1d ≤ 2s−1wt(c′) ≤ 2s−1n
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since wt (φs (ϕ (c′i))) = 2s−1 for each nonzero coordinate c′i of the codeword c′

and d ≤ wt(c′) ≤ n. Hence, the criteria in Definition 2.1 are satisfied, and C
is an [n2s, sk,≥ 2s−1d]2 code which is n−d

n -balanced. This observation paired
with Lemma 2.2 yields the following result.

Proposition 2.3. Given an [n, k, d]2s code C, the set of columns of a generator
matrix for the concatenation of C with the Walsh-Hadamard code Cs is an n−d

n -
biased set X ⊆ Fsk2 with |X| ≤ n2s.

Example 2.4. Consider the [2s, k, 2s − k + 1]2s Reed-Solomon code. According

to Proposition 2.3, this results in a k
2s -bias set X ⊆ Fk2 of cardinality

∣∣∣X∣∣∣ ≤ 22s.

This now standard construction first appeared in [2].

Of course, one may apply Proposition 2.3 to AG codes over finite fields
of characteristic 2. The motivation for doing so is that Hermitian codes have
produced explicit small-bias sets which improve over previously known con-
structions in the range k−1.5 ≤ ε ≤ k−0.5. Moreover, the small-bias set given
by an AG code CL(D,G) may be described explicitly from the divisors G and
D = Q1 + · · ·+Qn. For easy reference, we record here the corollary one obtains
from Proposition 2.3 when C is an AG code over F2s .

Corollary 2.5. An AG code CL (D,G) of length n over F2s , with degG < n,

gives rise to a degG
n -biased set X ⊆ Fs`(G)

2 with |X| ≤ n2s.

Proof. Fix an algebraic function field F/F2s . Consider the AG code CL (D,G)
where G and D := P1 + · · · + Pn are divisors on F with Pi /∈ supp G for all i
and deg G < n. Then CL (D,G) is an [n, `(G),≥ n − degG]2s code, and the
result follows from Proposition 2.3.

To describe explicity the elements of the set X given in Corollary 2.5, let
{f1, . . . , fk} be a basis for L(G), and let C be the concatenation of CL(D,G) and
Cs as described above. Fix a generator γ of F∗2s := F2s \ {0}. Let ϕ : F2s → Fs2
be the isomorphism given by ϕ

(
γi
)

= Rowi+1M
′ for 0 ≤ i ≤ s − 1. Then a

generator matrix M for the concatenated code C is

M =



φs (ϕ(f1(Q1))) φs (ϕ(f1(Q2))) . . . φs (ϕ(f1(Qn)))
φs (ϕ(γf1(Q1))) φs (ϕ(γf1(Q2))) . . . φs (ϕ(γf1(Qn)))

...
...

...
φs
(
ϕ(γs−1f1(Q1))

)
φs
(
ϕ(γs−1f1(Q2))

)
. . . φs

(
ϕ(γs−1f1(Qn))

)
...

...
...

φs (ϕ(fk(Q1))) φs (ϕ(fk(Q2))) . . . φs (ϕ(fk(Qn)))
φs (ϕ(γfk(Q1))) φs (ϕ(γfk(Q2))) . . . φs (ϕ(γfk(Qn)))

...
...

...
φs
(
ϕ(γs−1fk(Q1))

)
φs
(
ϕ(γs−1fk(Q2))

)
. . . φs

(
ϕ(γs−1fk(Qn))

)


.
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The elements of the small-bias set X given in Corollary 2.5 are the columns of
the matrix M . Therefore,

X =





φs

(
ϕ
(
f1

(
Qd j2s e

)))
j−(d j2s e−1)2s

φs

(
ϕ
(
γf1

(
Qd j2s e

)))
j−(d j2s e−1)2s

...

φs

(
ϕ
(
γs−1f1

(
Qd j2s e

)))
j−(d j2s e−1)2s

...

φs

(
ϕ
(
fk

(
Qd j2s e

)))
j−(d j2s e−1)2s

φs

(
ϕ
(
γfk

(
Qd j2s e

)))
j−(d j2s e−1)2s

...

φs

(
ϕ
(
γs−1fk

(
Qd j2s e

)))
j−(d j2s e−1)2s



: 1 ≤ j ≤ n2s



⊆ Fsk2

is a degG
n -bias set with cardinality |X| ≤ n2s.

In the next section, we apply the construction in Corollary 2.5 to extended
norm-trace codes. This is prompted by the fact that Hermitian codes, which are
known to produce improved small-bias sets, are among the extended norm-trace
codes. Because the family of extended norm-trace codes is larger, there is the
opportunity to obtain new small-bias sets with known parameters.

3 Extended norm-trace codes and associated ε-
biased sets

In this section, we consider a generalization of the Hermitian function field,
associated AG codes, and resulting small-bias sets. The extended norm-trace
function field is studied in [6, 7, 10]. While the Hermitian function field is
defined over Fq2 , the extended norm-trace function field may be defined over
Fqr for any r ≥ 2. Hence, this broader family of function fields provides codes
over a wider range of alphabets than the Hermitian function field as well as a
larger class of small-bias sets.

