Small-bias sets from extended norm-trace codes

Gretchen L. Matthews * ${ }^{*}$ Justin D. Peachey ${ }^{\ddagger}$

March 15, 2012

Abstract

As demonstrated by Naor and Naor [11] among others [1, 2], the construction of small-bias probability spaces, or small-bias sets, is connected to that of error-correcting codes. Small-bias sets are probability spaces that in some sense approximate larger ones. Error-correcting codes have provided explicit constructions of such spaces. For instance, the concatenation of a Reed-Solomon code with a Hadamard code provides a now standard construction. Recently, Ben-Aroya and Ta-Shma used Hermitian codes to construct small-bias sets [4]. In this paper, we consider small-bias sets constructed from the extended norm-trace function field $\mathbb{F}_{q^{r}}(x, y) / \mathbb{F}_{q^{r}}$ defined by $\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(y)=x^{u}$ where q is a power of a prime, $r \geq 2$, and $u \left\lvert\, \frac{q^{r}-1}{q-1}\right.$; here, $\operatorname{Tr}_{\mathbb{F}_{q} / \mathbb{F}_{q}}$ denotes the trace with respect to the extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$. The Hermitian function field $y^{q}+y=x^{q+1}$, its quotient $y^{q}+y=x^{u}$ where $u \mid q+1$, and the norm-trace function field given by $\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(y)=N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(x)$ are special cases of the extended norm-trace function field. We detail the resulting small-bias sets.

1 Introduction and preliminaries

Consider a binary random variable $X:=x_{1}, \ldots, x_{k}$. Let Ω denote the associated sample space. As shown by Varizani in 1986 [13], the bits x_{1}, \ldots, x_{k} of X are independent and uniformly distributed if and only if for all nonempty $T \subseteq$ $\{1, \ldots, k\}$,

$$
\operatorname{Prob}\left(\sum_{i \in T} x_{i}=0\right)=\operatorname{Prob}\left(\sum_{i \in T} x_{i}=1\right)
$$

where the sums are taken in \mathbb{F}_{2}, the finite field with two elements. Of course, if these equivalent conditions are satisfied, then $\Omega=\mathbb{F}_{2}^{k}$, the set of binary vectors of length k, with the uniform distribution.

[^0]For a fixed k, it is useful in a number of applications to have a sample space that is smaller than \mathbb{F}_{2}^{k} yet retains some of its randomness properties. These applications include derandomization of algorithms, testing of combinatorial circuits, and automated theorem proving [11]. This need for probability spaces that, in some sense, approximate larger ones prompted the notion of a small-bias set.

Definition 1.1. A subset $X \subseteq \mathbb{F}_{2}^{k}$ is ϵ-biased if and only if for all nonempty $T \subseteq\{1, \ldots, k\}$,

$$
\frac{1}{|X|}\left|\sum_{x \in X}(-1)^{\sum_{i \in T} x_{i}}\right| \leq \epsilon
$$

Example 1.2. 1. Fix a positive integer k. Then the set \mathbb{F}_{2}^{k} is 0-biased whereas the set $\{v\}$, for any $v \in \mathbb{F}_{2}^{k}$, is 1-biased and is not ϵ-biased for any $\epsilon<1$.
2. Let $X=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\} \subseteq \mathbb{F}_{2}^{3}$. Then X is $\frac{1}{2}$-biased.

To see this, consider a nonempty subset $T \subseteq\{1,2,3\}$, and let

$$
S_{T}=\frac{1}{|X|}\left|\sum_{x \in X}(-1)^{\sum_{i \in T} x_{i}}\right|
$$

Note that if $T \subseteq\{2,3\}$, then $S_{T}=0$. In addition,

$$
S_{\{1\}}=\frac{1}{4}\left|(-1)^{1}+(-1)^{1}+(-1)^{0}+(-1)^{1}\right|=\frac{1}{2} .
$$

More generally, it is easy to check that $1 \in T$ implies $S_{T}=\frac{1}{2}$. Thus, S is $\frac{1}{2}$-biased.
Given an ϵ-biased set X, ϵ provides a measure of how far from uniform the distribution associated with X is. To make this precise, let U_{k} denote the uniform distribution on a variable with k bits, and let

$$
\Delta(X, Y):=\frac{1}{2} \sum_{\alpha \in\{0,1\}^{k}}|\operatorname{Prob}[X=\alpha]-\operatorname{Prob}[Y=\alpha]|
$$

be the statistical difference between two k-bit random variables X and Y (equivalently, the statistical difference between their distributions).

Remark 1.3. [8] Suppose $X \subseteq \mathbb{F}_{2}^{k}$ is an ϵ-biased set. Then

$$
\epsilon \leq 2 \Delta\left(X, U_{k}\right) \leq 2^{\frac{k}{2}} \epsilon
$$

Certainly, a set is 0-biased if and only if the associated random variable is uniformly distributed.

