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Abstract. We consider the quotient of the Hermitian curve defined by the
equation yq + y = xm over Fq2 where m > 2 is a divisor of q + 1. For
2 ≤ r ≤ q + 1, we determine the Weierstrass semigroup of any r-tuple of Fq2 -

rational points (P∞, P0b2 , . . . , P0br ) on this curve. Using these semigroups,
we construct algebraic geometry codes with minimum distance exceeding the
designed distance. In addition, we prove that there are r-point codes, that is
codes of the form CΩ(D, α1P∞+α2P0b2 +· · ·+αrP0br ) where r ≥ 2, with bet-
ter parameters than any comparable one-point code on the same curve. Some
of these codes have better parameters than comparable one-point Hermitian
codes over the same field. All of our results apply to the Hermitian curve itself
which is obtained taking m = q + 1 in the above equation.

1. Introduction

Algebraic geometry codes, as defined by Goppa in [6], [7], are linear codes formed
using two divisors G and D on a curve. Typically, the divisor G is taken to be a
multiple of a single point P and the code is called a one-point code. The parameters
of such codes are closely related to the Weierstrass semigroup of the point P [4].
It has been shown that one may obtain codes with better parameters by allowing
the divisor G to be more general (see [14], [9], [3], [18]). In particular, if G is
a divisor supported by r points, then one can use the Weierstrass semigroup of
the r-tuple of these points to estimate the parameters of the associated r-point
code. While the Weierstrass semigroup of an r-tuple of points is a generalization of
the classically studied Weierstrass semigroup of a point, very little is known about
this set if r ≥ 2 (see [11], [8], [2]). The only families of curves over a finite field
for which the Weierstrass semigroup of even a pair of points has been determined
are the families of hyperelliptic and plane quartic curves [11], Hermitian [14], and
Suzuki curves [13]. In this work, we provide techniques for determining Weierstrass
semigroups of r-tuples of distinct points on an arbitrary curve by expounding on the
work of Carvalho and Torres [3]. To illustrate these techniques, we determine the
Weierstrass semigroup of certain r-tuples of points on a quotient of the Hermitian
curve for 2 ≤ r ≤ q + 1. This is a generalization of the main result of [15] where
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the Weierstrass semigroup of an r-tuple of collinear points on a Hermitian curve is
described.

In this paper, we consider the curve X over Fq2 defined by yq + y = xm where
m > 2 is a divisor of q +1. This curve was originally studied by F. K. Schmidt [16]
as the first known example of a non-classical curve. In [5], it is shown that X is
a maximal curve meaning that the number of Fq2 -rational points on X is equal to
the Weil upper bound. Hence, it is natural to use this curve to construct algebraic
geometry codes. Another motivation for the study of this curve and associated
codes is that if one takes m = q +1, the much-studied Hermitian curve is obtained.

This paper is organized as follows. Section 2 contains basic facts about the curve
we will study as well as notation to be used throughout this paper. In Section 3,
we describe the minimal generating set of a Weierstrass semigroup of an r-tuple
of points on an arbitrary curve. As an application, we determine the Weierstrass
semigroup of any r-tuple of points of the form (P∞, P0b2 , . . . , P0br ) on the quotient
of the Hermitian curve defined by yq + y = xm over Fq2 , where 2 ≤ r ≤ q + 1. This
semigroup is utilized in Section 4 where we construct algebraic geometry codes
supported by the r points P∞, P0b2 , . . . , P0br

and compare them with one-point
codes from the same curve. This section also contains results on using the semigroup
of an r-tuple of points to better estimate the minimum distance of codes supported
by r points and comparisons of codes constructed using a quotient of the Hermitian
curve with Hermitian codes over the same field.

2. Notation and Preliminaries

In this section, we introduce notation to be used throughout this work. Then
some facts from [5] concerning a quotient of the Hermitian curve are reviewed.

Let X be a projective curve of genus g over a finite field F. Let F(X) denote the
field of rational functions on X defined over F. The divisor of a rational function
f (resp. differential η) will be denoted by (f) (resp. (η)). The divisor of poles
of f will be denoted by (f)∞. Given a divisor A on X defined over F, let L(A)
denote the set of rational functions f on X defined over F with divisor (f) ≥ −A
together with the zero function and Ω(A) denote the set of rational differentials η
on X defined over F with divisor (η) ≥ A together with the zero differential. Let
`(A) denote the dimension of L(A) as an F-vector space. Two divisors D1 and D2

are said to be linearly equivalent, denoted D1 ∼ D2, if D1 − D2 = (f) for some
rational function f .

Algebraic geometry codes CL(D, G) and CΩ(D,G) can be constructed using
divisors D =

∑n
i=1 Qi and G =

∑r
i=1 αiPi on X where Q1, . . . , Qn, P1, . . . , Pr are

pairwise distinct F-rational points and αi ∈ N for all i, 1 ≤ i ≤ r. In particular,

CL(D,G) := {(f(Q1), . . . , f(Qn)) : f ∈ L(G)}
and

CΩ(D, G) := {(resQ1(η), . . . , resQn(η)) : η ∈ Ω(G−D)} .

We will refer to these codes as r-point codes since the divisor G has r distinct F-
rational points in its support. Typically, an r-point code is constructed by taking
the divisor D to be the sum of all F-rational points not in the support of G, and
we will keep this convention. If deg G < n, then CL(D, G) has length n, dimension
`(G), and designed distance n − deg G. If deg G > 2g − 2, then CΩ(D,G) has
dimension `(K + D − G), where K is a canonical divisor, and designed distance



SEMIGROUPS AND CODES FROM A QUOTIENT OF THE HERMITIAN CURVE 3

deg G − (2g − 2). The minimum distance of each of the codes CL(D, G) and
CΩ(D,G) is at least its designed distance. A code of length n, dimension k, and
minimum distance d (resp. at least d) is called an [n, k, d] (resp. [n, k,≥ d]) code.

We now focus our attention on the curve X defined by yq + y = xm over Fq2

where q is a prime power, m is a divisor of q + 1, and m > 2. In all that follows,
we let c denote the quotient c := q+1

m and we set l := min{m, q}. It can be shown
that the genus of X is g := (m−1)(q−1)

2 . Since F∗q2 := Fq2 \ {0} is cyclic, there
is a unique subgroup H of F∗q2 of order m(q − 1). The Fq2-rational points on X

are Pab := (a : b : 1), where a, b ∈ Fq2 satisfy bq + b = am, and a single point at
infinity, denoted P∞. In fact, for each a ∈ H ∪{0}, there are exactly q Fq2-rational
points Pab on X. This together with the Weil bound shows that X has exactly
q(m(q − 1) + 1) + 1 Fq2 -rational points. One may notice that P∞ = (0 : 1 : 0) if
m = q + 1, and P∞ = (1 : 0 : 0) if m 6= q + 1.