Definition 3.1. Let q be a power of a prime, r ≥ 2, and x be transcendental
over Fqr . The extended norm-trace function field over Fqr is Fqr (x, y) where

yq
r−1

+ yq
r−2

+ · · ·+ y = xu

and u > 1 is a divisor of qr−1
q−1 .

Example 3.2. 1. If u = qr−1
q−1 , then Fqr (x, y)/Fqr is the norm-trace function

field defined by
TrFqr/Fq (y) = NFqr/Fq (x),
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where TrFqr/Fq (y) (resp., NFqr/Fq (x)) denotes the trace of y (resp., norm
of x) with respect to a degree-r extension of Fq.

2. If r = 2 and u = q2−1
q−1 = q+1, then Fq2(x, y) is the well-studied Hermitian

function field with defining equation yq + y = xq+1.

3. Taking r = 2 and u | q
2−1
q−1 yields the quotient of the Hermitian function

field defined by yq + y = xu over Fq2 .

The extended norm-trace function field F/Fqr has genus g =
(u−1)(qr−1−1)

2
and exactly

qr−1 (uq − u+ 1) + 1

places of degree one. Moreover, it was shown in [10] that the dimension of the
divisor αP∞, where α ∈ Z+ and P∞ denotes the infinite place of F is

` (αP∞) =

u−1∑
i=0

max

{⌊
α− iqr−1

u

⌋
+ 1, 0

}
. (1)

Consider the AG code CL(D,αP∞) over the extended norm-trace function
field, where D = Q1 + · · · + Qqr−1(uq−u+1) is the sum of all places of de-
gree one other than P∞ and α < qr−1 (uq − u+ 1). Then CL(D,αP∞) is a[
qr−1 (uq − u+ 1) ,

∑u−1
i=0 max

{⌊
α−iqr−1

u

⌋
+ 1, 0

}
,≥ qr−1 (uq − u+ 1)− α

]
qr

code.
Taking q to be a power of 2 and applying Corollary 2.5 to the code above

yields a small-bias set as detailed in the next result.

Theorem 3.3. Let q = 2s, r ≥ 2, and u| q
r−1
q−1 . For every positive integer α <

qr−1 (uq − u+ 1), there exists an ε-biased set X ⊆ F
rs

∑u−1
i=0 max

{⌊
α−iqr−1

u

⌋
+1,0

}
2

with |X| ≤ q2r−1(uq − u+ 1) and ε = α
qr−1(uq−u+1) .

Example 3.4. [4] Take F to be the Hermitian function field defined by yq+y =
xq+1 over Fq2 , where q2 = 2s. The Hermitian code CL(D,αP∞) gives rise to a
α
q3 -biased set X ⊆ Fs`(αP∞)

2 with |X| ≤ q5.

A key difference in the small-bias sets given in Theorem 3.3 and those in
Example 3.4 is the range of values of k allowed in each construction. Theorem 3.3
yields small-bias sets X ⊆ Fk2 where k = r log q `(G), given that CL(D,αP∞) is
a code over Fqr and q is a power of two. Recall that as one considers divisors G =
αP∞, α ∈ Z+, `(G) takes on all positive integer values in the interval [1, n− g].
Hence, the small-bias sets X constructed from Hermitian codes (meaning those
in Example 3.4) have the property that X ⊆ Fk2 where k is an even multiple
of log q whereas those given by the more general family of extended norm-trace
codes in Theorem 3.3 allow for k ∈ r log q Z where r ≥ 2. The following example
illustrates this more general situation.
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Example 3.5. Consider the function field F := F8(x, y)/F8 where

y4 + y2 + y = x7.

Let G = 15P∞, and let D be the sum of all places of F of degree one other than
those in the support of G. Thus, CL (D,G) has length 32.

By [10], a basis for L(G) is
{

1, x, x2, x3, y, y2, xy, x2y
}

. Thus, a generator
matrix for CL (D,G) is

M :=



1(P1) 1(P2) · · · 1(P32)
x(P1) x(P2) · · · x(P32)
x2(P1) x2(P2) · · · x2(P32)
x3(P1) x3(P2) · · · x3(P32)
y(P1) y(P2) · · · y(P32)
y2(P1) y2(P2) · · · y2(P32)
xy(P1) xy(P2) · · · xy(P32)
x2y(P1) x2y(P2) · · · x2y(P32)


.

Using the above information, we can construct a small-bias set by concate-
nating CL (D,G) with the appropriate Walsh-Hadamard code. Let F8 = F2(γ)
where γ is a root of x3 + x + 1. Let M ′ be a generator matrix for the Walsh-
Hadamard code C3. Define the map α as follows:

α : 1→ Row1M
′, γ → Row2M

′, γ2 → Row3M
′.

The rows of the generator matrix for the concatenated code are the images under
α applied to the entries of the following rows:

Row1M,γRow1M,γ2Row1M, . . . , Row7M,γRow7M,γ2Row7M.

The columns of this generator matrix for the concatenated code are the elements
of the associated small-bias set.

