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Abstract Reed-Solomon and BCH codes were considered as kernels of polar
codes by Mori and Tanaka (IEEE Inform. Theory Workshop, Dublin, Ireland,
30 Aug. - 3 Sept. 2010, 1–5) and Korada, Şaşoğlu, and Urbanke (IEEE Trans.
Inform. Theory vol. 56, no. 12, 6253–6264 (2010)) to create polar codes with
large exponents. Mori and Tanaka showed that Reed-Solomon codes over the
finite field Fq with q elements give the best possible exponent among all codes
of length l ≤ q. They also stated that a Hermitian code over F2r with r ≥ 4,
a simple algebraic geometric code, gives a larger exponent than the Reed-
Solomon matrix over the same field. In this paper, we expand on these ideas
by employing more general algebraic geometric codes to produce kernels of
polar codes. Lower bounds on the exponents are given for kernels from general
algebraic geometric codes, Hermitian codes, and Suzuki codes. We demonstrate
that both Hermitian and Suzuki kernels have larger exponents than Reed-
Solomon codes over the same field, for q ≥ 3; however, the larger exponents
are at the expense of larger kernel matrices. Comparing kernels of the same
size, though over different fields, we see that Reed-Solomon kernels have larger
exponents than both Hermitian and Suzuki kernels. These results indicate a
tradeoff between the exponent, kernel matrix size, and field size.
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1 Introduction

Polar codes were developed by Arikan [1] as an explicit construction of sym-
metric capacity achieving codes for binary discrete memoryless channels with
low encoding and decoding complexity. Arikan employs the nth Kronecker
power of the matrix

G2 :=

[
1 0
1 1

]
for encoding a block of 2n channels; G2 is called the kernel matrix. As the
number of channels grows, each channel becomes either a noiseless channel or
a pure-noise channel. Korada, Şaşoğlu, and Urbanke considered larger binary
matrices as kernels and characterized the speed of polarization by introduc-
ing a quantity called the exponent [4]. Şaşoğlu also explored the polarization
phenomenon for nonbinary alphabets [10], and polar codes were generalized to
arbitrary discrete memoryless channels by Şaşoğlu, Telatar, and Arikan [11].
Mori and Tanaka generalized the arguments of Korada et. al. to general finite
fields [6] and showed that kernels constructed from Reed-Solomon codes give
the largest exponent when the code length is at most the size of the field [7].
They also stated that a Hermitian code over a field of even characteristic of
sufficient size gives a larger exponent than the Reed-Solomon matrix over the
same field. Their work, along with the BCH code employed by Korada et. al.
[4], suggests algebraic geometric codes are good candidates for constructing
kernel matrices.

In this paper, we expand on these ideas by employing more general alge-
braic geometric codes to produce kernels of polar codes. We consider a q-ary
discrete memoryless channel W : X → Y with input alphabet the finite field
with q elements, where q is a prime power. A summary of notation is provided
at the end of this section. Section 2 provides background on polar coding in
this setting where a q-ary matrix serves as the kernel. Prerequisite material
on algebraic geometric (AG) codes is found in Section 3. In Section 4, we con-
struct kernels from AG codes, and consider examples from the Hermitian and
Suzuki function fields. Lower bounds on the exponents are given for kernels
from general algebraic geometric codes, Hermitian codes, and Suzuki codes. In
addition, we demonstrate that the kernel obtained by shortening a one-point
AG code yields a kernel associated with a multipoint AG code. Finally, in
Section 5, we consider the best achievable probability of block error for polar
coding over W using an arbitrary kernel G under successive cancellation (SC)
decoding.

Notation: Given a prime power q, Fq denotes the finite field with q el-
ements, and Fnq denotes the set of 1 × n vectors with entries in Fq where n

is a positive integer. Given u ∈ Fnq , ui denotes the ith coordinate of u. For

1 ≤ i ≤ j ≤ n, it is often convenient to write uji := (ui, . . . , uj) ∈ Fj−i+1
q .
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Given an m× n matrix A with entries in a field F, Aij denotes the entry of A
in the ith row and jth column, and RowiA denotes the ith row of A; here, i is
referred to as the row index. The jth column of A is denoted by ColjA. We
use the notation ⊗ to denote the Kronecker product; that is, the Kronecker
product of two matrices A and B with entries in a field F is written A ⊗ B,
and A⊗n := A⊗ · · · ⊗A︸ ︷︷ ︸

n

.

2 Background

In this section, we review polar coding over a q-ary discrete memoryless channel
(DMC). Throughout this section, let q be a prime power, X := Fq, and W :
X → Y be a q-ary DMC with transition probabilities W (y|x) for all x ∈ X
and y ∈ Y. Two important quantities associated with the channel W are the
capacity and the Bhattacharyya parameter; the standard definitions are as
follows. The Bhattacharyya distance between x, x′ ∈ X is

Zx,x′ =
∑
y∈Y

√
W (y|x)W (y|x′).

The rate and reliability are given by the capacity

I(W ) =
∑
y∈Y

∑
x∈X

1

q
W (y|x) logq

(
W (y|x)

1
q

∑
x′∈X W (y|x′)

)
(1)

and the Bhattacharyya parameter

Z(W ) =
1

q(q − 1)

∑
x,x′∈X ,x 6=x′

Zx,x′(W )

of W .
Let G be a l × l matrix over Fq. A block of N = ln channels is produced

from W by combining and splitting channels as we describe now. To begin, N
independent copies of W are combined to form the channel WN : XN → YN
with transition probabilities

WN (yN1 |uN1 ) = WN (yN1 |uN1 (BNG
⊗n)) =

N∏
i=1

W (yi|(uN1 BNG⊗n)i)

where BN is an N ×N permutation matrix that sends uN1 to

(u1, ul+1, . . . , uN−(l−1), u2, ul+2, . . . , uN−(l−2), . . . , ul, u2l, . . . , uN ).

