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Abstract. Given an algebraic geometry code CL(D,αP ), the Guruswami-

Sudan algorithm produces a list of all codewords in CL(D,αP ) within a spec-

ified distance of a received word. The initialization step in the algorithm
involves parameter choices that bound the degree of the interpolating polyno-

mial and hence the length of the list of codewords generated. In this paper,

we use simple properties of discriminants of polynomials over finite fields to
provide improved parameter choices for the Guruswami-Sudan list decoding

algorithm for algebraic geometry codes. As a consequence, we obtain a better

bound on the list size as well as a lower degree interpolating polynomial.

1. Introduction

Algebraic geometry codes (sometimes called AG codes) were first defined by
V. D. Goppa in the late 1970’s [3, 4]. They are generalizations of Reed-Solomon
codes which are among the most popular codes used in practice. Moreover, algebraic
geometry codes have more flexible parameters than Reed-Solomon codes. Indeed,
Tsfasman, Vlădut, and Zink [12] proved in the early 1980’s that there are AG codes
which perform better than the Gilbert-Varshamov bound (see also [1]).

A major advance in the study of algebraic geometry codes came with the general-
ization of Sudan’s algorithm for list decoding Reed-Solomon codes [11] to one-point
AG codes. The Guruswami-Sudan algorithm [7] is a polynomial time algorithm
for list decoding one-point AG codes, enabling error correction beyond half the
minimum distance (see also [6, 9]). In particular, for a received word w ∈ Fn,
the Guruswami-Sudan algorithm produces a list of codewords in an algebraic ge-
ometry code CL(D,αP ) which agree with w in at least t coordinates, given that
t2 > αn. The length of the list is bounded by a parameter s which is chosen in the
initialization step of the algorithm.

In this paper, we provide new parameter choices which give a tighter bound on
the list size generated by the Guruswami-Sudan algorithm. This is accomplished
by providing a lower degree interpolating polynomial. This is especially desirable
as the final step of the Guruswami-Sudan algorithm involves finding the roots of
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this polynomial. The method employed here parallels that of M. Wang’s for Reed-
Solomon codes [13] and is similar to the parameter choices made in Sudan’s original
algorithm.

This paper is organized as follows. This section concludes with notation to be
used in the remainder of the paper. Section 2 is a brief review of the Guruswami-
Sudan algorithm. Section 3 contains the main result on parameter selection. The
final section of the paper, Section 4, contains examples illustrating the improve-
ments given by our parameter choices.

Notation Let X be a projective curve of genus g over a finite field F. Let F(X)
denote the field of rational functions on X defined over F. The divisor of a rational
function f will be denoted by (f). Given a divisor A on X defined over F, let L(A)
denote the set of rational functions f on X defined over F with divisor (f) ≥ −A
together with the zero function. Let `(A) denote the dimension of L(A) as an F-
vector space. A (one-point) AG code CL(D,αP ) can be constructed using divisors
D =

∑n
i=1Qi and αP on X where Q1, . . . , Qn, P are pairwise distinct F-rational

points and α ∈ Z+ is a positive integer. In particular,

CL(D,αP ) := {ev(f) : f ∈ L(αP )}
where ev(f) := (f(Q1), . . . , f(Qn)). While Goppa’s original construction of alge-
braic geometry codes is more general, we take this as our definition of AG code here
as these codes are exactly those considered in [7]. If α < n, then CL(D,αP ) has
length n, dimension `(αP ), and designed distance n − α. The minimum distance
of the code CL(D,αP ) is at least its designed distance. We will use d(C) to denote
the minimum distance of a code C. As usual, a code of length n, dimension k, and
minimum distance d (resp. at least d) is called an [n, k, d] (resp. [n, k,≥ d]) code.
Good general references on algebraic geometry codes include [8, 10].