While a random set of size $\mathcal{O}\left(\frac{k}{\epsilon^{2}}\right)$ is ϵ-biased [5], there is a need for explicit constructions of small-bias sets. The goal of this paper is to construct ϵ-biased sets $X \subseteq \mathbb{F}_{2}^{k}$ for fixed k and ϵ with $|X|$ small.

Our primary tool in the construction of small-bias sets is error-correcting codes. Thus, this section concludes with terminology and notation from coding theory. Section 2 contains a tutorial on the construction of small-bias sets from linear codes, focusing on algebraic geometric codes in particular. This is followed by Section 3 detailing the application of algebraic geometric codes from the extended norm-trace function field.

Notation. The set of positive integers is denoted \mathbb{Z}^{+}. Given a prime power q and a positive integer k, \mathbb{F}_{q} denotes the field with q elements and \mathbb{F}_{q}^{k} denotes the set of vectors of length k with coordinates in \mathbb{F}_{q}. As usual, given $v \in \mathbb{F}^{k}$, the $i^{t h}$ coordinate of v is denoted by v_{i}. The weight of a vector $v \in \mathbb{F}^{k}$ is $w t(v)=\left|\left\{i: v_{i} \neq 0\right\}\right|$. Given a matrix $A, \operatorname{Row}_{i} A$ denotes the $i^{t h}$ row of A and $\operatorname{Col}_{j} A$ denotes the $j^{\text {th }}$ column of A.

A linear code over \mathbb{F}_{q} of length n and dimension k is called an $[n, k]_{q}$ code. The Hamming distance between words $w, w^{\prime} \in \mathbb{F}^{n}$ is $d\left(w, w^{\prime}\right):=\left|\left\{i: w_{i} \neq w_{i}^{\prime}\right\}\right|$. A linear code over \mathbb{F}_{q} of length n, dimension k, and minimum distance d (resp. at least d) is called an $[n, k, d]_{q}$ (resp. $[n, k, \geq d]_{q}$) code.

Let F / \mathbb{F}_{q} be an algebraic function field of genus g. Given a divisor A on F defined over \mathbb{F}_{q}, let $\mathcal{L}(A)$ denote the set of rational functions f on X defined over \mathbb{F}_{q} such that $(f)+A$ is an effective divisor together with the zero function. Let $\ell(A)$ denote the dimension of $\mathcal{L}(A)$ as an \mathbb{F}_{q}-vector space. An algebraic geometric (or AG) code $C_{\mathcal{L}}(D, G)$ can be constructed using divisors $D=\sum_{i=1}^{n} P_{i}$ and G on F where P_{1}, \ldots, P_{n} are pairwise distinct places of F of degree one none of which are in the support of G. In particular,

$$
C_{\mathcal{L}}(D, G):=\left\{\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right): f \in \mathcal{L}(G)\right\}
$$

If $\operatorname{deg} G<n$, then $C_{\mathcal{L}}(D, G)$ is an $[n, \ell(G), \geq n-\operatorname{deg} G]_{q}$ code. If $\left\{f_{1}, \ldots, f_{k}\right\}$ is a basis for $\mathcal{L}(G)$, then

$$
\left[\begin{array}{cccc}
f_{1}\left(P_{1}\right) & f_{1}\left(P_{2}\right) & \ldots & f_{1}\left(P_{n}\right) \\
f_{2}\left(P_{1}\right) & f_{2}\left(P_{2}\right) & \ldots & f_{2}\left(P_{n}\right) \\
\vdots & \vdots & & \vdots \\
f_{k}\left(P_{1}\right) & f_{k}\left(P_{2}\right) & \ldots & f_{k}\left(P_{n}\right)
\end{array}\right]
$$

is a generator matrix for $C_{\mathcal{L}}(D, G)$. General references for AG codes include [9, 12].

2 Balanced codes and small-bias sets

In this section, we review the explicit construction of small-bias sets from balanced codes.

Definition 2.1. An ϵ-balanced code is a binary code C of length n such that for all nonzero $c \in C$

$$
\frac{1-\epsilon}{2} \leq \frac{w t(c)}{n} \leq \frac{1+\epsilon}{2}
$$

The relationship between ϵ-balanced codes and ϵ-biased sets may be seen in the following lemma.