Next, the channel WN is split into N channels W
(i)
N : X → YN × X i−1,

1 ≤ i ≤ N , which are defined by the transition probabilities

W
(i)
N (yN1 , u

i−1
1 |ui) :=

∑
uNi+1∈XN−i

1

qln−1
WN (yN1 |uN1 ).
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As we discuss below, the properties of the channels W
(i)
N depend on the matrix

G, which is called the kernel, and on q.
Take q = 2 and G = G2 as in Section 1. This yields Arikan’s original

construction. Here, for fixed δ > 0, as N goes to infinity, the fraction of chan-

nels in the set
{
W

(i)
N : 1 ≤ i ≤ N

}
such that I(W

(i)
N ) ∈ (1 − δ, 1] approaches

I(W ) and the fraction of channels in the set
{
W

(i)
N : 1 ≤ i ≤ N

}
such that

I(W
(i)
N ) ∈ [0, δ) approaches 1− I(W ). This phenomenon is known as polariza-

tion and is demonstrated by Arikan [1].
It is important to note that not all matrices polarize a given channel. The

next result describes some circumstances in which a lower triangular matrix
L over a finite field Fq polarizes a q-ary DMC.

Lemma 1 [6, Corollaries 13 and 14] Let W : X → Y be a q-ary DMC where
X = Fq. Consider a nonsingular lower triangular matrix L whose entries are
elements of Fq. Assume that L is not diagonal.

1. If q is a prime, then L polarizes the channel W .
2. Suppose that q is a prime power. Let k denote the largest row index of L

such that RowkL has at least two nonzero elements. If there exists j ∈
{1, . . . , k − 1} such that Lkj is a primitive element of X , then L polarizes
the channel W .

We set out to translate these properties to an arbitrary matrix G as demon-
strated in the next two results.

Theorem 1 Let q be a prime and X be a finite field of order q. If G is a
nonsingular matrix and no column permutation of G is upper triangular, then
G polarizes any DMC W with input alphabet X .

Proof Because G is nonsingular, there exists an LU factorization G = ULP
where U is an upper triangular matrix, L is a lower triangular matrix, and
P is a permutation matrix. Since no column permutation of G is upper tri-
angular, L is not diagonal. Hence, Lemma 1 applies, and L polarizes W .

The statistical properties of channels W
(i)
N are invariant under the operation

G 7→ U−1GP−1 = L. Consequently, G polarizes W as L does. ut

Theorem 2 Let q be a prime power and X be a finite field of order q. Assume
that G is a nonsingular matrix and no column permutation of G is upper
triangular. Let k denote the largest row index of G such that RowkG has at
least two nonzero elements. If there exists j ∈ {1, . . . , k−1} such that G−1kkGkj
is a primitive element of X , then G polarizes any DMC W with input alphabet
X .

Proof As in the proof of Theorem 1, write G = ULP where U is an upper
triangular matrix, L is a lower triangular matrix, and P is a permutation
matrix. Observe that L is not a diagonal matrix as no column permutation of
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G is upper triangular. Let k denote the largest row index such that RowkG
has at least two nonzero elements.

First, consider the case where k corresponds to the last row of L. Notice
that the entries on last row of G are nonzero scalar multiples of those in the
last row of L; hence, we only need to multiply the last row of G by G−1kk to
obtain the condition Lkk = 1. If there exists a primitive element of X to the
left of the diagonal in the last row of G−1kk G, then L polarizes W according to
Lemma 1. Thus, G polarizes W as L does.

Next, consider the case where k does not correspond to last row of L. By
the definition of k and the fact that L is nonsingular, the rows of L with index
greater than k must only have nonzero entries along the diagonal. Thus, the
rows of G with index greater than k must also only have nonzero entries along
the diagonal. We can also note that RowkG must have a nonzero entry to
the left of the diagonal, since it has more than one nonzero entry in L. In
applying Gaussian elimination to RowkG using the rows below k, the only
entries affected are entries to the right of the diagonal since rows of G below
RowkG only have nonzero entries along the diagonal. Then multiply G by G−1kk
to satisfy the condition Lkk = 1. Hence, if there is a primitive element of X to
the left of the diagonal in Rowk(G−1kkG), then L satisfies Lemma 1. Therefore,
G polarizes W as L does. ut

A natural question to consider is if Theorem 2 provides a characterization
of those matrices which polarize q-ary DMCs. When q is a prime, this is the
case, as demonstrated in Theorem 3 below. When q is a prime power that is
not prime, whether or not a matrix polarizes a channel is channel dependent;
Example 1 illustrates this. A necessary and sufficient condition for a matrix
over a finite field of size q, where q is any prime power, to polarize any q-ary
DMC is given in [8].

Theorem 3 Let q be a prime, and X be a finite field of size q. Suppose that
G is a nonsingular matrix with entries in X . If G polarizes any q-ary DMC W
with input alphabet X , then no column permutation of G is upper triangular.

Proof Suppose that a column permutation of G is upper triangular. Write
G = ULP where U is an upper triangular matrix, L is a lower triangular
matrix, and P is a permutation matrix. Then L is a diagonal matrix. Applying
an argument similar to that of [4, Lemma 1], we see that L does not polarize
W . Hence G does not polarize W .