3. The minimal generating set of a Weierstrass semigroup

In this section, we consider Weierstrass semigroups of r-tuples of points. We
begin by discussing the notion of the minimal generating set of a Weierstrass semi-
group of an r-tuple of points on an arbitrary curve X. Then we restrict our at-
tention to the quotient of the Hermitian curve described in Section 2 and deter-
mine the minimal generating set for any r-tuple of Fq2 -rational points of the form
(P∞, P0b2 , . . . , P0br ) where 2 ≤ r ≤ q + 1.

Let X be a curve over F of genus g > 1. Given r distinct F-rational points
P1, . . . , Pr on the curve X, the Weierstrass semigroup H(P1, . . . , Pr) of the r-tuple
(P1, . . . , Pr) is defined by

H(P1, . . . , Pr) =

{
(α1, . . . , αr) ∈ Nr

0 : ∃f ∈ F(X) with (f)∞ =
r∑

i=1

αiPi

}
,

and the Weierstrass gap set G(P1, . . . , Pr) of the r-tuple (P1, . . . , Pr) is defined by

G(P1, . . . , Pr) = Nr
0 \H(P1, . . . Pr),

where N0 := N ∪ {0} denotes the set of nonnegative integers. When the context
is clear, we may write Hr := H(P1, . . . , Pr) and Gr := G(P1, . . . , Pr) even though
both of these sets depend on the points P1, . . . , Pr. If m = 1, the Weierstrass
gap set is the classically studied gap sequence and | G(P1) |= g, the genus of
X. In general, if r ≥ 2, then | G(P1, . . . , Pr) | depends on the choice of points
P1, . . . , Pr [1]. However, as we shall see, any r-tuple of distinct points of the form
(P∞, P0b2 , . . . , P0br ) on the quotient of the Hermitian curve with defining equation
yq + y = xm has the same Weierstrass gap set. Moreover, a minimal generating set
for the Weierstrass semigroup H(P∞, P0b2 , . . . , P0br ) is given. Before we do this,
let us review some results on computing Weierstrass semigroups and set up some
notation strongly inspired by [3].

Define a partial order ¹ on Nr
0 by (n1, . . . , nr) ¹ (p1, . . . , pr) if and only if ni ≤ pi

for all i, 1 ≤ i ≤ r. When comparing elements of Nr
0, we will always do so with

respect to the partial order ¹. Given v := (v1, . . . , vr) ∈ Zr, let

ṽ := (vi1 , . . . , vil
) ∈ Nl

where i1 < · · · < il and vi > 0 if and only if i = ij for some 1 ≤ j ≤ l; that is, ṽ is
the vector formed from v by deleting each coordinate of v containing a negative or
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zero entry. Given u1, . . . ,ul ∈ Nr
0, define the least upper bound of u1, . . . ,ul by

lub{u1, . . . ,ul} = (max{u11 , . . . , ul1}, . . . , max{u1r
, . . . , ulr}) ∈ Nr

0.

We will see that Weierstrass semigroups are generated by taking least upper bounds
of elements in certain sets. These sets can be defined in the following manner. Let
Γ̃(P1) := H(P1). For 2 ≤ r ≤ q + 1, define

Γ̃(P1, . . . , Pr) :=
{
n ∈ Nr :

n is minimal in {p ∈ Hr : pi = ni}
for some i, 1 ≤ i ≤ r

}
.

For 1 ≤ r ≤ q + 1, set

Γ(P1, . . . , Pr) :=
{
n ∈ Nr

0 : ñ = (ni1 , . . . , nik
) ∈ Γ̃(Pi1 , . . . , Pik

)
for some 1 ≤ k ≤ r and 1 ≤ i1 < · · · < ik ≤ r

}
.

If the context is clear, we may write Γ̃r := Γ̃(P1, . . . , Pr) and Γr := Γ(P1, . . . , Pr).

Lemma 3.1. [15, Proposition 3] Let P1, . . . , Pr be distinct F-rational points on a
curve X. Then

Γ̃r = {n ∈ Nr : n is minimal in {p ∈ Hr : pi = ni} for all i, 1 ≤ i ≤ r} .

The following result describes how the set Γr generates the entire Weierstrass
semigroup H(P1, . . . , Hr).

Theorem 3.2. [15, Theorem 7] Let P1, . . . , Pr be distinct F-rational points on a
curve X. If 1 ≤ r ≤ |F|, then

H(P1, . . . , Pr) = {lub {u1, . . . ,ur} ∈ Nr
0 : u1, . . . ,ur ∈ Γr} .

We will refer to Γr as the minimal generating set of the Weierstrass semigroup
H(P1, . . . , Pr). According to Theorem 3.2, to determine H(P1, . . . , Pr), we only
need to determine Γ̃(Pi1 , . . . , Pik

) for all 1 ≤ i1 < · · · < ik ≤ r and 1 ≤ k ≤ r. This
is precisely what we will do for certain r-tuples of Fq2-rational points on the curve
X defined by yq + y = xm where m is a divisor of q + 1 and m > 2.

Let P1 = P∞, P2 = P0b2 , P3 = P0b3 , . . . , Pq+1 = P0bq+1 be q + 1 distinct Fq2-
rational points on the curve X. Let a ∈ H ∪ {0} and b ∈ Fq2 . To compute the
Weierstrass semigroups, we will make use of the following principal divisors of X [5]:

(x− a) =
∑

b ∈ F
q2

bq + b = am

Pab − qP∞

(y − b) =





mP0b −mP∞ if bq + b = 0∑
a ∈ F

q2

bq + b = am

Pab −mP∞ if bq + b = am where a ∈ H.

Using these functions together with the fact that |G(P )| = (m−1)(q−1)
2 , one can

obtain the following result.

Proposition 3.3. [5, Theorem 3] The Weierstrass semigroup of any Fq2-rational
point P0b or P∞ on the curve defined by yq + y = xm where m > 2 is a divisor of
q + 1 is H(P0b) = H(P∞) = 〈m, q〉.

According to the above proposition, the Fq2 -rational points P∞ and P0b on X
have the same gap set N\〈m, q〉. Since 〈m, q〉 is a symmetric semigroup with largest
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gap mq −m − q, a positive integer α ≤ mq −m − q is not an element of 〈m, q〉 if
and only if mq −m− q − α ∈ 〈m, q〉. Using this fact, we see that

G(P0b) = G(P∞) =
{

(t− j)m + j :
1 ≤ j ≤ l − 1,
j ≤ t ≤ q − 1− j(c− 1)

}

where l = min{m, q}. We will now describe a convenient way to organize the
elements of this gap set. Recall that c = q+1

m . Write the integers 1, 2, . . . , l− 1 in a
row. For each 1 ≤ j ≤ l− 1, form a column, Column j, with first entry j by adding
multiples of m to j: j, j + m, j + 2m, . . . ,j + (q − 1− jc)m. This gives

1 2 · · · j · · · l− 1
m + 1 m + 2 · · · m + j · · · m + (l− 1)

. . .