Lemma 2.2. Suppose C is an $[n, k]_{2}$ code which is ϵ-balanced and M is a generator matrix for C. Then

$$
X=\left\{\operatorname{Col}_{1} M, \operatorname{Col}_{2} M, \ldots, \operatorname{Col}_{n} M\right\} \subseteq \mathbb{F}_{2}^{k}
$$

is an ϵ-biased set with cardinality $|X| \leq n$.
Proof. Suppose C is an $[n, k]_{2}$ code which is ϵ-balanced, and let

$$
X=\left\{\operatorname{Col}_{1} M, \operatorname{Col}_{2} M, \ldots, \operatorname{Col}_{n} M\right\}
$$

be the set of columns of a generator matrix M of C. Given nonempty $T \subseteq$ $\{1, \ldots, k\}$, define $v \in \mathbb{F}_{2}^{k}$ by $v_{i}=1$ if and only if $i \in T$. Then

$$
\begin{aligned}
\frac{1}{|X|}\left|\sum_{x \in X}(-1)^{\sum_{i \in T} x_{i}}\right| & =\frac{1}{n}\left|\sum_{j=1}^{n}(-1)^{v \operatorname{Col}_{j} M}\right| \\
& =\frac{1}{n}|n-2 w t(v M)| \\
& \leq \frac{1}{n} n \epsilon=\epsilon .
\end{aligned}
$$

Therefore, X is an ϵ-biased set.
To obtain ϵ-balanced codes, we utilize a Walsh-Hadamard code. Given a positive integer s, the Walsh-Hadamard code C_{s} is a $\left[2^{s}, s\right]_{2}$ code with generator matrix

$$
M^{\prime}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{2^{s}} \\
\mid & \mid & & \mid
\end{array}\right]
$$

where $\mathbb{F}_{2}^{s}=\left\{v_{1}, \ldots, v_{2^{s}}\right\}$. It is well-known that C_{s} is a constant-weight code, and

$$
w t(c)=2^{s-1}
$$

for all codewords $c \in C \backslash\{0\}[3]$. The concatenation of an $[n, k, \geq d]_{2^{s}}$ code C^{\prime} with C_{s} is an $\frac{n-d}{n}$-balanced code C of length $2^{s} n$. To see this, let $\varphi: \mathbb{F}_{2^{s}} \rightarrow \mathbb{F}_{2}^{s}$ be an isomorphism and $\phi_{s}: \mathbb{F}_{2}^{s} \rightarrow C_{s}$ be an encoding map for C_{s}. Suppose $c \in C \backslash\{0\}$. Then

$$
c=\left(\phi_{s}\left(\varphi\left(c_{1}^{\prime}\right)\right), \phi_{s}\left(\varphi\left(c_{2}^{\prime}\right)\right), \ldots, \phi_{s}\left(\varphi\left(c_{n}^{\prime}\right)\right)\right)
$$

for some nonzero codeword $c^{\prime} \in C^{\prime}$. Notice that

$$
2^{s-1} d \leq 2^{s-1} w t\left(c^{\prime}\right) \leq 2^{s-1} n
$$

since $w t\left(\phi_{s}\left(\varphi\left(c_{i}^{\prime}\right)\right)\right)=2^{s-1}$ for each nonzero coordinate c_{i}^{\prime} of the codeword c^{\prime} and $d \leq w t\left(c^{\prime}\right) \leq n$. Hence, the criteria in Definition 2.1 are satisfied, and C is an $\left[n 2^{s}, s k, \geq 2^{s-1} d\right]_{2}$ code which is $\frac{n-d}{n}$-balanced. This observation paired with Lemma 2.2 yields the following result.

Proposition 2.3. Given an $[n, k, d]_{2^{s}}$ code C, the set of columns of a generator matrix for the concatenation of C with the Walsh-Hadamard code C_{s} is an $\frac{n-d}{n}$ biased set $X \subseteq \mathbb{F}_{2}^{s k}$ with $|X| \leq n 2^{s}$.

Example 2.4. Consider the $\left[2^{s}, k, 2^{s}-k+1\right]_{2^{s}}$ Reed-Solomon code. According to Proposition 2.3, this results in a $\frac{k}{2^{s}}$-bias set $X \subseteq \mathbb{F}_{2}^{k}$ of cardinality $|X| \leq 2^{2 s}$. This now standard construction first appeared in [2].

Of course, one may apply Proposition 2.3 to AG codes over finite fields of characteristic 2. The motivation for doing so is that Hermitian codes have produced explicit small-bias sets which improve over previously known constructions in the range $k^{-1.5} \leq \epsilon \leq k^{-0.5}$. Moreover, the small-bias set given by an AG code $C_{\mathcal{L}}(D, G)$ may be described explicitly from the divisors G and $D=Q_{1}+\cdots+Q_{n}$. For easy reference, we record here the corollary one obtains from Proposition 2.3 when C is an AG code over $\mathbb{F}_{2^{s}}$.

Corollary 2.5. An $A G$ code $C_{\mathcal{L}}(D, G)$ of length n over $\mathbb{F}_{2^{s}}$, with $\operatorname{deg} G<n$, gives rise to a $\frac{\operatorname{deg} G}{n}$-biased set $X \subseteq \mathbb{F}_{2}^{s \ell(G)}$ with $|X| \leq n 2^{s}$.

