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Abstract. We prove that elements of the Weierstrass gap set of a pair of
points may be used to define a geometric Goppa code which has minimum
distance greater than the usual lower bound. We determine the Weierstrass
gap set of a pair of any two Weierstrass points on a Hermitian curve and use
this to increase the lower bound on the minimum distance of particular codes
defined using a linear combination of the two points.

1. Introduction

Goppa [4, 5] constructed linear codes from two divisors G and D on a curve,
and using the Riemann-Roch Theorem, obtained estimates of the dimension and
minimum distance of these codes. In particular, he gave a lower bound for the
minimum distance. In [2] Garcia, Kim, and Lax showed that if G is taken to be a
multiple of a point P , the structure of the gap sequence at P may allow one to give
a better lower bound on the minimum distance. Arbarello, Cornalba, Griffiths, and
Harris [1] generalized the notion of the gap sequence at a point to the Weierstrass
gap set of a pair of points on a curve. This was expounded upon by Kim [7] and
Homma [6]. In this paper, we show that if G is an effective divisor that is a linear
combination of two points P1 and P2, then knowledge of the Weierstrass gap set of
the pair (P1, P2) may allow one to conclude that the minimum distance is greater
than Goppa’s lower bound. In some cases, this gives codes with better parameters
(length, dimension, and minimum distance) than those considered by Garcia, Kim,
and Lax.

This paper is organized as follows. Section 2 provides basic definitions and
properties of geometric Goppa codes and those of the Weierstrass semigroup of a
pair of points. Section 3 contains our main result relating this semigroup to codes
on arbitrary curves. In Section 4 we compute the Weierstrass gap set of a pair of
Weierstrass points on a Hermitian curve, and using this we obtain results specialized
to codes on Hermitian curves in Section 5. Section 6 contains examples illustrating
our theorems.

Date: June 23, 1999.
Key words and phrases. Weierstrass pair, Weierstrass point, Hermitian code.
These results appear in the author’s LSU doctoral dissertation.

1



2 GRETCHEN L. MATTHEWS

2. Preliminaries

Let X be a smooth projective absolutely irreducible curve of genus g > 1 over
Fq. For a divisor D on X defined over Fq, let L(D) denote the set of rational
functions f on X defined over Fq with divisor (f) ≥ −D together with the zero
function and let Ω(D) denote the set of rational differentials η on X defined over
Fq with divisor (η) ≥ D together with the zero differential. Both L(D) and Ω(D)
are finite dimensional Fq-vector spaces; let l(D) and i(D) denote their respective
dimensions over Fq. The Riemann-Roch Theorem states that

l(D) = deg D + 1− g + i(D)

= deg D + 1− g + l(K −D),

where K is any canonical divisor on X. The divisor of a rational function f (resp.
differential η) will be denoted by (f) (resp. (η)). The divisor of poles of f will
be denoted by (f)∞. Two divisors D1 and D2 are linearly equivalent, denoted
D1 ∼ D2, if D1 −D2 = (f) for some rational function f .

Let G be a divisor on X defined over Fq and let D = Q1 + · · ·+ Qn be another
divisor on X where Q1, . . . , Qn are distinct Fq-rational points, each not belonging
to the support of G. The geometric Goppa codes CL(D,G) and CΩ(D,G) are
constructed as follows. We give Stichtenoth [8] as a general reference. The code
CL(D, G) is the image of the linear map φ : L(G) → Fn

q defined by

f 7→ (f(Q1), f(Q2), . . . , f(Qn)).

If deg G < n, then this code has dimension l(G) ≥ deg G + 1 − g and minimum
distance at least n − deg G. The code CΩ(D, G) is the image of the linear map
φ∗ : Ω(G−D) → Fn

q defined by

η 7→ (resQ1(η), resQ2(η), . . . , resQn(η)).