.

.

.
. . . (q − 1− (l− 1)c)m + l− 1

. . . . . .

. . . . . (q − 1− jc)m + j

. (q − 1− 2c)m + 2
(q − 1− c)m + 1

Assign labels 1, . . . , q − 1 − c to the diagonals running from the bottom left to
upper right (i.e., those running in the direction of ↗) starting at the upper left
corner. In doing this, we allow blank entries along these diagonals. Notice that if
α = (t − j)m + j with 1 ≤ j ≤ l − 1 and 1 ≤ j ≤ t ≤ q − 1 − j(c − 1), then α is
on the tth diagonal and in the jth column of the above diagram. Also note that if
m = q + 1 then this diagram is the familiar “triangle of gaps” of any Fq2-rational
point of the Hermitian curve over Fq2 . It is worth pointing out that if m 6= q + 1
then not all Fq2 -rational points on X have the same gap set. Hence, it is necessary
to restrict ourselves to the Fq2 -rational points P∞ and P0b where bq + b = 0.

The next result describes the minimal generating set for the Weierstrass semi-
group of the pair (P∞, P0b) of Fq2-rational points on X. Although the case b = 0
is the content of [11, Lemma 5.2], we include a proof here for any b ∈ Fq2 such
that bq + b = 0. As a special case of this result, we obtain [14, Theorem 3.4] where
the Weierstrass semigroup of a pair of Fq2 -rational points on the Hermitian curve
is determined.

Proposition 3.4. Let P1 = P∞ and P2 = P0b be Fq2-rational points on the curve
yq + y = xm where m > 2 is a divisor of q + 1. Then

Γ̃2 =



((t1 − j)m + j, (t2 − j)m + j) :

1 ≤ j ≤ l − 1,
j ≤ t1, t2 ≤ q − 1− j(c− 1),
t1 + t2 = (m− j)c + 2(j − 1)



 .

Therefore, H(P1, P2) is generated by

Γ̃2 × ∪ (〈m, q〉 × {0}) ∪ ({0} × 〈m, q〉) .

Proof. If 1 ≤ j ≤ l−1, j ≤ t1, t2 ≤ q−1−j(c−1), and t1 + t2 = (m−j)c+2(j−1),
then (

xm−j

(y − b)t2−j+1

)

∞
= ((t1 − j)m + j)P1 + (t2 − j)m + j)P2.

Therefore,
((t1 − j)m + j, (t2 − j)m + j) ∈ H(P1, P2).

To see that this gives Γ̃2 as claimed, let

φ : G(P1) → G(P2)
α 7→ β
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where (α, β) ∈ Γ̃2. Then φ defines a one-to-one correspondence [11]. Fix 1 ≤
j ≤ l − 1 and start with α = (q − 1 − jc)m + j, the last entry in the jth column
of the diagram above. We have that ((q − 1 − jc)m + j, j) ∈ H(P1, P2) for 1 ≤
j ≤ l − 1. Hence, ((q − 1 − jc)m + j, j) ∈ Γ̃2 for 1 ≤ j ≤ l − 1. Now consider
α = (q − 1 − jc − 1)m + j, the next to the last entry in the jth column. Then
((q−1− jc−1)m+ j,m+ j) ∈ H(P1, P2) and so ((q−1− jc−1)m+ j, m+ j) ∈ Γ̃2

for 1 ≤ j ≤ l − 1. In general, if α is the kth from the last entry in its particular
column, then α = (q − 1− jc− k)m + j and we obtain that

((q − 1− jc− k)m + j, km + j) ∈ Γ̃2.

Considering this for increasing k, 0 ≤ k ≤ q − 1 − jc, and using the one-to-one
correspondence above gives Γ̃2 as claimed. ¤

Finding the Weierstrass semigroup of the pair (P∞, P0b) as in Proposition 3.4
lays a foundation for determining the Weierstrass semigroup of r-tuples of the form
(P∞, P0b2 , . . . , P0br ). It is interesting to note that each pair in Γ̃2 has coordinates
that come from the same column in the diagram of gaps at the points P1 and
P2. While this is not necessarily the case for an arbitrary curve, we do have the
following general result.

Lemma 3.5. [15, Lemma 4] If P1, . . . , Pr are distinct F-rational points on a curve
X and 2 ≤ r ≤| F |, then Γ̃(P1, . . . , Pr) ⊆ G(P1)× · · · ×G(Pr).

It is convenient to have a compact notation to describe the elements of the
minimal generating set of the Weierstrass semigroup H(P∞, P0b2 , . . . , P0br ).

Definition 3.6. Given 1 ≤ r ≤ q + 1, t = (t1, . . . , tr) ∈ Nr, and j ∈ N such that
1 ≤ j ≤ l − 1 and j ≤ ti ≤ q − 1− j(c− 1) for all 1 ≤ i ≤ r, define

γt,j := ((t1 − j)m + j, (t2 − j)m + j, . . . , (tr − j)m + j) ∈ Nr.

We emphasize that the notation γt,j will only be used to describe vectors as
defined above where 1 ≤ j ≤ l − 1 and j ≤ ti ≤ q − 1 − j(c − 1) for all 1 ≤ i ≤ r.
Then

γt,j ∈ G(P1)×G(P2)× · · · ×G(Pr).
We next show that certain γt,j form the minimal generating set of the Weierstrass
semigroup H(P∞, P0b2 , . . . , P0br ) for any 2 ≤ r ≤ q + 1.

Theorem 3.7. Let P1 = P∞, P2 = P0b2 , P3 = P0b3 , . . . , Pq+1 = P0bq+1 be q + 1
distinct Fq2-rational points on the curve X defined by yq + y = xm where m > 2 is
a divisor of q + 1. For 2 ≤ r ≤ q + 1− c,

Γ̃r =

{
γt,j ∈ Nr :

r∑

i=1

ti = (m− j)c + r(j − 1)

}
,

and for q + 1− c < r ≤ q + 1,
Γ̃r = ∅.

In particular, the Weierstrass semigroup H(P1, . . . , Pr) is generated by{
n ∈ Nr

0 : ñ = γt,j ∈ Γ̃k for some 1 ≤ k ≤ r
}

.

Hence, the Weierstrass semigroup H(P1, . . . , Pr) is

H(P1, . . . , Pr) =
{

lub{u1, . . . ,ur} : ũi ∈ Γ̃ki , 1 ≤ ki ≤ r
}

.
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The proof of Theorem 3.7 is rather technical and so is included in Appendix A.
It is interesting to note that each element of Γ̃r has all entries coming from the
same column in the gap diagram. To illustrate this, we include an example.