Proof. Fix an algebraic function field $F / \mathbb{F}_{2^{s}}$. Consider the AG code $C_{\mathcal{L}}(D, G)$ where G and $D:=P_{1}+\cdots+P_{n}$ are divisors on F with $P_{i} \notin \operatorname{supp} G$ for all i and $\operatorname{deg} G<n$. Then $C_{\mathcal{L}}(D, G)$ is an $[n, \ell(G), \geq n-\operatorname{deg} G]_{2^{s}}$ code, and the result follows from Proposition 2.3.

To describe explicity the elements of the set X given in Corollary 2.5, let $\left\{f_{1}, \ldots, f_{k}\right\}$ be a basis for $\mathcal{L}(G)$, and let C be the concatenation of $C_{\mathcal{L}}(D, G)$ and C_{s} as described above. Fix a generator γ of $\mathbb{F}_{2^{s}}^{*}:=\mathbb{F}_{2^{s}} \backslash\{0\}$. Let $\varphi: \mathbb{F}_{2^{s}} \rightarrow \mathbb{F}_{2}^{s}$ be the isomorphism given by $\varphi\left(\gamma^{i}\right)=R o w_{i+1} M^{\prime}$ for $0 \leq i \leq s-1$. Then a generator matrix M for the concatenated code C is

$$
M=\left[\begin{array}{cccc}
\phi_{s}\left(\varphi\left(f_{1}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(f_{1}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(f_{1}\left(Q_{n}\right)\right)\right) \\
\phi_{s}\left(\varphi\left(\gamma f_{1}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(\gamma f_{1}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(\gamma f_{1}\left(Q_{n}\right)\right)\right) \\
\vdots & \vdots & & \vdots \\
\phi_{s}\left(\varphi\left(\gamma^{s-1} f_{1}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(\gamma^{s-1} f_{1}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(\gamma^{s-1} f_{1}\left(Q_{n}\right)\right)\right) \\
\vdots & \vdots & & \vdots \\
\phi_{s}\left(\varphi\left(f_{k}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(f_{k}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(f_{k}\left(Q_{n}\right)\right)\right) \\
\phi_{s}\left(\varphi\left(\gamma f_{k}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(\gamma f_{k}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(\gamma f_{k}\left(Q_{n}\right)\right)\right) \\
\vdots & \vdots & & \vdots \\
\phi_{s}\left(\varphi\left(\gamma^{s-1} f_{k}\left(Q_{1}\right)\right)\right) & \phi_{s}\left(\varphi\left(\gamma^{s-1} f_{k}\left(Q_{2}\right)\right)\right) & \ldots & \phi_{s}\left(\varphi\left(\gamma^{s-1} f_{k}\left(Q_{n}\right)\right)\right)
\end{array}\right] .
$$

The elements of the small-bias set X given in Corollary 2.5 are the columns of the matrix M. Therefore,

$$
X=\left\{\left[\begin{array}{c}
\phi_{s}\left(\varphi\left(f_{1}\left(Q_{\left\lceil\frac{j}{2^{s}}\right\rceil}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{2^{s}}\right\rceil-1\right) 2^{s}} \\
\phi_{s}\left(\varphi\left(\gamma f_{1}\left(Q_{\left\lceil\frac{j}{2^{s}}\right\rceil}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{2^{s}}\right\rceil-1\right) 2^{s}} \\
\vdots \\
\phi_{s}\left(\varphi\left(\gamma^{s-1} f_{1}\left(Q_{\left\lceil\frac{j}{2^{s}}\right\rceil}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{2^{s}}\right\rceil-1\right) 2^{s}} \\
\vdots \\
\phi_{s}\left(\varphi\left(f_{k}\left(Q_{\left\lceil\frac{j}{\left.2^{s}\right\rceil}\right.}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{\left.2^{s}\right\rceil-1}\right) 2^{s}\right.} \\
\phi_{s}\left(\varphi\left(\gamma f_{k}\left(Q_{\left\lceil\frac{j}{2^{s}}\right\rceil}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{2^{s}}\right\rceil-1\right) 2^{s}} \\
\vdots \\
\phi_{s}\left(\varphi\left(\gamma^{s-1} f_{k}\left(Q_{\left\lceil\frac{j}{2^{s}}\right\rceil}\right)\right)\right)_{j-\left(\left\lceil\frac{j}{2^{s}}\right\rceil-1\right) 2^{s}}
\end{array}\right]: 1 \leq j \leq n 2^{s}\right\} \subseteq \mathbb{F}_{2}^{s k}
$$

is a $\frac{\operatorname{deg} G}{n}$-bias set with cardinality $|X| \leq n 2^{s}$.
In the next section, we apply the construction in Corollary 2.5 to extended norm-trace codes. This is prompted by the fact that Hermitian codes, which are known to produce improved small-bias sets, are among the extended norm-trace codes. Because the family of extended norm-trace codes is larger, there is the opportunity to obtain new small-bias sets with known parameters.