Example 1 Consider the DMC W : F4 → F2 defined by the transition proba-
bilities

W (0|0) = W (0|α) = W (1|1) = W (1|α2) = 1,

where α is a primitive element of F4. According to Equation (1), I(W ) =
log4(2). Using the kernel matrix G2 as in Section 1, we can combine and

split W into two channels W
(1)
2 and W

(2)
2 . Observe that G2 does not fit the

form of Theorem 2. Calculating capacities as in Equation (1) gives I(W
(1)
2 ) =

I(W
(2)
2 ) = log4(2); thus, G2 does not polarize the channel W .
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Next, consider the DMC W ′ : F4 → F2 defined by the transition probabil-
ities

W ′(0|0) = W ′(1|1) = W ′(α|α) = W ′(α2|α2) =
3

4

and

W ′(0|1) = W ′(1|0) = W ′(α|α2) = W ′(α2|α) =
1

4
,

where α is a primitive element of F4. Note, I(W ′) = 3
4 log4(3) + 1

4 log4(1).

Again, using the kernel matrix G2, we can construct W
′(1)
2 and W

′(2)
2 such

that

I(W
′(1)
2 ) =

20

32
log4

(
5

2

)
+

12

32
log4

(
3

2

)
and

I(W
′(2)
2 ) =

9

16
log4

(
18

5

)
+

6

16
log4(2) +

1

16
log4

(
2

5

)
.

Hence, G2 polarizes the channel W ′.
Therefore, we have constructed two DMCs W and W ′ with input alphabet

X = F4 such that the kernel matrix G2 polarizes one channel but not the
other. It is important to also note that when q is not prime a multi-level code
construction may be used as defined in [11].

The rate of polarization of a kernel is known as the exponent and its defini-
tion is below. In preparation, we define a random variable W ′n that is uniformly

distributed over
{
W

(i)
N

}
, 1 ≤ i ≤ N . Consider a sequence of independent and

identically distributed (i.i.d.) random variables {Bn|n ≥ 1}, where Bn is uni-
formly distributed over the set {1, . . . , l}. Let Zn := Z(W ′n) where the channels
W ′i , i ≥ 0, are defined recursively by

W ′0 = W,W ′1 = W
(B1)
l , and W ′n+1 = (W ′n)

(Bn+1)
l .

Definition 1 [6] Let W be a q-ary DMC with 0 < I(W ) < 1, and consider
an l× l matrix G with entries in Fq. The exponent of G (or of the polar code
with kernel G) is the value E(G) such that

– for any fixed β < E(G),

lim inf
n→∞

Pr[Zn ≤ 2−l
nβ

] = I(W ), and

– for any fixed β > E(G),

lim inf
n→∞

Pr[Zn ≥ 2−l
nβ

] = 1.

The exponent E(G) is also called the rate of polarization of G.
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It follows that for any fixed rate 0 < R < I(W ) and 0 < β < E(G), there
exist a sequence {AN} of sets AN ⊆ {1, . . . , N} such that |AN | ≥ NR and∑

i∈AN

Z(W
(i)
N ) = o(2−l

nβ

).

Information is then sent across the channels indexed by elements of AN .
The exponent of a matrix can be found using partial distances, a method

introduced Korada, Şaşoğlu, and Urbanke for the binary case [4] and explored
for larger alphabets by Mori and Tanaka [6].

Definition 2 For i = 1, . . . , l, the ith partial distance of an l × l matrix
G = [gT1 , . . . , g

T
l ]T over Fq is

Di := d (gi, 〈gi+1, . . . , gl〉) ,

the minimum Hamming distance between the vector gi and the Fq-vector space
〈gi+1, . . . , gl〉 spanned by gi+1, . . . , gl ∈ Flq.

Lemma 2 [4, 5] If G is an l × l matrix, then the exponent of the polar code
with kernel G is

E(G) =
1

l

l∑
i=1

logl(Di).

Given an l × l matrix G as in Definition 2, let Ci := 〈gl−i+1, . . . , gl〉 for
0 ≤ i ≤ l and suppose Ci 6= Ci+1 for all i. Then

C1 ⊆ C2 ⊆ · · · ⊆ Cl.

Notice that Di = d (gi, Cl−i). Because Di = min {d(gi, c) : c ∈ Cl−i},

Di ≥ d (Cl−i+1) .

It follows that

E(G) ≥ 1

l

l∑
i=1

logl (d (Cl−i+1)) ,

providing a lower bound on the exponent based on the minimum distances
of the codes Ci. As the next result demonstrates, it can happen that Di >
d (Cl−i+1); an instance of this is given in Example 2.

Proposition 1 Consider an l × l matrix G = [gT1 , . . . , g
T
l ]T over Fq, and let

Ci := 〈gl−i+1, . . . , gl〉 for 1 ≤ i ≤ l. Assume Ci 6= Ci+1 for all i, 1 ≤ i ≤ l− 1.
If there exists i such that d(Cl−i) = d(Cl−i+1) and Cl−i and Cl−I+1 have
precisely the same minimum weight words, then

Di > d (Cl−i+1) .
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Proof By definition ,Di ≥ d (Cl−i+1). Let d = d (Cl−i+1), and supposeDi = d.
Then there exists c ∈ Cl−i with d(gi, c) = d. Then

w := gi − c ∈ Cl−i+1.

Because wt(w) = d and the codes Cl−i and Cl−i+1 have the same minimum
weight words,

w ∈ Cl−i.

Then

gi = c+ w ∈ Ci−1,

which is a contradiction as dim 〈gi+1, . . . , gl〉 < dim 〈gi, . . . , gl〉 . Hence,Di > d.
ut

According to Lemma 2, Arikan’s original kernel matrix G2 has exponent
E(G2) = 1

2 . In [4], a matrix obtained from a generator matrix for a shortened
BCH code is found to have exponent greater than 1

2 . This fact, together with
the above lemma, leads one to consider kernels that are generator matrices
of linear codes. The partial distances of the kernel may then be estimated by
bounds on the minimum distances of the nested codes. As we see in the next
section, algebraic geometric codes lend themselves naturally to this construc-
tion.