Example 3.8. Let X denote the curve of genus 7 over F64 defined by y8 + y = x3

and let
(P1, P2, . . . , P9) := (P∞, P0b2 , . . . , P0b9)

be a 9-tuple of distinct F64-rational points on X. Then

H(P1) = · · · = H(P9) = 〈3, 8〉
and the Weierstrass gap set of Pi, 1 ≤ i ≤ 9, is

1 2
4 5
7
10
13.

By Proposition 3.4,

Γ̃2 =





(1, 13), (2, 5),
(4, 10), (5, 2),
(7, 7),
(10, 4),
(13, 1)





To generate the Weierstrass semigroup of the pair (P1, P2), one only needs to take
least upper bounds of all pairs in the set

Γ2 = Γ̃2 ∪ ({0} × 〈3, 8〉) ∪ (〈3, 8〉 × {0}) .

Applying Theorem 3.7, one can obtain that

Γ+
3 =

{
(1, 1, 10), (1, 4, 7), (1, 7, 4), (1, 10, 1), (2, 2, 2), (4, 1, 7),
(4, 4, 4), (4, 7, 1), (7, 1, 4), (7, 4, 1), (10, 1, 1)

}
,

Γ+
4 =

{
(1, 1, 1, 7), (1, 1, 4, 4), (1, 1, 7, 1), (1, 4, 1, 4), (1, 4, 4, 1),
(1, 7, 1, 1), (4, 1, 1, 4), (4, 1, 4, 1), (4, 4, 1, 1), (7, 1, 1, 1)

}
,

Γ+
5 = {(1, 1, 1, 1, 4), (1, 1, 1, 4, 1), (1, 1, 4, 1, 1), (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)} ,

and
Γ+

6 = {(1, 1, 1, 1, 1, 1)} .

Notice also that Γ+
7 = Γ+

8 = Γ+
9 = ∅. This means that for 7 ≤ r ≤ 9,

Γr =
{
n ∈ Nr

0 : ñ ∈ ∪6
i=1Γ

+
i

}
.

4. Weierstrass semigroups and r-point codes

In this section, we demonstrate how the semigroup found in Section 3 may be
used to construct algebraic geometry codes supported by r points. We will compare
these r-point codes with one-point codes from the same curve and with one-point
Hermitian codes over the same field. To aid in estimating the parameters of r-point
codes, we will use the following generalization of [14, Theorem 2.1]. Note that this
result applies to an arbitrary curve. As usual, ei = (0, . . . , 0, 1, 0, . . . , 0) denotes
the unit vector with 1 in the ith coordinate and 0 in all others.
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Theorem 4.1. Let α, β ∈ Nr
0 and let G =

∑r
i=1(αi + βi − 1)Pi be a divisor on X

supported by r distinct F-rational points. Assume that α1 ≥ 1,

{u ∈ Nr
0 : u1 = α1,u ¹ α} ⊆ G(P1, . . . , Pr),

and{
β − a− 1 + e1 ∈ Nr

0 : a ∈ Nr
0, a1 = 0,

r∑

i=2

ai ≤ 2g − 1−
r∑

i=1

αi

}
⊆ G(P1, . . . , Pr).

Set D := Q1+· · ·+Qn, where Q1, . . . , Qn are distinct F-rational points and no Qi is
in the support of G. If the r-point code CΩ(D, G) is nontrivial, then the minimum
distance of this code is at least deg G− (2g − 2) + 1.

We omit the proof of Theorem 4.1 as it is very similar to that of [14, Theorem
2.1]. While the previous result holds for an arbitrary curve, the next result applies
only to the quotient of the Hermitian curve X defined by yq +y = xm where m > 2
is a divisor of q + 1. Here, if one takes m = q + 1, then a generalization of [14,
Theorem 4.1] is obtained.

Theorem 4.2. Let P1 = P∞, P2 = P0b2 , P3 = P0b3 , . . . , Pq+1 = P0bq+1 be q + 1
distinct Fq2-rational points on the curve X defined by yq + y = xm where m > 2 is
a divisor of q + 1. Let 2 ≤ r ≤ q + 1 and α, β ∈ Nr

0. Assume that α1 ≥ 1,

{u ∈ Nr
0 : u1 = α1,u ¹ α} ⊆ G(P1, . . . , Pr),

and



β − a− 1 + e1,
β − a− 1 + e1 + ek,

β − a− 1 + (m + 1)e1

: a ∈ Nr
0, a1 = 0, 1 ≤ k ≤ r,∑r

i=2 ai ≤ 2g − 1−∑r
i=1 αi



 ⊆ G(P1, . . . , Pr).

Set D := Q1+· · ·+Qn, where Q1, . . . , Qn are distinct F-rational points and no Qi is
in the support of G. If the r-point code CΩ(D, G) is nontrivial, then the minimum
distance of this code is at least deg G− (2g − 2) + 2.

Proof. By Theorem 4.1, the minimum distance of CΩ(D, G) is at least deg G−2g+3.
Put w = deg G− 2g + 3. If there exists a codeword of weight w, then there exists
a differential η ∈ Ω(G−D) with exactly w simple poles Q1, . . . , Qw. We have that
(η) ≥ G− (Q1 + · · ·+ Qw). Since 2g − 2 = deg (η) = deg G− w + 1,

(η) = G− (Q1 + · · ·+ Qw) + A,

where A is an Fq2-rational point and A 6= Qi for 1 ≤ i ≤ w. Since l(
∑r

i=1 αiPi) =
l((α1 − 1)P1 +

∑r
i=2 αiPi), there exists a rational function h with divisor

(h) = (α1 − 1)P1 +
r∑

i=2

(αi + ai)Pi −K + E,

where E is an effective divisor whose support does not contain any Pi and 0 ≤∑r
i=2 ai ≤ 2g − 1− (

∑r
i=1 αi) for each i, 2 ≤ i ≤ r . Then

G− (Q1 + · · ·+ Qw) + A = (η) ∼ K ∼ (α1 − 1)P1 +
r∑

i=2

(αi + ai)Pi + E

implies that there exists a rational function f with divisor

(f) = −β1P1 −
(

r∑

i=2

(βi − ai − 1)Pi

)
−A + (Q1 + · · ·+ Qw) + E.
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If A is in the support of E, then

(f) = −β1P1 −
r∑

i=2

(βi − ai − 1)Pi + (Q1 + · · ·+ Qw) + (E −A)

contradicting the assumption that β− a− 1+ e1 ∈ G(P1, . . . , Pr). If A = P1, then

(f) = −(β1 + 1)P1 −
r∑

i=2

(βi − ai − 1)Pi + (Q1 + · · ·+ Qw) + E

contradicting the assumption that β − a− 1 + 2e1 ∈ G(P1, . . . , Pr). If A = Pk for
2 ≤ k ≤ r, then

(f) = −β1P1 −
r∑

i = 2
i 6= k

(βi − ai − 1)Pi − (βk − ak)Pk + (Q1 + · · ·+ Qw) + E

contradicting the assumption that β − a − 1 + e1 + ek ∈ G(P1, . . . , Pr). Thus,
A = Qj for some j, w + 1 ≤ j ≤ n. Then there exists a rational function f̃ on

X with divisor
(
f̃
)

= A′ − mP1 where A′ is an effective divisor whose support

contains A (if A = Pab, then one can take f̃ = y − b). Once again a contradiction
is reached as

(
ff̃

)
= −(β1 + m)P1 −

r∑

i=2

(βi − ai − 1)Pi + (A′ −A) + Q1 + · · ·+ Qw + E.