3 Extended norm-trace codes and associated ϵ biased sets

In this section, we consider a generalization of the Hermitian function field, associated AG codes, and resulting small-bias sets. The extended norm-trace function field is studied in $[6,7,10]$. While the Hermitian function field is defined over $\mathbb{F}_{q^{2}}$, the extended norm-trace function field may be defined over $\mathbb{F}_{q^{r}}$ for any $r \geq 2$. Hence, this broader family of function fields provides codes over a wider range of alphabets than the Hermitian function field as well as a larger class of small-bias sets.
Definition 3.1. Let q be a power of a prime, $r \geq 2$, and x be transcendental over $\mathbb{F}_{q^{r}}$. The extended norm-trace function field over $\mathbb{F}_{q^{r}}$ is $\mathbb{F}_{q^{r}}(x, y)$ where

$$
y^{q^{r-1}}+y^{q^{r-2}}+\cdots+y=x^{u}
$$

and $u>1$ is a divisor of $\frac{q^{r}-1}{q-1}$.
Example 3.2. 1. If $u=\frac{q^{r}-1}{q-1}$, then $\mathbb{F}_{q^{r}}(x, y) / \mathbb{F}_{q^{r}}$ is the norm-trace function field defined by

$$
\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(y)=N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(x)
$$

where $\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(y)$ (resp., $\left.N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(x)\right)$ denotes the trace of y (resp., norm of $x)$ with respect to a degree- r extension of \mathbb{F}_{q}.
2. If $r=2$ and $u=\frac{q^{2}-1}{q-1}=q+1$, then $\mathbb{F}_{q^{2}}(x, y)$ is the well-studied Hermitian function field with defining equation $y^{q}+y=x^{q+1}$.
3. Taking $r=2$ and $u \left\lvert\, \frac{q^{2}-1}{q-1}\right.$ yields the quotient of the Hermitian function field defined by $y^{q}+y=x^{u}$ over $\mathbb{F}_{q^{2}}$.

The extended norm-trace function field $F / \mathbb{F}_{q^{r}}$ has genus $g=\frac{(u-1)\left(q^{r-1}-1\right)}{2}$ and exactly

$$
q^{r-1}(u q-u+1)+1
$$

places of degree one. Moreover, it was shown in [10] that the dimension of the divisor αP_{∞}, where $\alpha \in \mathbb{Z}^{+}$and P_{∞} denotes the infinite place of F is

$$
\begin{equation*}
\ell\left(\alpha P_{\infty}\right)=\sum_{i=0}^{u-1} \max \left\{\left\lfloor\frac{\alpha-i q^{r-1}}{u}\right\rfloor+1,0\right\} \tag{1}
\end{equation*}
$$

Consider the AG code $C_{\mathcal{L}}\left(D, \alpha P_{\infty}\right)$ over the extended norm-trace function field, where $D=Q_{1}+\cdots+Q_{q^{r-1}(u q-u+1)}$ is the sum of all places of degree one other than P_{∞} and $\alpha<q^{r-1}(u q-u+1)$. Then $C_{\mathcal{L}}\left(D, \alpha P_{\infty}\right)$ is a $\left[q^{r-1}(u q-u+1), \sum_{i=0}^{u-1} \max \left\{\left\lfloor\frac{\alpha-i q^{r-1}}{u}\right\rfloor+1,0\right\}, \geq q^{r-1}(u q-u+1)-\alpha\right]_{q^{r}}$ code.

Taking q to be a power of 2 and applying Corollary 2.5 to the code above yields a small-bias set as detailed in the next result.

Theorem 3.3. Let $q=2^{s}$, $r \geq 2$, and $u \left\lvert\, \frac{q^{r}-1}{q-1}\right.$. For every positive integer $\alpha<$ $q^{r-1}(u q-u+1)$, there exists an ϵ-biased set $X \subseteq \mathbb{F}_{2}^{r s \sum_{i=0}^{u-1} \max \left\{\left\lfloor\frac{\alpha-i q^{r-1}}{u}\right\rfloor+1,0\right\}}$ with $|X| \leq q^{2 r-1}(u q-u+1)$ and $\epsilon=\frac{\alpha}{q^{r-1}(u q-u+1)}$.

Example 3.4. [4] Take F to be the Hermitian function field defined by $y^{q}+y=$ x^{q+1} over $\mathbb{F}_{q^{2}}$, where $q^{2}=2^{s}$. The Hermitian code $C_{\mathcal{L}}\left(D, \alpha P_{\infty}\right)$ gives rise to a $\frac{\alpha}{q^{3}}$-biased set $X \subseteq \mathbb{F}_{2}^{s \ell\left(\alpha P_{\infty}\right)}$ with $|X| \leq q^{5}$.