3 Algebraic geometric codes

Let F be a function field over Fq of genus g. An algebraic geometric (AG) code
C(D,A) is constructed using divisors A and D = P1 + · · · + Pn on F with
disjoint support, where the Pi are distinct places of F of degree 1. In fact,

C(D,A) = {(f(P1), . . . , f(Pn))|f ∈ L(A)} ⊆ Fnq ,

where

L(A) = {f ∈ F | (f) ≥ −A} ∪ {0}

is the Riemann-Roch space of A. If |supp(A)| = 1, then C(D,A) is called a one-
point code; otherwise, C(D,A) is known as a multipoint code. If {f1, . . . , fk}
is a basis for L(A), then

fk(P1) fk(P2) · · · fk(Pn)
fk−1(P1) fk−1(P2) · · · fk−1(Pn)

...
...

...
f1(P1) f1(P2) · · · f1(Pn)


is a generator matrix for C(D,A). The AG code C(D,A) is an [n, k, d] code
where d ≥ n− deg(A),

k = l(A)− l(A−D),
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and l(A) := dim(L(A)). If 2g − 1 ≤ deg(A) < n, then k = deg(A) + 1 − g.
Moreover, C(D,A) satisfies a Singleton-like bound

n+ 1− g ≤ k + d ≤ n+ 1.

An especially useful property of AG codes is their “nested” structure. If A =∑
Qi∈PF aiQi and B =

∑
Qi∈PF biQi are divisors on F , where PF is the set of

all places of F/Fq, then A ≤ B if ai ≤ bi for all i. Given divisors A and B
with supp(A) ∩ supp(D) = ∅ = supp(B) ∩ supp(D),

A ≤ B ⇒ L(A) ⊆ L(B) ⇒ C(D,A) ⊆ C(D,B).

In the next section, we employ AG codes in the construction of polar code
kernels. We see that the nesting above plays a key role in the construction as
well as in the analysis of the exponent.

4 Construction of kernels using AG codes

4.1 Kernel construction and the exponent

Let F/Fq be a function field of genus g and P1, . . . , Pn be places of F of degree
one where n ≥ 2g. Construct a sequence of divisors

A1 ≤ · · · ≤ An

so that the supports of D := P1 + · · ·+Pn and the Aj , 1 ≤ j ≤ n, are disjoint
and

C(D,A1) $ C(D,A2) $ · · · $ C(D,An) = Fnq . (2)

Let G be an n×n generator matrix of C(D,An) such that for each i, 1 ≤ i ≤ n,
the submatrix Rown−i+1G

...
RownG


of G is a generator matrix for C(D,Ai).

A sequence of divisors satisfying (2) can be constructed as follows. Fix a
divisor D = P1 + · · ·+ Pn, where each Pi is a place of F of degree one, and a
place P of F/Fq of degree one not in the support of D. First, let

0 = α1 < · · · < αn−g

be the least n− g elements of the Weierstrass semigroup at P . Then

αi = i+ g − 1

for g + 1 ≤ i ≤ n− g. Next, set

αn = n+ 2g − 1.
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According to the Riemann-Roch Theorem,

l(αnP )− l(αnP −D) = n,

because both αnP and αnP −D have degrees at least 2g − 1. Finally, notice
that for all positive integers α,

l(αP )− l(αP −D) ≤ l((α+ 1)P )− l((α+ 1)P −D) ≤ l(αP )− l(αP −D) + 1.

Moreover,
l((n− 1)P )− l((n− 1)P −D) = n− g,

as the divisor (n − 1)P − D has negative degree. As a result, there exists
n ≤ αn−g+1 < · · · < αn−1 < αn = n+ 2g − 1 such that

l(αiP )− l(αiP −D) 6= l(αi−1P )− l(αi−1P −D).

For 1 ≤ i ≤ n, set Ai := αiP ; note that Ai := (i+ g − 1)P for g+ 1 ≤ i ≤
n− g. Then the one-point codes from the sequence of divisors

α1P ≤ . . . ≤ αgP ≤ 2gP ≤ (2g+1)P ≤ . . . ≤ (n−1)P ≤ αn−g+1P ≤ . . . ≤ αnP

satisfy (2). We will consider the kernel matrix

G =


fn(P1) fn(P2) · · · fn(Pn)
fn−1(P1) fn−1(P2) · · · fn−1(Pn)

...
...

...
f1(P1) f1(P2) · · · f1(Pn)

 ,
where for each i, 1 ≤ i ≤ n, {f1, . . . , fi} is a basis for L(αiP ).

More generally, we may consider such a matrix where {f1, . . . , fi} is a basis
for L(Ai) and the Ai are divisors satisfying (2) for all i.

Theorem 4 The exponent of the polar code with kernel G constructed using
the code C(D,αnP ) with nested codes C(D,αiP ) as above satisfies

E(G) ≥ 1

n

logn((n− g)!) +

n∑
i=n−g+1

logn(di)

 ,
where di denotes the minimum distance of C(D,αiP ).

Proof Notice that C(D,αiP ) is a code over Fq of length n and dimension i;
let di denote its minimum distance. If αi < n, then

n+ 1− i− g ≤ di ≤ n+ 1− i.

This nested structure of codes allows us to bound the partial distances Di of
G by

Di ≥ di ≥ n− αi.
This bound combined with Lemma 2 yields the desired result. ut
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Remark 1 1. Theorem 4 provides a lower bound on the exponent, as the par-
tial distances associated with these matrices are not necessarily nonde-
creasing even though the minimum distances of the associated codes are.
Certainly, the matrix itself could be manipulated to satisfy this, but do-
ing so would obscure the structure given by the AG code and associated
Riemann-Roch space. This structure may prove useful in further studies,
such as into shortened AG code kernels.