2. Review of the Guruswami-Sudan Algorithm

In this section, we outline the decoding algorithm due to Guruswami and Su-
dan as found in [7, Section IV. B.]. We begin by reviewing the main steps of this
algorithm applied to the AG code CL(D,αP ) where D = Q1 + · · · + Qn. The
Guruswami-Sudan Algorithm consists of three main steps: initialization, interpo-
lation, and factorization. The initialization step consists of choosing parameters r
and s so that both the interpolation and the factorization can be performed and
are guaranteed to have solutions.

Given a one-point AG code CL(D,αP ) on a curve X, a basis of functions φi for
L(αP ) can be formed so that the following two properies hold: 1) φi ∈ L(αiP ) for
some αi ≤ α and 2) for i < j, φj /∈ L(αiP ) [7, Lemma 20]. Thus the pole orders
of each of the φi’s is distinct. (Note these functions only have a single pole at the
point P .) Moreover for a rational point Q′ 6= P , each of these functions φi can
be rewritten as a linear combination of functions ψj where ψj has a zero of degree
j − 1 at the point Q′. Thus we have φi =

∑m
j=1 Cjψj where each Cj ∈ F depends

on the choice of point Q′ and the function φi.
Given such a set of functions, {φi}, and a received word w = (w1, . . . , wn) ∈ Fn,

the interpolation step seeks to find a polynomial of degree s. The polynomial has
the form

Q(T ) =
s∑
j=0

rt−g−αj∑
i=1

qi,jφiT
j ∈ K [T ]
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with qi,j as unknowns; that is to say, Q(T ) is a polynomial in T whose coefficients lie
in the function field K associated with the curve X. Additionally, the polynomial
can be rewritten by viewing the functions φi as linear combinations of ψj at each
point Qi. It is then required that Q has a zero of degree at least r at each pair
(Qi, wi) where Qi are in the support of D. This causes there to be r(r+1)

2 constraints

for point Qi and so there is a total of n ·
(
r(r+1)

2

)
constraints for the interpolation

problem.
In the final step of the algorithm, the roots of the polynomialQ(T ) are calculated.

This can be done either through factoring the polynomial or more efficiently using a
root finding algorithm such as that in [2]. Each function h such that d(w, ev(hi)) ≤
n− t is a root of Q(T ) where d(w, ev(hi)) := | {i : wi 6= ev(hi)} |. This is ensured by
requiring through the choice of r and s that the number of zeros of Q(h) be larger
than the number of poles of Q(h).

Algorithm 2.1 (Guruswami-Sudan Algorithm).
Input: n, α, w ∈ Fnq , t.
Assumptions: t2 > αn.

(0) Parameter choices: Set r :=
⌊

2gt+αn+
√

(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋
+ 1, l :=

rt− 1, and s :=
⌊
l−g
α

⌋
.

(1) Interpolation: Find a polynomial Q[T ] of degree s.
(2) Factorization: Find all roots h ∈ L (αP ) of the polynomial Q. For each

such h, if h(Qi) = wi for at least t values of i, then add h to the output
list.

Output: h1, . . . , hs such that d(w, ev(hi)) ≤ n− t

We will focus on Steps (0) and (1) above. Notice that the content of these
steps can be rephrased as the following polynomial reconstruction problem over the
function field associated with the curve X.

Polynomial reconstruction problem: Given a set {Q1, . . . , Qn, P} of n + 1
distinct F-rational points on a curve X of genus g, a positive integer α, an agree-
ment parameter t ∈ Z+, and w = (w1, . . . , wn) ∈ Fn, find all functions h ∈ L(αP )
such that h(Qi) = wi for at least t values of i where P is an F-rational point on X
not equal to Qi for all i.