A key difference in the small-bias sets given in Theorem 3.3 and those in Example 3.4 is the range of values of k allowed in each construction. Theorem 3.3 yields small-bias sets $X \subseteq \mathbb{F}_{2}^{k}$ where $k=r \log q \ell(G)$, given that $C_{\mathcal{L}}\left(D, \alpha P_{\infty}\right)$ is a code over $\mathbb{F}_{q^{r}}$ and q is a power of two. Recall that as one considers divisors $G=$ $\alpha P_{\infty}, \alpha \in \mathbb{Z}^{+}, \ell(G)$ takes on all positive integer values in the interval $[1, n-g]$. Hence, the small-bias sets X constructed from Hermitian codes (meaning those in Example 3.4) have the property that $X \subseteq \mathbb{F}_{2}^{k}$ where k is an even multiple of $\log q$ whereas those given by the more general family of extended norm-trace codes in Theorem 3.3 allow for $k \in r \log q \mathbb{Z}$ where $r \geq 2$. The following example illustrates this more general situation.

Example 3.5. Consider the function field $F:=\mathbb{F}_{8}(x, y) / \mathbb{F}_{8}$ where

$$
y^{4}+y^{2}+y=x^{7}
$$

Let $G=15 P_{\infty}$, and let D be the sum of all places of F of degree one other than those in the support of G. Thus, $C_{\mathcal{L}}(D, G)$ has length 32 .

By [10], a basis for $\mathcal{L}(G)$ is $\left\{1, x, x^{2}, x^{3}, y, y^{2}, x y, x^{2} y\right\}$. Thus, a generator matrix for $C_{\mathcal{L}}(D, G)$ is

$$
M:=\left[\begin{array}{rrlr}
1\left(P_{1}\right) & 1\left(P_{2}\right) & \cdots & 1\left(P_{32}\right) \\
x\left(P_{1}\right) & x\left(P_{2}\right) & \cdots & x\left(P_{32}\right) \\
x^{2}\left(P_{1}\right) & x^{2}\left(P_{2}\right) & \cdots & x^{2}\left(P_{32}\right) \\
x^{3}\left(P_{1}\right) & x^{3}\left(P_{2}\right) & \cdots & x^{3}\left(P_{32}\right) \\
y\left(P_{1}\right) & y\left(P_{2}\right) & \cdots & y\left(P_{32}\right) \\
y^{2}\left(P_{1}\right) & y^{2}\left(P_{2}\right) & \cdots & y^{2}\left(P_{32}\right) \\
x y\left(P_{1}\right) & x y\left(P_{2}\right) & \cdots & x y\left(P_{32}\right) \\
x^{2} y\left(P_{1}\right) & x^{2} y\left(P_{2}\right) & \cdots & x^{2} y\left(P_{32}\right)
\end{array}\right] .
$$

Using the above information, we can construct a small-bias set by concatenating $C_{\mathcal{L}}(D, G)$ with the appropriate Walsh-Hadamard code. Let $\mathbb{F}_{8}=\mathbb{F}_{2}(\gamma)$ where γ is a root of $x^{3}+x+1$. Let M^{\prime} be a generator matrix for the WalshHadamard code C_{3}. Define the map α as follows:

$$
\alpha: 1 \rightarrow \text { Row }_{1} M^{\prime}, \gamma \rightarrow \text { Row }_{2} M^{\prime}, \gamma^{2} \rightarrow \text { Row }_{3} M^{\prime}
$$

The rows of the generator matrix for the concatenated code are the images under α applied to the entries of the following rows:

$$
\operatorname{Row}_{1} M, \gamma \operatorname{Row}_{1} M, \gamma^{2} \operatorname{Row}_{1} M, \ldots, \text { Row }_{7} M, \gamma \operatorname{Row}_{7} M, \gamma^{2} \operatorname{Row}_{7} M
$$

The columns of this generator matrix for the concatenated code are the elements of the associated small-bias set.

Every ϵ-biased set $X \subseteq \mathbb{F}_{2}^{k}$ satisfies $|X| \geq \Omega\left(\min \left\{\frac{k}{\epsilon^{2} \log \frac{1}{\epsilon}}, 2^{k}\right\}\right)$ [2]. With this in mind, we fix k and ϵ and consider $|X|$ for the construction given in Theorem 3.3. As we are interested in finding sets whose size is as small as possible and are given a lower bound on the size of these sets, we now give an upper bound on $|X|$. Moreover, for the sake of comparison with the lower bounds, we make use of big-O notation. Also, note that utilizing these bounds, we may compare our result to previous results given in [4]. Notice, for example, that the small-bias set X given in Example 2.4 has $|X|=\mathcal{O}\left(\frac{k^{2}}{\epsilon^{2}}\right)$.
Theorem 3.6. For all k and ϵ such that $\frac{\epsilon}{\left(\log \frac{1}{\epsilon}\right)^{\frac{1}{\sqrt{\imath}}}} \leq k^{\frac{-1}{\sqrt{\imath}}}$ for some integer $l \geq 4$, there exists an ϵ - biased set $X \subseteq \mathbb{F}_{2}^{\Omega(k)}$ with cardinality $|X|=$ $\mathcal{O}\left(\left(\frac{k}{\epsilon^{l-\sqrt{l}} \log \frac{1}{\epsilon}}\right)^{\frac{l+1}{l}}\right)$.