If deg G > 2g − 2, then this code has dimension i(G − D) = l(K + D − G) ≥
n − deg G + g − 1, where K is a canonical divisor, and minimum distance at
least deg G − (2g − 2). The codes CL(D,G) and CΩ(D, G) are dual codes. If
G = mP for some Fq-rational point P , m ∈ N, and D is the sum of all the other
Fq-rational points on X, we will refer to CL(D, G) and CΩ(D, G) as one-point codes.
If G = α1P1 + α2P2 for distinct Fq-rational points P1 and P2, α1, α2 ∈ N, and D
is the sum of all the other Fq-rational points on X, we will refer to CL(D, G) and
CΩ(D,G) as two-point codes. Note that a two-point code has length one less than
that of a one-point code on the same curve.

Let Fq(X) denote the field of rational functions on X defined over Fq. For Fq-
rational points P1 and P2, one defines the Weierstrass semigroup of the point P1

by
H(P1) = {α ∈ N0 : ∃f ∈ Fq(X) with (f)∞ = αP1}

and the Weierstrass semigroup of a pair of points (P1, P2) by

H(P1, P2) = {(α1, α2) ∈ N2
0 : ∃f ∈ Fq(X) with (f)∞ = α1P1 + α2P2},

where N0 denotes the set of nonnegative integers. Define the Weierstrass gap sets
G(P1) and G(P1, P2) by

G(P1) = N0 \H(P1)
and

G(P1, P2) = N2
0 \H(P1, P2).
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These two sets differ in that for any Fq-rational point P1, |G(P1)| = g, but
|G(P1, P2)| depends on the choice of points P1 and P2 [1]. Since

H(P1, P1) = {(α1, α2) ∈ N2
0 : α1 + α2 ∈ H(P1)}

depends only on H(P1), in the following we assume P1 6= P2.
We state a useful characterization of the elements of H(P1, P2), which appears

in [7]:

Lemma 2.1. For (α1, α2) ∈ N2, the following are equivalent:
(i) (α1, α2) ∈ H(P1, P2).
(ii) l(α1P1 + α2P2) = l((α1 − 1)P1 + α2P2) + 1 = l(α1P1 + (α2 − 1)P2) + 1.

We will often make use of the following lemma, also from [7]:

Lemma 2.2. Let α1 ≥ 1. Then l(α1P1 + α2P2) = l((α1 − 1)P1 + α2P2) + 1 if and
only if there exists α, 0 ≤ α ≤ α2, such that (α1, α) ∈ H(P1, P2).

Suppose (α1, α2) ∈ G(P1, P2). Then by Lemma 2.1 , either l(α1P1 + α2P2) =
l((α1 − 1)P1 + α2P2) or l(α1P1 + α2P2) = l(α1P1 + (α2 − 1)P2). Thus, if α1 ≥ 1,
there is no loss of generality in assuming that l(α1P1+α2P2) = l((α1−1)P1+α2P2).
Note that by Lemma 2.2 this is the case exactly when (α1, α) ∈ G(P1, P2) for all
α, 0 ≤ α ≤ α2.

3. Main Theorem for Codes on Arbitrary Curves

In this section, we relate the Weierstrass gap set of a pair of points to the
minimum distance of a corresponding two-point code. This result is analogous to
Theorem 1 of Garcia, Kim, and Lax [2].

Theorem 3.1. Assume that (α1, α2) ∈ G(P1, P2) with α1 ≥ 1 and l(α1P1+α2P2) =
l((α1 − 1)P1 + α2P2). Suppose (γ1, γ2 − t − 1) ∈ G(P1, P2) for all t, 0 ≤ t ≤
min{γ2− 1, 2g− 1− (α1 +α2)}. Set G = (α1 + γ1− 1)P1 +(α2 + γ2− 1)P2, and let
D = Q1 + · · ·+Qn, where the Qi are distinct Fq-rational points, each not belonging
to the support of G. If the dimension of CΩ(D,G) is positive, then the minimum
distance of this code is at least deg G− 2g + 3.