3. Parameters choices in the Guruswami-Sudan algorithm

In this section, we give improved parameter choices which can be used in Step
(0) of Algorithm 2.1. Certainly, it is advantageous to choose the parameters that
result in a smaller degree interpolating polynomial Q and yield a better bound
s on the list size of the output. We show how to do this for any one-point AG
code CL(D,αP ) and any agreement parameter t >

√
αn satisfying either α < 2g

or t < 1
2

(
αn
α−2g + α− 2g

)
. The first restriction on t seems necessary to obtain a

polynomial time algorithm as Guruswami and Rudra have evidence that a lower
agreement parameter may lead to super-polynomially large lists as output [5].
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Lemma 3.1. Suppose n, α, g, and t satisfy (i) t2 > αn and (ii) either α < 2g or
t < 1

2

(
αn
α−2g + α− 2g

)
. Then the following statements are equivalent:

(1) There exist positive integers r and s such that

(s+ 1)(rt− g)− α
(
s+ 1

2

)
> n

(
r + 1

2

)
.

(2) There exist positive integers r and s satisfying the following conditions:
(a) r > α(n−t)+2tg+

√
∆2

2(t2−αn) or r < α(n−t)+2tg−
√

∆2
2(t2−αn) , and

(b) s1 < s < s2,
where

s1 := rt−α
2−g−

√
∆1

α ,

s2 := rt−α
2−g+

√
∆1

α ,

∆1 :=
(
t2 − αn

)
r2 + (αt− αn− 2tg) r + α2

4 + g2 − αg, and
∆2 := α2n(n+ α− 2t) + 4αgn(t+ g − α).

Proof. Assume n, α, g, and t satisfy (i) t2 > αn and (ii) either α < 2g or t <
1
2

(
αn
α−2g + α− 2g

)
.

(1)⇒ (2): Suppose there exist positive integers r and s such that

(s+ 1) (rt− g)− α
(
s+ 1

2

)
> n

(
r + 1

2

)
.

Then
α

2
s2 − (rt− g − α

2
)s+

r2n+ rn

2
− rt+ g < 0.

Set

h1(x) :=
α

2
x2 − (rt− g − α

2
)x+

r2n+ rn

2
− rt+ g.

Since h1(s) < 0 and α
2 > 0, h1(x) must have two distinct real roots. Let ∆1 denote

the discriminant of h1(x). Then ∆1 = (t2 − αn)r2 + (αt− αn− 2tg)r + α2

4 + g2 −
αg > 0, and the roots of h1(x) are s1 := rt−α

2−g−
√

∆1

α and s2 := rt−α
2−g+

√
∆1

α .
Consequently, h1(s) = (s− s1)(s− s2) and s1 < s < s2. Thus, (b) holds.

Next, we prove (a). To see this, set

h2(x) := (t2 − αn)x+ (αt− αn− 2tg)x+
α2

4
+ g2 − αg.

Then h2(r) = ∆1 > 0. Let ∆2 be the discriminant of h2(x). Then

∆2 = α2n(n+ α− 2t) + 4αgn(t+ g − α)
= αn

(
αn+ α2 + 4g2 − 4αg − 2t (α− 2g)

)
.

In the case α ≤ 2g, we see that

∆2 > αn
(
2α2 + 4g2 − 4αg − 2t (α− 2g)

)
= αn

(
2 (t− α) (2g − α) + 4g2

)
≥ 0

since α < t. Otherwise, t < 1
2

(
αn
α−2g + α− 2g

)
. Here, we have

∆2 > αn

(
αn+ α2 + 4g2 − 4αg − (α− 2g)

(
αn

α− 2g
+ α− 2g

))
= 0.
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Then

h2(r) =
(
r − α(n− t) + 2tg +

√
∆2

2(t2 − αn)

)(
r − α(n− t) + 2tg −

√
∆2

2(t2 − αn)

)
which implies r > α(n−t)+2tg+

√
∆2

2(t2−αn) or r < α(n−t)+2tg−
√

∆2
2(t2−αn) .

(2) ⇒ (1): Suppose there exist positive integers r and s satisfying (a) and (b).
Taking h1(x) and ∆1 as above, we see that the choice of r guarantees that ∆1 ≥ 0
and the choice of s guarantees h1(s) < 0. As a result, (s + 1)(rt − g) − α

(
s+1

2

)
>

n
(
r+1

2

)
. �

Next, we indicate how Lemma 3.1 can be used in conjunction with Algorithm
2.1 to obtain a better bound on the list size.