Therefore, CΩ(D, G) has no codeword of weight w. Hence, the minimum distance
of CΩ(D, G) is at least w + 1 = deg G− (2g − 2) + 2. ¤

Next, we wish to compare r-point codes, r ≥ 2, constructed using the Weierstrass
gap set determined in Theorem 3.7 to other codes over the same field. The exact
parameters of all one-point codes on the curve yq+y = xm can be obtained from [10]
or by applying the methods in [17], [4], and [19]. For reference purposes, we include
Table 1 indicating the parameters of all one-point codes CL(D′, αP∞) (equivalently,
CΩ(D′, αP∞)) where D′ is the sum of all Fq2 -rational point other than P∞. Note
that the length of such a one-point code is n′ = q(m(q − 1) + 1). The dimension is
denoted by k′ and the minimum distance is denoted by d′.

Consider the r-point [n, k, d] code CΩ(D, G) on X with 2g − 2 < deg G < n.
Then the dimension of CΩ(D, G) is k = n + g − 1 − deg G. If deg G < n − g − 1,
then CL(D′, αP∞) is the unique one-point code on X with dimension k, where
α = k+g−1. Note that CL(D′, αP∞) has length n′ := n+r−1. From Table 1, we
can see that if n+ r− 1−α ∈ H(P∞), then CL(D′, αP∞) is a [n+ r− 1, k, deg G−
(2g − 2) + r − 1] code. If r = 2 and CΩ(D, G) satisfies the hypotheses of Theorem
4.1, then CΩ(D,G) is a [n, k,≥ deg G − (2g − 2) + 2] code. Hence, this two-point
code is shorter than the one-point code of the same dimension on X and corrects
at least as many errors. Similarly, if r = 3, CΩ(D, G) satisfies the hypotheses of
Theorem 4.2, and n + r − 1 − α ∈ H(P∞), then CΩ(D, G) has better parameters
than the one-point code of the same dimension on X. Using these ideas, one can
obtain the following corollary of Theorems 4.1 and 4.2.

Corollary 4.3. Let X denote the quotient of the Hermitian curve over Fq2 defined
by yq + y = xm where m > 2 is a proper divisor of q + 1. Then there are r-point
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Table 1. Parameters of CL(D′, αP∞)

α k′ d′
0 ≤ α ≤ 2g − 1 α + 1− g

+ | H(P∞) ∩ [0, 2g − 2− α] | n′ − α + min{s ∈ N0 : α− s ∈ H(P∞)}
2g ≤ α ≤ n′ − 2g α + 1− g n′ − α

n′ − 2g + 1 ≤ α ≤ n′ − 1 α + 1− g n′ − α + min{s ∈ N0 : n′ − α + s ∈ H(P∞)}
n′ ≤ α ≤ n′ + 2g − 2 α + 1− g

+ | H(P∞) ∩ [0, α− n] | bn−α+2g−2
max{q,m} c + 2

codes on X with r ≥ 2 that have better parameters than any comparable one-point
code CL(D, αP∞) (or CΩ(D,αP∞)) on the same curve.

Proof. We will prove the following statements:
(a) If 2g − 2 < δ < 4g − 3 and δ − (2g − 2) + 1 ∈ H(P∞), then there is a two-point
code CΩ(D, G) on X with deg G = δ and better parameters than the one-point
code of the same dimension on X.
(b) If 2g− 2 < δ < min{(q− 1− 2c)m + 2, (q− c− 3)m + 1}+ (q− c− 2)m + 1 and
δ − (2g − 2) + 1 ∈ H(P∞), then there is a three-point code CΩ(D,G) on X with
deg G = δ and better parameters than the one-point code of the same dimension
on X.

Let P1 = P∞, P2 = P0b2 , and P3 = P0b3 be distinct Fq2-rational points on X. To
obtain a two-point code as in (a), let α = (1, 2g−2) and β = (1, δ−(2g−2)). Then
Proposition 3.4 shows that the hypotheses of Theorem 4.1 are satisfied. Therefore,
CΩ(D,P1 + (δ− 1)P2) is an [n, k,≥ δ− (2g− 2) + 1] code while the one-point code
of dimension k is a [n+1, k, δ− (2g−2)+1] code (since δ− (2g−2)+1 ∈ H(P∞)).

To obtain a three-point code as in (b), let α = (1, 1, 2g − 2 − m) = (1, 1, (q −
c − 2)m) and β = (1, 1, δ − (2g − 2 −m) − 1) = (1, 1, δ − (q − c −m) − 1). Then
Theorem 3.7 shows that the hypotheses of Theorem 4.2 are satisfied. Therefore,
CΩ(D,P1+P2+(δ−2)P2) is an [n, k,≥ δ−(2g−2)+2] code while the one-point code
of dimension k is a [n+2, k, δ− (2g−2)+2] code (since δ− (2g−2)+2 ∈ H(P∞)).

¤

The proof the above corollary gives rise to many applications of Theorem 4.1
and Theorem 4.2.