Proof. Fix k and ϵ so that $\frac{\epsilon}{\left(\log \frac{1}{\epsilon}\right)^{\frac{1}{\sqrt{l}}}} \leq k^{\frac{-1}{\sqrt{l}}}$ for some positive integer $l \geq 4$. Choose

$$
q \in\left[\left(\frac{k}{\epsilon^{l-\sqrt{l}} \log \frac{1}{\epsilon}}\right)^{\frac{1}{l}}, 2\left(\frac{k}{\epsilon^{l-\sqrt{l}} \log \frac{1}{\epsilon}}\right)^{\frac{1}{l}}\right]
$$

to be a power of 2 , say $q=2^{s}$. Then

$$
\begin{aligned}
\frac{1}{q} & \geq \frac{1}{2}\left(\frac{\epsilon^{l-\sqrt{l}} \log \frac{1}{\epsilon}}{k}\right)^{\frac{1}{l}} \\
& =\frac{1}{2} \epsilon^{\frac{l-\sqrt{l}}{l}}\left(\frac{\log \frac{1}{\epsilon}}{k}\right)^{\frac{1}{l}} \\
& \geq \frac{1}{2} \epsilon^{\frac{l-\sqrt{l}}{l}} \epsilon^{\frac{1}{\sqrt{l}}}=\frac{1}{2} \epsilon
\end{aligned}
$$

We also have that

$$
\frac{1}{q} \leq \frac{\epsilon^{\frac{l-\sqrt{l}}{l}}\left(\log \frac{1}{\epsilon}\right)^{\frac{1}{l}}}{k^{\frac{1}{l}}} \leq \epsilon^{\frac{l-\sqrt{l}}{l}}
$$

since $\left(\frac{\log \frac{1}{\epsilon}}{k}\right)^{\frac{1}{\sqrt{l}}} \leq 1$. Hence,

$$
\left(\frac{1}{q}\right)^{\frac{l}{l-\sqrt{l}}} \leq \epsilon \leq \frac{2}{q}
$$

and

$$
\log \frac{q}{2} \leq \log \frac{1}{\epsilon} \leq\left(\frac{l}{l-\sqrt{l}}\right) \log q
$$

It follows that $\log \frac{1}{\epsilon}=\Theta(\log q)$.
Set $r=\left\lfloor\frac{l+2}{3}\right\rfloor$, and let $\alpha=\frac{\epsilon q^{2 r-1}}{2}$. Consider the norm-trace function field over $F / \mathbb{F}_{q^{r}}$. We claim that the set X of columns of a generator matrix for $C_{\mathcal{L}}\left(D, \alpha P_{\infty}\right)$ is an ϵ-biased set with $X \subseteq \mathbb{F}_{2}^{\Omega(k)}$ and $|X|=\mathcal{O}\left(\left(\frac{k}{\epsilon^{l-\sqrt{l}} \log \frac{1}{\epsilon}}\right)^{\frac{l+1}{l}}\right)$.

First, we prove that $X \subseteq \mathbb{F}_{2}^{\Omega(k)}$. Let $u=\frac{q^{r}-1}{q-1}$, and set $m=\left\lfloor\frac{\alpha}{q^{r-1}}\right\rfloor$. As stated in Equation (1),

$$
\ell\left(\alpha P_{\infty}\right)=\sum_{i=0}^{u-1} \max \left\{\left\lfloor\frac{\alpha-i q^{r-1}}{u}\right\rfloor+1,0\right\}
$$

which gives

$$
\ell\left(\alpha P_{\infty}\right) \geq \sum_{i=0}^{m} \frac{\alpha-i q^{r-1}}{u}
$$

since $m \leq u-1$. Simplifying, we see that

$$
\ell\left(\alpha P_{\infty}\right) \geq \frac{\alpha}{u}(m+1)-\frac{q^{r-1}}{u} \frac{m(m+1)}{2} \geq \frac{1}{2} \frac{\alpha}{u}(m+1)
$$

as $m \leq \frac{\alpha}{q^{r}-1}$. It then follows that

$$
\ell\left(\alpha P_{\infty}\right) \geq \frac{1}{2}\left(\frac{\alpha}{u}\right)^{2} \geq \frac{1}{32} q^{l} \epsilon^{2}
$$

As a result,

$$
\ell\left(\alpha P_{\infty}\right) \geq \frac{k}{32 \log \frac{1}{\epsilon}} \geq \frac{l-\sqrt{l}}{32 l} \frac{k}{\log q}
$$

and $\ell\left(\alpha P_{\infty}\right) \in \Omega\left(\frac{k}{\log q}\right)$. This implies $X \subseteq \mathbb{F}_{2}^{\Omega(k)}$.
Next, we note that X is $\frac{\epsilon}{2}$-biased as $\frac{\alpha}{n}=\frac{\epsilon}{2}$. Because $\epsilon>\frac{\epsilon}{2}, X$ is certainly ϵ-biased by definition.