2. One may use multi-level code construction with the AG code kernels con-
structed above; however, a manipulation of the kernel will ensure that these
kernels polarize according to Theorem 2. In the construction, we may as-
sume

RownG = (1, . . . , 1)

by taking f1 = 1. Since C(D,A1) 6= C(D,A2), there exists j < n such that
Gn−1,j 6= Gn−1,n. Now, replace f1 with

f ′1 := (α− 1) (Gn−1,j −Gn−1,n)
−1

(f2 −Gn−1,n) + 1,

where α is a primitive element of Fq, to create a new matrix G′; that is,
G′ is an n× n matrix with

RowiG
′ :=

{
RowiG if 1 ≤ i ≤ n− 1

(f ′1(P1), . . . , f ′1(Pn)) if i = n.

One may check that G′nj = α and G′nn = 1; hence, the new kernel G′

polarizes by Theorem 2. The exponent of G′ may be bounded as well.
Indeed, note that the proof of Theorem 4 applies except for the term dn.
Even so, Dn ≥ 2 since G′nj = α and G′nn = 1.

An immediate corollary of Theorem 4 is the exponent of a kernel based
on a Reed-Solomon code; this is computed by Mori and Tanaka [6]. Here, we
take F to be the rational function field over Fq. Applying the construction
above yields a matrix GRS ∈ Fq×qq whose submatrices correspond to generator
matrices of Reed-Solomon codes over Fq.

Corollary 1 The exponent of a Reed-Solomon kernel GRS over Fq is

E(GRS) =
logq(q!)

q
.

Proof This follows directly from Theorem 4 using the fact that F has genus
g = 0. ut

Another consequence of Theorem 4 is the asymptotic behavior of exponents
of kernels constructed from codes over maximal function fields. Recall that a
function field over Fq of genus g is said to be maximal provided its number
of places of degree one meets the Hasse-Weil bound; that is, the number of
places of F of degree one is q + 1 + 2g

√
q.
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Theorem 5 Let F/Fq be a maximal function field of genus g, and let G be a
generator matrix of an AG code on F of length n = q + 2g

√
q constructed as

in (2). Then
lim
q→∞

E(G) = 1.

Proof Because F/Fq is a maximal function field,

g ≤ q − q1/2

2
,

and

n = q + 2gq1/2 ≤ q + 2

(
q − q1/2

2

)
q1/2 ≤ q3/2.

In addition,

n− g = q + 2gq1/2 − g
= q −m− g(1− 2q1/2)

≥ q − q −
(
q − q1/2

2

)
(1− 2q1/2)

= q3/2 − 3q

2
+
q1/2

2
.

Then

E(G) ≥ 1

n ln(n)

ln((n− g)!) +

n∑
i=n−g+1

ln(d1)


≥ ln((n− g)!)

n ln(n)

≥ 1

q3/2 ln(q3/2)
ln

((
q3/2 − 3q

2
+
q1/2

2

)
!

)

=
1

q3/2 ln(q3/2)

q3/2− 3q
2 + q1/2

2∑
i=2

ln(i)

≥ 1

q3/2 ln(q3/2)

∫ q3/2− 3q
2 + q1/2

2

1

ln(x)dx

=
q3/2 − 3q

2 + q1/2

2

q3/2 ln(q3/2)
ln

(
q3/2 − 3q

2
+
q1/2

2

)
−
q3/2 − 3q

2 + q1/2

2 − 1

q3/2 ln(q3/2)

=

(
1− 3

2q1/2
+

1

2q

) ln
(
q3/2 − 3q

2 + q1/2

2

)
ln(q3/2)

− 1

ln(q3/2)
+

3

2q1/2 ln(q3/2)

− 1

2q ln(q3/2)
+

1

q3/2 ln(q3/2)
.
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Therefore,

lim
q→∞

E(G) = 1.

ut

In the next subsection, we more closely examine kernels from codes over a
particular maximal function field, the Hermitian function field.

4.2 Kernels from Hermitian codes

Let F = Fq2(x, y) be the function field of the curve

yq + y = xq+1

where q is a power of a prime; F is known as the Hermitian function field. The

Hermitian function field over Fq2 has genus q(q−1)
2 and q3 + 1 places of degree

one; hence, it is a maximal function field. A Hermitian one-point code is of the
form C(D, aP∞), where D =

∑
α,β∈Fq2 ,βq+β=αq+1 Pα,β and Pα,β is a common

zero of x − α and y − β. Mori and Tanaka considered generator matrices for
Hermitian codes over fields of even characteristic, that is, over F2m , as kernels
of polar codes in [7]. Applying Theorem 4 and the exact distances of one-point
Hermitian codes [15] provides a lower bound on the exponent of the resulting

kernel for any characteristic. Let GH ∈ Fq
3×q3
q2 denote a matrix constructed

from the Hermitian code C(D,αnP∞) as in (2).

Corollary 2 The exponent of a Hermitian kernel GH over Fq2 is bounded
below by

E(G) ≥ 1

q3
logq3

(q3 − q2 + q)!

q−1∏
j=1

(q3 − (j − 1)q)j(q − 1)j(q2 − jq)j∏j
i=1(q2 − jq − i)

 ,

where ai := a!
(a−i)! .

Proof For the Hermitian function field over Fq2 , the set of minimum distances
of the one-point codes C(D,αiP ) constructed as in Section 4.1 is

{q3 − aq − b : 0 ≤ b ≤ a ≤ q − 2} ∪ {q3 − g − i+ 1 : g + 1 ≤ i ≤ q3 − q2 − g}
∪{q2 − jq − (j + 1), . . . , q2 − (j + 1)q + 1 : 0 ≤ j ≤ q − 1}
∪{[q2 − jq]j+1 : 0 ≤ j ≤ q − 1} ∪ {[a]a : 1 ≤ a ≤ q − 1},

where g = q(q−1)
2 and [a]t denotes the multiset {a, . . . , a} of cardinality t [15].