Example 4.4. Let X denote the curve defined by y8+y = x3 over F64. Then X has
genus 7 and 177 F64-rational points. Hence, a two-point code on X has length n :=
175 while a one-point code on X has length n′ := 176. Let δ ∈ {17, 19, 20, 22, 23}.
Then Theorem 4.1 applies with α = (1, 2g−2) = (1, 12) and β = (1, δ− (2g−2)) =
(1, δ−12) to give two-point codes CΩ(D, P∞+(δ−1)P00) with following parameters:
[175, 164,≥ 6], [175, 162,≥ 8], [175, 161,≥ 9], [175, 159,≥ 11], and [175, 158,≥ 12].
For each choice of δ above, δ − (2g − 2) + 1 = δ − 11 ∈ H(P∞). Using Table 1,
we see that one-point codes comparable (meaning of the same dimension) to those
listed above have the following parameters: [176, 164, 6], [176, 162, 8], [176, 161, 9],
[176, 159, 11], and [176, 158, 12]. Thus, in each of these cases, the two-point code
has larger information rate (being shorter) than the comparable one-point code and
at least the same error-correcting capability. We can also see that when δ = 20,
Theorem 4.2 applies with the choice of α and β given above. This shows that the
code CΩ(D, P∞ + 16P00) is actually a [175, 161,≥ 10] code. Sometimes, a different
choice of α and β are necessary to apply Theorem 4.2.
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Next, we consider the three-point code CΩ(D′′, P∞ + P00 + 14P01 on the same
curve. Note that P∞+P00 +14P01 = (1+1−1)P∞+(1+1−1)P00 +(9+6−1)P01.
According to Theorem 3.7 (and Example 3.8 in particular), we make take α =
(1, 1, 9) and β = (1, 1, 6) in Theorem 4.1. Then we conclude that CΩ(D′′, P∞ +
P00 + 14P01 is a [174, 163,≥ 5] code. According to Table 1, the one-point code
with dimension 163 is a [176, 163, 6] code. Thus far, it is not clear how the one-
and two-point codes compare. However, Theorem 4.2 also applies here so that the
two-point code is actually a [174, 163,≥ 6] code. This illustrates how more powerful
results are needed when comparing r-point codes with one-point codes for larger
values of r.

After considering two- and three-point codes in the previous corollary and ex-
ample, it is natural to continue this line of reasoning for r-point codes where r > 3.
In order to see that the minimum distances of such r-point codes rival that of
one-point codes on the same curve, one needs results showing that given certain
conditions the minimum distance of an r-point code is at least r−1 greater than its
designed distance. For r > 3, the method of proof in Theorems 4.1 and 4.2 breaks
down as r increases since it becomes necessary to consider all possible divisors of
degree r− 1 (in particular, the degree of the divisor A in the proof of Theorem 4.2
is r− 1 which allows the possibility that A is a F(q2)r−1-rational point ). In [9], the
authors introduce another way to obtain such a result under much more restrictive
conditions. This was generalized in [3]. For reference purposes, we record this be-
low. An element α of the Weierstrass gap set G(P1, . . . , Pr) is called a pure gap of
the r-tuple (P1, . . . , Pr) if n ∈ G(P1, . . . , Pr) for all n ≤ α with ni = αi for some i,
1 ≤ i ≤ r.

Proposition 4.5. [9, Theorem 3.4] [3] Let G =
∑r

i=1(αi + βi − 1)Pi be a divisor
on X supported by r distinct F-rational points. Assume that α and β are pure gaps
of the r-tuple (P1, . . . , Pr). Set D := Q1 + · · ·+ Qn, where Q1, . . . , Qn are distinct
F-rational points and no Qi is in the support of G. If the r-point code CΩ(D, G) is
nontrivial, then the minimum distance of this code is at least deg G− (2g − 2) + r.

Example 4.6. Let X denote the curve defined by y8 + y = x3 over F64. Set
P1 = P∞, P2 = P00, P3 = P01 and P4 = P0ω9 where ω is a primitive element of
F64 satisfying ω6 + ω4 + ω3 + ω + 1 = 0. According to Theorem 3.7, (1, 1, 1, 7) ∈
Γ4(P1, P2, P3, P4) which implies that (1, 1, 1, 7) is minimal in each of the sets {n ∈
H(P1, P2, P3, P4) : ni = 1}, 1 ≤ i ≤ 3, and {n ∈ H(P1, P2, P3, P4) : n4 = 7}. We
also know that (0, 0, 0, 5) ∈ G(P1, P2, P3, P4) since 5 ∈ H(P4) by Proposition 3.3.
It follows that (1, 1, 1, 5) is a pure gap of (P1, P2, P3, P4). Take α = β = (1, 1, 1, 5)
in Proposition 4.5 to obtain that the 4-point code CΩ(D, P1 + P2 + P3 + 9P4) has
minimum distance d ≥ 12 − 12 + 4 = 4. Hence, CΩ(D, P1 + P2 + P3 + 9P4) is a
[173, 167,≥ 4] code.

Clearly, the hypotheses in Proposition 4.5 are much more restrictive than those
in Theorems 4.1 and 4.2. In [12], we provide a result more general than Proposition
4.5. Even so, the results stated in this section apply to a larger class of codes that
those bounds found in [12].

In the next example, we compare codes constructed using the quotient of the
Hermitian curve yq + y = xm where m is a proper divisor of q + 1 with one-point
Hermitian codes over Fq2 . The parameters of all one-point Hermitian codes were
determined in a series of works ([17], [4], [19]). For these parameters, see Table 1.
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Table 2. CΩ(D,G) versus one-point Hermitian CL(D′, G′) over F64

deg G k
n

k′
n′

d
n

d′
n′

18 0.9314 0.9297 0.0400 0.0716
19 0.9257 0.9238 0.0457 0.0312
20 0.9200 0.9199 0.0517 0.0312
21 0.9143 0.9141 0.0517 0.0332
22 0.9086 0.9082 0.0629 0.0469
23 0.9029 0.9023 0.0686 0.0469
24 0.8971 0.8965 0.0743 0.0508

Example 4.7. Let X denote the curve defined by y8 + y = x3 over F64 and let X ′

denote the Hermitian curve over F64, which may be defined by y8 + y = x9. Notice
that X has genus 7 and 177 F64-rational points while X ′ has genus 28 and 513
F64-rational points. One way to compare codes on these two curves is to compare
codes with comparable information rates.

Suppose CΩ(D,G) is a two-point code on X and 12 = 2g− 2 < deg G < 177− 2.
Then CΩ(D, G) has length n = 175, dimension k = 181 − deg G, and minimum
distance d ≥ deg G − 12. We compare this code with the [n′, k′, d′] one-point
code CL(D′, AQ∞) on X ′ where A is chosen so that the codes CΩ(D,G) and
CL(D′, AQ∞) have comparable information rates; that is, A is chosen so that
k′
n′ ≈ k

n . To illustrate this, let G = 4P∞ + 14P00 be a divisor of X. Then Theorem
4.1 applies with α = (1, 12) and β = (4, 3) to give that CΩ(D, G) is a [175, 163,≥ 7]
code. Next, we find the one-point Hermitian code over F64 with information rate
approximately that of CΩ(D, G). This is done by choosing the dimension k′ of
CL(D′, AQ∞) such that k′ := b 512

175 ∗ 163c = 476. This completely determines the
code CL(D′, AQ∞). In fact, A = 503Q∞ and CL(D′, AQ∞) is a [512, 476, 9] code.
It is easy to see that the relative distance of the two-point code is d

n ≥ 0.0400
while the one-point code has relative distance d′

n′ = 0.0176. Table 4.7 give several
other similar examples. Note that the divisor G is chosen so that Theorem 4.1 (or
Theorem 4.2) applies.