Theorem 3.2. Consider the AG code CL(D,αP ) on a curve X of genus g over
F where D := Q1 + · · · + Qn. Suppose (i) t2 > αn and (ii) either α < 2g or
t < 1

2

(
αn
α−2g + α− 2g

)
. Then taking

r :=
⌊
α(n− t) + 2tg +

√
∆3

2(t2 − αn)

⌋
+ 1 and s :=

⌊
rt− α

2 − g −
√

∆1

α

⌋
+ 1

in Algorithm 2.1 produces a list of s codewords within distance n− t of any received
word w ∈ Fn, where

∆3 := α2
(

(n− t)2 − 4gn
)

+ 4αgn (t+ g) .

Proof. Notice that s = bs1c + 1. We claim that s2 − s1 > 1 so that s1 < s < s2.
To see this, observe that s2 − s1 = 2

√
∆1
α . Thus, it suffices to show that ∆1 >

α2

4 .

Since ∆3 = disc
(

∆1 − α2

4

)
, we have that

∆1 −
α2

4
=
(
r − α (n− t) + 2tg +

√
∆3

2(t2 − αn)

)(
r − α (n− t) + 2tg −

√
∆3

2(t2 − αn)

)
.

By the choice of r, it follows that ∆1 − α2

4 > 0. Therefore, s1 < s < s2 as claimed.
We next check conditions (a) and (b) of Lemma 3.1(2). For condition (a), we

note that
sα ≤ rt+

α

2
− g −

√
∆1 < rt− g < rt

since
√

∆1 >
α
2 from above. Condition (b) holds, because

∆3 −∆2 = α2
(
t2 − αn

)
> 0.

Now applying Lemma 3.1, we see that r and s are valid parameters for the
Guruswami-Sudan algorithm. �

4. Examples

In this section, examples are given to illustrate Theorem 3.2.

Example 4.1. Consider the Hermitian curve of genus 28 defined by y8 + y = x9

over F64 and the code CL(D, 43P∞) where D is the sum of the 512 F64-rational
points on the curve other than P∞.

Let t = 421. Using the parameter choices in Algorithm 2.1, we have r = 1
and the number of solutions to the reconstruction problem is bounded by s =
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(1(421)−1)−28

43

⌋
= 9. Hence, we are guaranteed that there are at most 9 codewords

within distance n − t = 91 of a received word w ∈ F512
64 . By Theorem 3.2, we see

that taking r = 1 and s = 1 is possible. Thus, applying Algorithm 2.1 with these
parameter choices see that there is a unique codeword within distance 91 of w. In
this example, we know that this must be the case since CL(D, 43P∞) has minimum
distance 469 (according to [14]) and 469 ≥ 2 · (512− 421).

Now consider the code CL(Q1 + · · ·+Q512, 217P∞) on the same curve. Suppose
w ∈ F512

64 is a received word, and set t = 337. By Theorem 3.2, one can take
r = 24 and s = 36 in the Guruswami-Sudan list decoding algorithm. Applying
the algorithm with these parameter choices enables one to work with a degree (at
most) 36 interpolating polynomial and yields a list of at most 36 words which agree
with w in at least 337 places. The original parameter choices give an upper bound
of s = 83 on the number of such words.

Example 4.2. Consider the code CL(Q1 + · · · + Q125, 58P∞) on the Hermitian
curve of genus 10 defined by y5 + y = x6 over F25. Let t = 88. The typical
parameters in Algorithm 2.1 are r = 19 and s = 28. According to Theorem 3.2, we
can instead take r = 9 and s = 12. Hence, there are at most 12 codewords which
agree with a received word w ∈ F125

25 in at least 88 places (as opposed to at most 28
which one might expect given by the original parameter choices in the algorithm).
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