Finally, it follows from Theorem 3.3 that $|X| \leq q^{3 r-1}$. Therefore, $|X|=$ $\mathcal{O}\left(\left(\frac{k}{\epsilon^{l-\sqrt{\tau}} \log \frac{1}{\epsilon}}\right)^{\frac{l+1}{l}}\right)$.

By taking $l=4$ in the previous theorem, one may recover the following result due to Ben-Aroya and Ta-Shma. The result when $l \geq 5$ is not covered in [4] and thus is a contribution on this work.

Corollary 3.7. [4] For all k and ϵ such that $\frac{\epsilon}{\sqrt{\log \frac{1}{\epsilon}}} \leq \frac{1}{\sqrt{k}}$, there exists an ϵ biased set $X \subseteq \mathbb{F}_{2}^{\Omega(k)}$ with cardinality $|X|=\mathcal{O}\left(\left(\frac{k}{\epsilon^{2} \log \frac{1}{\epsilon}}\right)^{\frac{5}{4}}\right)$.

Theorem 3.6 is an extension of Corollary 3.7 in that it applies to a wider range of values of k and ϵ. To see this, let $l>4$. If

$$
\begin{equation*}
\frac{\epsilon}{\log \left(\frac{1}{\epsilon}\right)^{\frac{1}{\sqrt{l}}}} \leq \frac{1}{k^{\frac{1}{\sqrt{l}}}} \tag{2}
\end{equation*}
$$

but

$$
\begin{equation*}
\frac{1}{k^{\frac{1}{2}}}<\frac{\epsilon}{\log \left(\frac{1}{\epsilon}\right)^{\frac{1}{2}}} \tag{3}
\end{equation*}
$$

then we may apply Theorem 3.6, but Corollary 3.7 does not apply. Hence, Theorem 3.6 allows for the construction of larger families of small-bias sets than previously identified. Specifically, if we fix ϵ and choose k so that

$$
\epsilon^{\sqrt{l}} \leq \frac{\log \left(\frac{1}{\epsilon}\right)}{k}<\epsilon^{2}
$$

then (2) and (3) hold. The following example provides an instance of this.
Example 3.8. Let $\epsilon=\frac{1}{4}, l=9$, and $k=33$. Then (2) and (3) hold as $\frac{1}{64} \leq \frac{2}{k}<\frac{1}{16}$. Applying Theorem 3.6 results in a small-bias set X with $|X|=$ $O\left(67584^{\frac{10}{9}}\right)$.

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptotically good, low-rate error-correcting codes through pseudo-random graphs, IEEE Trans. Info. Theory 38 (1992), 509-516.
[2] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple constructions of almost k-wise independent random variables, Random Structures Algorithms 3 (1992), no. 3, 289-303.
[3] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
[4] A. Ben-Aroya and A. Ta-Shma, Constructing small-bias sets from algebraicgeometric codes, FOCS'2009, 191-197.
[5] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigerson, Randomnessefficient low degree tests and short PCPs via epsilon-biased sets, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, 612-621, ACM, New York, 2003,
[6] M. Bras-Amorós and M. E. O'Sullivan, Duality for some families of correction capability optimized evaluation codes, Adv. Math. Commun. 2 (2008), no. 1, 15-33.
[7] O. Geil, On codes from norm-trace curves, Finite Fields Appl. 9 (2003), no. 3, 351-371.
[8] O. Goldreich, Computational Complexity: A Conceptual Perspective, Cambridge University Press, 2008.
[9] T. Høholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry codes, in Handbook of Coding Theory, V. Pless, W. C. Huffman, and R. A. Brualdi, Eds., 1, Elsevier, Amsterdam (1998), 871-961.
[10] G. L. Matthews and J. D. Peachey, Explicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications to AG codes and Weierstrass semigroups, preprint.
[11] J. Naor and M. Naor, Small-bias probability spaces: efficient construction and applications, SIAM J. Comput. 22 (1993), 838-856.
[12] H. Stichtenoth, Algebraic Function Fields and Codes, Springer Verlag, 2009.
[13] U. V. Vazirani, Randomness, adversaries, and computation, Ph.D. thesis, EECS, UC Berkeley, 1986.

[^0]: *Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 email: gmatthe@clemson.edu
 ${ }^{\dagger}$ G. L. Matthews' work is supported in part by NSF DMS-090169.
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 email: jpeache@clemson.edu