Appendix A

The content of this appendix is the proof of Theorem 3.7.

Proof of Theorem 3.7. We begin by setting up some notation. Recall that the no-
tation

γt,j = ((t1 − j)m + j, (t2 − j)m + j, . . . , (tr − j)m + j)

introduced in Definition 3.6 will only be used to describe vectors where 1 ≤ j ≤ l−1
and j ≤ ti ≤ q − 1− j(c− 1) for all 1 ≤ i ≤ r. For 2 ≤ r ≤ q + 1, set

Sr :=

{
γt,j ∈ Nr :

r∑

i=1

ti = (m− j)c + r(j − 1)

}
.

For 2 ≤ r ≤ q + 1, we will prove that Γ̃r = Sr by induction on r. According to
Proposition 3.4,

Γ̃2 =
{

γ(t1,t2),j ∈ N2 : t1 + t2 = (m− j)c + 2(j − 1)
}

= S2,
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which settles the case where r = 2. We now proceed by induction on r ≥ 3. Assume
that Γ̃i = Si holds for all 2 ≤ i ≤ r − 1.

First, we claim that Sr ⊆ Γ̃r. Let γt,j ∈ Sr. Then
(

xm−j

∏r
i=2(y − bi)ti−j+1

)

∞
=

m∑

i=1

((ti − j)m + j)Pi.

Hence, γt,j ∈ Hr.
In order to show that γt,j ∈ Γ̃r, it suffices to prove that γt,j is minimal in

{p ∈ Hr : p1 = (t1 − j)m + j}. Suppose γt,j is not minimal in

{p ∈ Hr : p1 = (t1 − j)m + j}.
Then there exists u ∈ Hr with u1 = (t1 − j)m + j, u ¹ γt,j , and u 6= γt,j . Let
f ∈ Fq2(X) be such that (f)∞ = u1P1 + · · ·+ urPr. Without loss of generality, we
may assume that ur < (tr − j)m + j as u 6= γt,j gives ui < (ti − j)m + j for some
2 ≤ i ≤ r and a similar argument holds if 2 ≤ i ≤ r − 1. Hence,

ur = (tr − j)m + j − k

for some k ≥ 1. There are two cases to consider:

(1) j > k
(2) j ≤ k.

Case (1): Suppose j > k. Then
(
f(y − br)

tr−jxj−k
)
∞

= ((t1+tr+(c−2)(j−k)−k−k)m+k)P1+

r−1∑
i=2

max{ui−(j−k), 0}Pi.

Therefore,

v := ((t1 + tr + (c− 2)(j − k)− k − k)m + k, v2, . . . , vr−1) ∈ Hr−1,

where vi = max{ui − (j − k), 0} for 2 ≤ i ≤ r − 1. Set

w := γ(t1+tr+(c−2)(j−k)−k,t2−j+1+k,t3−j+k,...,tr−1−j+k),k.

Clearly,
v ¹ w.

Note that
w ∈ Sr−1

since t1+tr+(c−2)(j−k)−k+t2−j+1+k+
∑r−1

i=3 (ti−j+k) = (m−k)c+(r−1)(k−1).
By the induction hypothesis, Sr−1 = Γ̃r−1, and so

w ∈ Γ̃r−1.

By Lemma 3.1, w is minimal in the set {p ∈ Hr−1 : p1 = (t1 + tr + (c− 2)(j− k)−
k − k)m + k}. This leads to a contradiction as

v ∈ {p ∈ Hr−1 : p1 = (t1 + tr + (c− 2)(j − k)− k − k)m + k},
v ¹ w, and
v 6= w.

Case (2): Suppose j ≤ k. Then

(
f(y − br)tr−j

)
∞ = ((t1 + tr − j − j)m + j)P1 +

r−1∑

i=2

uiPi
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which implies that

v := ((t1 + tr − j − j)m + j, u2, . . . , ur−1) ∈ Hr−1.

Note that there exists i, 2 ≤ i ≤ r−1, such that ti < q−1−j(c−1) since otherwise
2j ≤ t1+tr = −(r−3)(q+1−jc)+r−4+2j implies that 0 ≤ −(r−3)(c(m−j)−1)−1
contradicting the assumption that r ≥ 3. We may assume that i = 2 as a similar
argument holds in the case 2 < i ≤ r − 1. Then set

w := γ(t1+tr−j,t2+1,t3...,tr−1),j .

Clearly,
v ¹ w.

Also note that
w ∈ Sr−1

since t1 + tr − j + t2 + 1 +
∑r−1

i=3 ti = (m− j)c + (r − 1)(j − 1). By the induction
hypothesis, Sr−1 = Γ̃r−1, and so

w ∈ Γ̃r−1.

According to Lemma 3.1, w is minimal in {p ∈ Hr−1 : p1 = (t1 + tr− j− j)m+ j}.
This leads to a contradiction as

v ∈ {p ∈ Hr−1 : p1 = (t1 + tr − j − j)m + j},
v ¹ w, and
v 6= w.

Since both cases (1) and (2) yield a contradiction, it must be the case that γt,j

is minimal in {p ∈ Hr : p1 = (t1 − j)m + j}. Therefore, by the definition of Γ̃r, we
have that γt,j ∈ Γ̃r. This completes the proof of the claim that

Sr ⊆ Γ̃r.

Next, we will show that Γ̃r ⊆ Sr. Suppose not; that is, suppose that there exists
n ∈ Γ̃r \ Sr. Then there exists f ∈ Fq2(X) such that (f)∞ = n1P1 + · · · + nrPr.
By Lemma 3.5,

n ∈ Γ̃r ⊆ G(P1)×G(P2)× · · · ×G(Pr).
Thus,

n = ((t1 − j1)m + j1, (t2 − j2)m + j2, . . . , (tr − jr)m + jr)
where 1 ≤ ji ≤ l − 1 and ji ≤ ti ≤ q − 1− ji(c− 1) for all 1 ≤ i ≤ r. Without loss
of generality, we may assume that jr = max{ji : 2 ≤ i ≤ r} as a similar argument
holds if ji = max{ji : 2 ≤ i ≤ m} for some 2 ≤ i ≤ r − 1. Then

(f(y − br)tr−jr+1)∞ = (n1 + (tr − jr + 1)m)P1 +
r−1∑

i=2

niPi,

which implies that (n1 + (tr − jr + 1)m,n2, . . . , nr−1) ∈ Hr−1. Then there exists
u ∈ Γr−1 such that

u ¹ (n1 + (tr − jr + 1)m,n2, . . . , nr−1)

and u2 = n2 = (t2 − j2)m + j2. If u1 ≤ n1, then (u1, . . . , ur−1, 0) ¹ n which
contradicts the minimality of n in {p ∈ Hr : p2 = n2}. Thus, u1 > n1 > 0. By the
induction hypothesis,