Every ε-biased set X ⊆ Fk2 satisfies
∣∣∣X∣∣∣ ≥ Ω

(
min

{
k

ε2 log 1
ε

, 2k
})

[2]. With

this in mind, we fix k and ε and consider |X| for the construction given in
Theorem 3.3. As we are interested in finding sets whose size is as small as
possible and are given a lower bound on the size of these sets, we now give
an upper bound on |X|. Moreover, for the sake of comparison with the lower
bounds, we make use of big-O notation. Also, note that utilizing these bounds,
we may compare our result to previous results given in [4]. Notice, for example,

that the small-bias set X given in Example 2.4 has |X| = O
(
k2

ε2

)
.

Theorem 3.6. For all k and ε such that ε

(log 1
ε )

1√
l

≤ k
−1√
l for some inte-

ger l ≥ 4, there exists an ε- biased set X ⊆ FΩ(k)
2 with cardinality |X| =

O
((

k

εl−
√
l log 1

ε

) l+1
l

)
.
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Proof. Fix k and ε so that ε

(log 1
ε )

1√
l

≤ k
−1√
l for some positive integer l ≥ 4.

Choose

q ∈

( k

εl−
√
l log 1

ε

) 1
l

, 2

(
k

εl−
√
l log 1

ε

) 1
l


to be a power of 2, say q = 2s. Then

1
q ≥ 1

2

(
εl−
√
l log 1

ε

k

) 1
l

= 1
2ε

l−
√
l

l

(
log 1

ε

k

) 1
l

≥ 1
2ε

l−
√
l

l ε
1√
l = 1

2ε.

We also have that

1

q
≤
ε
l−
√
l

l

(
log 1

ε

) 1
l

k
1
l

≤ ε
l−
√
l

l

since
(

log 1
ε

k

) 1√
l ≤ 1. Hence,

(
1

q

) l

l−
√
l

≤ ε ≤ 2

q
,

and

log
q

2
≤ log

1

ε
≤
(

l

l −
√
l

)
log q.

It follows that log 1
ε = Θ (log q).

Set r =
⌊
l+2
3

⌋
, and let α = εq2r−1

2 . Consider the norm-trace function field
over F/Fqr . We claim that the set X of columns of a generator matrix for

CL(D,αP∞) is an ε-biased set with X ⊆ FΩ(k)
2 and |X| = O

((
k

εl−
√
l log 1

ε

) l+1
l

)
.

First, we prove that X ⊆ FΩ(k)
2 . Let u = qr−1

q−1 , and set m = b α
qr−1 c. As

stated in Equation (1),

` (αP∞) =

u−1∑
i=0

max

{
bα− iq

r−1

u
c+ 1, 0

}
which gives

` (αP∞) ≥
m∑
i=0

α− iqr−1

u

since m ≤ u− 1. Simplifying, we see that

` (αP∞) ≥ α

u
(m+ 1)− qr−1

u

m(m+ 1)

2
≥ 1

2

α

u
(m+ 1)
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as m ≤ α
qr−1 . It then follows that

` (αP∞) ≥ 1

2

(α
u

)2

≥ 1

32
qlε2.

As a result,

` (αP∞) ≥ k

32 log 1
ε

≥ l −
√
l

32l

k

log q
,

and ` (αP∞) ∈ Ω
(

k
log q

)
. This implies X ⊆ FΩ(k)

2 .

Next, we note that X is ε
2 -biased as α

n = ε
2 . Because ε > ε

2 , X is certainly
ε-biased by definition.

Finally, it follows from Theorem 3.3 that | X |≤ q3r−1. Therefore, |X| =

O
((

k

εl−
√
l log 1

ε

) l+1
l

)
.

By taking l = 4 in the previous theorem, one may recover the following
result due to Ben-Aroya and Ta-Shma. The result when l ≥ 5 is not covered in
[4] and thus is a contribution on this work.

Corollary 3.7. [4] For all k and ε such that ε√
log 1

ε

≤ 1√
k

, there exists an ε-

biased set X ⊆ FΩ(k)
2 with cardinality |X| = O

((
k

ε2 log 1
ε

) 5
4

)
.

Theorem 3.6 is an extension of Corollary 3.7 in that it applies to a wider
range of values of k and ε. To see this, let l > 4. If

ε

log
(

1
ε

) 1√
l

≤ 1

k
1√
l

, (2)

but
1

k
1
2

<
ε

log
(

1
ε

) 1
2

, (3)

then we may apply Theorem 3.6, but Corollary 3.7 does not apply. Hence,
Theorem 3.6 allows for the construction of larger families of small-bias sets
than previously identified. Specifically, if we fix ε and choose k so that

ε
√
l ≤

log
(

1
ε

)
k

< ε2,

then (2 ) and (3) hold. The following example provides an instance of this.

Example 3.8. Let ε = 1
4 , l = 9, and k = 33. Then (2) and (3) hold as

1
64 ≤

2
k <

1
16 . Applying Theorem 3.6 results in a small-bias set X with |X| =

O
(

67584
10
9

)
.
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