Hence, E(G) is bounded below by

1

q3
logq3

(q3 − q2 + q)!(q − 1)!q−1
q−2∏
j=0

f(j, q)


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where

f(j, q) :=
(q3 − jq)(q3 − jq − 1) . . . (q3 − jq − j)(q2 − (j + 1)q)j+1

j!(q2 − (j + 1)q − 1) . . . (q2 − (j + 1)q − (j + 1))
.

Thus,

E(G) ≥ 1

q3
logq3

(q3 − q2 + q)!

q−1∏
j=1

(q3 − (j − 1)q)j(q − 1)j(q2 − jq)j∏j
i=1(q2 − jq − i)

 .

ut

As the next example demonstrates, the bound in Corollary 2 only provides
a lower bound on the exponent, not its exact value, for q ≥ 4.

Example 2 Let q ≥ 4, and consider a kernel GH constructed as above. Doing
so, one may take αn−5 = q3 + q2 − 3q− 3 and αn−4 = q3 + q2 − 3q− 2, where
n = q3. Then

C
(
D,
(
q3 + q2 − 3q − 3

)
P∞
)
$ C

(
D,
(
q3 + q2 − 3q − 2

)
P∞
)

;

indeed,

dimC
(
D,
(
q3 + q2 − 3q − 3

)
P∞
)

= q3 − 5

whereas

dimC
(
D,
(
q3 + q2 − 3q − 2

)
P∞
)

= q3 − 4;

see [12] for details. Both codes have minimum distance d = 3 [15]. According
to [5], the two codes have the same minimum weight words. Taking αn−5 =
q3 +q2−3q−3 and αn−4 = q3 +q2−3q−2 and constructing the kernel matrix
GH as above, we see that

D5 > d (C (D,αn−4P∞)) .

Table 1 displays comparisons between the exponents of Reed-Solomon ker-
nels and lower bounds on the exponents of Hermitian kernels. Note that the
size of the kernel based on Reed-Solomon codes over Fq2 is q2 × q2, while the
size of the kernel produced from Hermitian one-point codes over Fq2 is q3×q3.
The table suggests that the exponent of the kernel based on the Hermitian code
is greater than that based on the Reed-Solomon code, provided q 6= 2. Indeed,
the proof follows immediately from Theorem 4, Corollary 1, and Corollary 2.

Proposition 2 Let GH be a Hermitian kernel over Fq2 , and let GRS be a
Reed-Solomon kernel also over Fq2 . Then

E(GRS) ≤ E(GH)

for q ≥ 3.
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m 2 4 6 8

q = 2
Reed-Solomon 0.57312 0.69141 0.77082 0.82226

Hermitian 0.56216 0.70734 0.80276 0.85930

q = 3
Reed-Solomon 0.64737 0.78120 0.84917 0.88631

Hermitian 0.65248 0.81459 0.88634 0.91988

q = 5
Reed-Solomon 0.72079 0.84569 0.89648 0.92233

Hermitian 0.74345 0.88296 0.92819 0.94767

Table 1 Lower bounds on exponents of Reed-Solomon and Hermitian kernels over Fqm

Remark 2 It should be observed that the kernel matrices in Proposition 2 are
over the same field, Fq2 , but are not of the same size. Indeed, GH is a q3 × q3
matrix while GRS is of size q2 × q2.

For the purposes of polar coding, it might be just as relevant, if not more
so, to compare exponents of matrices of the same size, though over different
fields. In this situation, we conclude that the exponent of the Reed-Solomon
kernel over Fq3 exceeds the lower bound on the exponent of the Hermitian
kernel over Fq2 given in Corollary 2.

4.3 Kernels from Suzuki codes

In this subsection, we see that the asymptotic behavior of the exponent in
Theorem 5 is not restricted to maximal function fields. To do so, we investigate
codes from the Suzuki function field, a function field which is not maximal yet
is optimal (according to the explicit formulas of Weil).

Let F = Fq(x, y) be the function field of the Suzuki curve with defining
equation

y2
2r+1

− y = x2
r

(x2
2r+1

− x)

where q = 22r+1 and r is a positive integer. Then the genus of F is g =√
q
2 (q − 1), and F has exactly q2 + 1 places of degree one. The Suzuki one-

point code is of the form C(D, aP∞), where D =
∑
α,β∈F22r+1

Pα,β and Pα,β is

a common zero of x−α and y−β. Theorem 4 then yields the following result.

Corollary 3 Let GSuz be a Suzuki kernel over Fq where q = 22r+1. Then

E(GSuz) ≥
1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
.

The exact minimum distances of Suzuki one-point codes over F8 are known
according to the work of Chen and Duursma [2]. We further explore this func-
tion field in the example below.

Example 3 Let F = F8(x, y) be the function field of the Suzuki curve with
defining equation y8 − y = x4(x8 − x), and let α be a primitive element of F8.
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q = 8 q = 32

Kernel Exponent Size of Kernel Exponent Size of Kernel

Reed-Solomon 0.63747 8 × 8 0.73540 32 × 32
Suzuki 0.65555 64 × 64 0.73635 1024 × 1024

Table 2 Lower bounds on exponents of Reed-Solomon and Suzuki kernels over Fq where
q = 22r+1

A one-point code over this function field, called a Suzuki one-point code, is of
length 64. The Suzuki one-point codes

C(D,P∞) $ C(D, 8P∞) $ C(D, 10P∞) $ C(D, 12P∞) $ C(D, 13P∞)
$ C(D, 16P∞) $ C(D, 18P∞) $ C(D, 20P∞) $ C(D, 21P∞)
$ C(D, 22P∞) $ C(D, 23P∞) $ C(D, 24P∞) $ C(D, 25P∞)
$ C(D, 26P∞) $ C(D, 28P∞) $ C(D, 29P∞) $ · · · $ C(D, 63P∞)
$ C(D, 65P∞) $ C(D, 66P∞) $ C(D, 67P∞) $ C(D, 68P∞)
$ C(D, 69P∞) $ C(D, 70P∞) $ C(D, 71P∞) $ C(D, 73P∞)
$ C(D, 75P∞) $ C(D, 78P∞) $ C(D, 79P∞) $ C(D, 81P∞)
$ C(D, 83P∞) $ C(D, 90P∞) $ C(D, 91P∞) = F64

8

satisfy condition (2). The resulting kernel matrix is



(0, 0) (0, 1) . . . (0, α) . . . (α6, α5) (α6, α6)

0 1 . . . 1 . . . (1 + α6)(1 + α5 + α3)5 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . 0 . . . α6 α6

1 1 . . . 1 . . . 1 1

.