ũ = γ(Ti1 ,...,Tik
),j′ ∈ Sk = Γ̃k
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for some k, 2 ≤ k ≤ r − 1, (Ti1 , . . . , Tik
) ∈ Nk and j′ ∈ N satisfying 1 ≤ j′ ≤ l − 1,

j′ ≤ Tis
≤ q−1−j′(c−1) for 1 ≤ s ≤ k, and

∑k
s=1 Tis

= (m−j′)c+k(j′−1). Hence,
there exists an index set {i1, . . . , ir−1} = {1, . . . , r− 1} such that i1 < i2 < · · · < ik
and

uis =

{
(Tis

− j′)m + j′ if 1 ≤ k ≤ l

0 if k + 1 ≤ s ≤ r − 1.

Since u1 > n1 > 0, i1 = 1. As u2 = n2 6= 0, i2 = 2. Since

(T2 − j′)m + j′ = ui2 = u2 = (t2 − j2)m + j2,

we have that m | (j′ − j2). This forces j′ = j2 (and consequently T2 = t2) as
1 ≤ j′, j2 ≤ l − 1 ≤ m− 1. As a result,

ũ = γ(T1,T2,Ti3 ,...,Tik
),j2 ,

uis
=

{
(Tis

− j2)m + j2 if 1 ≤ s ≤ k

0 if k + 1 ≤ s ≤ r − 1,

T1 + T2 + Ti3 + · · ·+ Tik
= (m− j2)c + k(j2 − 1), and j2 ≤ Tis ≤ q − 1− j2(c− 1)

for all 1 ≤ s ≤ k. At this point, we separate the proof into two cases:

(1) u1 − (tr − jr + 1)m ≥ 0
(2) u1 − (tr − jr + 1)m < 0.

Case (1): Suppose u1 − (tr − jr + 1)m ≥ 0. Since m - j2, it follows that
u1 − (tm − jm + 1)m > 0. Set

v := (u1 − (tr − jr + 1)m,u2, u3, . . . , ur−1, (tr − jr + j2 − j2)m + j2).

Notice that v ¹ n since u1 ≤ n1 + (tr − jr + 1)m, ui ≤ ni for 2 ≤ i ≤ r − 1, and
j2 ≤ jr = max{ji : 2 ≤ i ≤ r}. We claim that ṽ ∈ Sk+1. To see this, it is helpful
to express ṽ as

ṽ = γ(T1−tr+jr−1,T2,Ti3 ,...,Tik
,tr−jr+j2),j2 .

Since T1− tr + jr − 1 + T2 + (
∑k

s=3 Tis) + tr − jr + j2 = (m− j2)c + (k + 1)(j2− 1),
this establishes the claim that ṽ ∈ Sk+1. Since Sk+1 ⊆ Γ̃k+1, it follows that
v ∈ Γr ⊆ Hr. Now, v ¹ n and n ∈ Γ̃r force n = v as otherwise n is not minimal in
{p ∈ Hr : p2 = n2}. Hence, k+1 = r and n = v = ṽ ∈ Sr, which is a contradiction.

Case (2): Suppose that u1 − (tr − jr + 1)m < 0. There are two subcases to
consider:

(a) j1 < t1
(b) j1 = t1.

Subcase (a): Suppose j1 < t1. Set

v := ((t1 − j1 + j2 − 1− j2)m + j2, u2, . . . , ur−1, (T1 − t1 + j1 − j2)m + j2).

Notice that v ¹ n and v 6= n since j2 −m < 0 ≤ j1, ui ≤ ni for 2 ≤ i ≤ r − 1,
and (T1 − j2)m + j2 = u1 < (tr − jr + 1)m implies that (T1 − t1 + j1 − j2)m + j2 ≤
(tr − jr)m + jr as j2 ≤ jr. The fact that j1 < t1 gives ṽ ∈ Nk+1. We claim that
ṽ ∈ Sk+1. To see this, express ṽ as

ṽ = γ(t1−j1+j2−1,T2,Ti3 ,...,Tik
,T1−t1+j1),j2 .

(In order to write ṽ in this manner, it must be checked that t1 − j1 + j2 − 1 ≤
q−1− j2(c−1) and j2 ≤ T1− t1 + j1. It suffices to show that j2 ≤ T1− t1 + j1 since
this implies that t1 − j1 + j2 − 1 ≤ T1 − 1 ≤ q − 1− j2(c− 1). If j2 > T1 − t1 + j1,
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then (T1− j2)m ≤ (t1− j1)m+ j1− j2, contradicting the fact that u1 > n1. Hence,
j2 ≤ T1−t1+j1.) It is easy to see that t1−j1+j2−1+T2+Ti3+· · ·+Tik

+T1−t1+j1 =
(m − j2)c + (k + 1)(j2 − 1), and so ṽ ∈ Sk+1 ⊆ Γ̃k+1. It follows that v ∈ Hr and
so v ∈ {p ∈ Hr : p2 = n2}. This yields a contradiction as n is minimal in
{p ∈ Hr : p2 = n2}, concluding the proof in this subcase.

Subcase (b): Suppose that j1 = t1. Set

v := (0, u2, . . . , ur−1, (T1 − j2)m + j2).

Then v ¹ n and v 6= n since 0 < n1, ui ≤ ni for 2 ≤ i ≤ r−1, and u1 < (tr−jr+1)m
implies T1 − j2 ≤ tr − jr which means (T1 − j2)m + j2 ≤ (tr − jr)m + jr as
j2 ≤ jr. It is easy to see that ṽ ∈ Sk as

∑k
s=1 Tis = (m − j2)c + k(j2 − 1) and

j2 ≤ Tis
≤ q − 1− j(c− 1) for all 1 ≤ s ≤ k. As before, it follows that v ∈ Hr and

v ∈ {p ∈ Hr : p2 = n2}. Since v 6= n, this contradicts the minimality of n in the
set {p ∈ Hr : p2 = n2}, concluding the proof in this subcase.

Since both cases (1) and (2) yield a contradiction, it must be the case that no
such n exists. Hence, Γ̃r \ Sr = ∅. This establishes that Γ̃r ⊆ Sr, concluding the
proof that Γ̃r = Sr.

Now suppose that q + 1− c < r ≤ q + 1. If γt,j ∈ Γ̃r, then

rj ≤
r∑

i=1

ti = (m− j)c + r(j − 1) ≤ (q + 1− c)j

which is a contradiction. Therefore, Γ̃r = ∅. ¤
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