The partial distances of this matrix are bounded by the exact minimum dis-
tances of the Suzuki one-point codes, which are

64, 56, 56, 52, 51, 48, 46, 44, 43, 42, 42, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28,
28, 26, 25, 24, 24, 22, 21, 20, 20, 18, 18, 16, 16, 16, 13, 12, 12, 12, 12, 8, 8, 8, 8, 8, 8,
8, 8, 7, 7, 6, 6, 4, 4, 4, 4, 4, 3, 3, 2, 2, 1

according to [2]. Hence, Theorem 4 implies E(GSuz(8)) ≥ 0.65555.

Table 2 compares the exponents of Reed-Solomon kernels and lower bounds
on the exponents of Suzuki kernels. As with Hermitian kernels, Suzuki kernels
yield larger exponents than Reed-Solomon kernels over the same field; however,
the larger exponent comes at the price of a larger kernel size. When comparing
kernels of similar size (though over different fields), Reed-Solomon kernels give
larger exponent than Suzuki kernels.

Proposition 3 Let q = 22r+1. Let GSuz be a Suzuki kernel over Fq, and let
GRS be a Reed-Solomon kernel also over Fq. Then

E(GRS) ≤ E(GSuz)

for all q = 22r+1 where r ≥ 1.
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Remark 3 It should be observed kernel matrices in Proposition 3 are over the
same field but are not of the same size. Indeed, GSuz is a q2× q2 matrix while
GRS is of size q × q.

As discussed in Remark 2, comparing exponents of matrices of the same
size, though over different fields, may also be meaningful for polar coding. In
this situation, we conclude that the exponent of the Reed-Solomon kernel over
Fq exceeds the lower bound on the exponent of the Suzuki kernel over Fq2
given in Corollary 3.

The limiting behavior of the exponent in Theorem 5 is not restricted to
maximal function fields. In fact, kernels from Suzuki one-point codes display
similar asymptotics.

Theorem 6 Let GSuz be a Suzuki kernel over Fq where q = 22r+1. Then

lim
q→∞

E(GSuz) = 1.

Proof Let G be a Suzuki kernel over Fq where q = 22r+1. Then

E(G) ≥ 1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
.

Also,

1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
=

1

q2

q2−
√

q
2 (q−1)−1∑
i=0

logq2(i+ 1)

≥ 1

q2 ln(q2)

∫ q2−
√

q
2 (q−1)

1

ln(x)dx

=

(
1− 1√

2q1/2
+

1√
2q3/2

)
ln
(
q2 −

√
q
2 (q − 1)

)
ln(q2)

−
(

1

ln(q2)
− 1√

2q1/2 ln(q2)
+

1√
2q3/2 ln(q2)

− 1

q2 ln(q2)

)
.

By L’Hôpital’s rule,

lim
q→∞

1

q2
logq2

((
q2 −

√
q

2
(q − 1)

)
!

)
≥ lim
q→∞

(
1− 1√

2q1/2
+

1√
2q3/2

)
ln
(
q2 −

√
q
2 (q − 1)

)
ln(q2)

−
(

1

ln(q2)
− 1√

2q1/2 ln(q2)
+

1√
2q3/2 ln(q2)

− 1

q2 ln(q2)

)
= (1− 0 + 0)(1)− 0 = 1.

Therefore, the exponent of the Suzuki kernel tends to 1 as q →∞. ut
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4.4 Shortening an AG code kernel

The method of shortening can be used to create smaller kernels with large
exponent. In [4], Korada, Şaşoğlu, and Urbanke used repeated shortening of
a BCH code to create the smallest binary kernel with exponent exceeding 1

2 ,
that of Arikan’s original kernel G2.

To shorten an l × l kernel G, first find the column j with the longest run
of zeros at the top of the column. Then find the row i with the first nonzero
element of column j. Add RowiG to all the rows with a nonzero element in
ColjG. Finally, remove ColjG and RowiG to obtain an l − 1 × l − 1 matrix.
As the next result shows, shortening applied to AG code kernels is a special
case of a multipoint code construction.

Theorem 7 Let α1 ≤ · · · ≤ αn be integers such that

C(D,α1P ) $ . . . $ C(D,αnP ) = Fnq

and G be a generator matrix of C(D,αnP ) constructed according to (2). Sup-
pose G′ is the matrix obtained by shortening applied to the jth column of G.
Then

C(D − Pj , α1P − Pj) $ . . . $ C(D − Pj , αnP − Pj) = Fn−1q ,

and G′ corresponds to the generator matrix of C(D− Pj , αnP − Pj), which is
a two-point code.

Proof Let α1 ≤ . . . ≤ αn be integers such that

C(D,α1P ) $ . . . $ C(D,αnP ) = Fnq

and {f1, . . . , ft} be a basis for L(αtP ) for all t, 1 ≤ t ≤ n. Let G denote a
generator matrix of C(D,αnP ) constructed according to (2). Suppose j is the
column with the longest run of zeros at the top and fi(Pj) 6= 0 but ft(Pj) = 0
for all 1 ≤ t ≤ i− 1. Define {h1, . . . , hi−1, hi+1, . . . , hn} as

hs :=

{
fs if fs(Pj) = 0

fs + fi if fs(Pj) = 1.

Then hs ∈ L(αsP − Pj) \ L(αs−1P − Pj). Hence, {h1, . . . , hi−1, hi+1, . . . , hn}
is a basis for L(atP − Pj) for all t, 1 ≤ t ≤ i− 1, i+ 1 ≤ n. Thus,

C(D − Pj , αiP − Pj) $ . . . $ C(D − Pj , αi−1P − Pj)
$ C(D − Pj , αi+1P − Pj) $ . . . $ C(D − Pj , αnP − Pj) = Fn−1q

is a sequence of codes satisfying (2). ut

Note that we can apply this method repeatedly, which will result in other
multipoint codes.



Exponents of polar codes using algebraic geometric code kernels 19

Example 4 Consider a generator matrixGH(4) for the Hermitian code C(D, 9P∞)
over F4 constructed according to (2), where α is a primitive element of F4 sat-
isfying α2 + α+ 1 = 0:

GH(4) =



(0, 0) (0, 1) (1, α) (1, α2) (α, α) (α, α2) (α2, α) (α2, α2)

X3Y 0 0 α α2 α α2 α α2

X2Y 0 0 α α2 1 α α2 1
X3 0 0 1 1 1 1 1 1
XY 0 0 α α2 α2 1 1 α
X2 0 0 1 1 α2 α2 α α
Y 0 1 α α2 α α2 α α2

X 0 0 1 1 α α α2 α2

1 1 1 1 1 1 1 1 1


.

The columns of GH(4) are indexed by (α, β) such that Pα,β is a place of
degree one of the Hermitian function field over F4, and the rows are indexed
by functions in a basis of the Riemann-Roch space L(9P∞). Specifically, let

αi =


0 if i = 1

i if 2 ≤ i ≤ 7

9 if i = 8.

For 1 ≤ i ≤ 7, the last i rows are indexed by functions which form a basis for
L(αiP∞).

Pick the column with the longest run of zeros on the top, which is the first
column of GH(4). Since the last row of GH(4) is the only row with a nonzero
entry in the first column, we will remove the last row and the first column of
GH(4). The resulting kernel is



(0, 1) (1, α) (1, α2) (α, α) (α, α2) (α2, α) (α2, α2)

X3Y 0 α α2 α α2 α α2

X2Y 0 α α2 1 α α2 1
X3 0 1 1 1 1 1 1
XY 0 α α2 α2 1 1 α
X2 0 1 1 α2 α2 α α
Y 1 α α2 α α2 α α2

X 0 1 1 α α α2 α2


which may be obtained from a generator matrix of the two-point Hermitian
code C(D − P0,0, 9P∞ − P0,0).

5 Probability of block error

We can also consider the probability of block error using polar coding over
Fq with an arbitary kernel matrix. Let W be a q-ary DMC. If G is a matrix
that polarizes according to [6], then the exponent helps bound the block error
probability under successive cancellation (SC) decoding. Let Pe be the best
achievable probability of block error under SC decoding for polar coding over
W using kernel G. Using techniques similar to [1] and [9], the following result
holds.
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Theorem 8 Consider polar coding over a q-ary DMC using kernel G at a
fixed rate 0 < R < I(W ) with block length N = ln. Then

Pe = O(2−l
nβ

)

for 0 < β < E(G).

Proof For any q-ary DMC W : X → Y with fixed rate 0 < R < I(W ) and
0 < β < E(G), there exist a sequence {AN} of sets AN ⊆ {1, . . . , N} such
that |AN | ≥ NR and

Z(W
(i)
N ) < 2−l

nβ

for all i ∈ {1, . . . , N}. Consider the block error event E = ∪i∈ABi where

Bi = {(uN1 , yN1 ) ∈ XN × YN |û)1i−1 6= ui−11 , ûi = ui},

so that block error probability of decoding is

Pe = P (E) = P (∪i∈AnBi).

Let

Ev = {(uN1 , yN1 ) ∈ XN × YN |W (i)
N (yN1 , u

i−1
1 |ui) ≤W (i)

N (yN1 , u
i−1
1 |ui + v)}.

Thus,
Bi ⊆ ∪v∈XEv.

Then

P (Bi) =
∑
v∈X

P (Ev)

=
∑
v∈X

∑
uN1 ,y

N
1

1

qN
(WN (yN1 |uN1 )1Ev (uN1 , y

N
1 ))

≤
∑
v∈X

∑
uN1 ,y

N
1

1

qN
WN (yN1 |uN1 )

√√√√W
(i)
N (yN1 , u

i−1
1 |ui + v)

W
(i)
N (yN1 , u

i−1
1 |ui)

= (q − 1)Z(W
(i)
N ).

Hence,

P (E) = P (∪i∈AnBi)

≤
∑
i∈An

(q − 1)Z(W
(i)
N )

≤ N(q − 1)Z(W
(i)
N )

≤ N(q − 1)2−l
nβ

.

ut
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6 Conclusions

AG codes can be used to create kernels for polar codes. Certain AG codes
have known Riemann-Roch bases, so we have explicit kernels that may be
described simply by basis functions and places. Both Hermitian and Suzuki
kernels have larger exponents than Reed-Solomon codes over the same field,
for q ≥ 3; however, the larger exponents are at the expense of larger kernel
matrices. Comparing kernels of the same size, though over different fields, we
see that Reed-Solomon kernels have larger exponents than both Hermitian and
Suzuki kernels. These results indicate a tradeoff between the exponent, kernel
matrix size, and field size. Shortening may be used to create smaller kernels,
but this might decrease the exponent; multipoint AG code kernels may do the
same. A hybrid approach might allow one to balance these competing goals.
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