Proof. Proof Put w = deg G− 2g + 2. If there exists a codeword of weight w, then
there exists a differential η ∈ Ω(G−D) with exactly w simple poles Q1, . . . , Qw. We
then have (η) ≥ G−(Q1+ · · ·+Qw). Hence, 2g−2 = deg (η) ≥ deg G−w = 2g−2.
It follows that

(η) = G− (Q1 + · · ·+ Qw).
Since l(α1P1 +α2P2) = l((α1−1)P1 +α2P2), by the Riemann-Roch Theorem, there
exists a rational function

h ∈ L(K − ((α1 − 1)P1 + α2P2))\L(K − (α1P1 + α2P2))

for any canonical divisor K on X. Thus, (h) = (α1 − 1)P1 + α2P2 −K + E, where
E is an effective divisor of degree 2g − 1 − (α1 + α2) with P1 not contained in its
support. Write E = E′ + tP2, where E′ is an effective divisor whose support does
not contain P2 (so 0 ≤ t ≤ deg E = 2g − 1− (α1 + α2)). Then we can express the
divisor of h as

(h) = (α1 − 1)P1 + (α2 + t)P2 −K + E′.
Now

G− (Q1 + · · ·+ Qw) = (η) ∼ K ∼ (α1 − 1)P1 + (α2 + t)P2 + E′.
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It follows that there is a rational function f with divisor

(f) = −γ1P1 − (γ2 − t− 1)P2 + (Q1 + · · ·+ Qw) + E′.

If t ≤ γ2−1, then f has pole divisor (f)∞ = γ1P1 +(γ2−t−1)P2, contradicting the
fact that (γ1, γ2 − t− 1) ∈ G(P1, P2). Otherwise, f has pole divisor (f)∞ = γ1P1,
which is a contradiction as γ1 is a gap at P1. ¤

In [10], Yang and Kumar give the exact minimum distance for one-point codes
on Hermitian curves. We can compare two-point codes to one-point codes on the
same curve with the same dimension. If a two-point code has minimum distance
at least that of a one-point code (of the same dimension), then the two-point code
has better parameters (having shorter length). For codes on a Hermitian curve, we
can see when Theorem 3.1 allows one to conclude that a two-point code has better
parameters than any associated one-point code.

Proposition 3.2. Consider a q2-ary two-point code CΩ(D, G) on the Hermitian
curve yq + y = xq+1 satisfying the hypotheses of Theorem 3.1. If deg G = 2g +
q2 − aq − b− 3, 1 ≤ a < b ≤ q − 1, then this two-point code has minimum distance
at least that of the one-point code CΩ(D′, m′P∞) on the same curve with the same
dimension as CΩ(D,G). Also, given any number r = 2g + q2 − aq− b− 3, 1 ≤ a <
b ≤ q − 1, there is a two-point code CΩ(D, G) on this Hermitian curve satisfying
the hypotheses of Theorem 3.1 such that the degree of the divisor G is r.

Proof. Proof Suppose deg G = 2g + q2 − aq − b − 3, 1 ≤ a < b ≤ q − 1. Since
2g − 2 < deg G < n, where n is the degree of the divisor D, the dimension of
CΩ(D,G) is i(G −D) = q3 − q2 + aq + b − g + 1. By Theorem 3.1, the minimum
distance of CΩ(D,G) is at least q2 − aq − b.

Let m′ = 2q2−(a+1)q−b−2. Consider the one-point code CΩ(D′,m′P∞). Then
CΩ(D′,m′P∞) has dimension k′ = q3 − q2 + aq + b− g + 1 and minimum distance
d′ = q2 − aq − b [10]. Therefore, CΩ(D, G) is a [q3 − 1, q3 − q2 + aq + b− g + 1,≥
q2−aq−b] code and CΩ(D′,m′P∞) is a [q3, q3−q2 +aq+b−g+1, q2−aq−b] code.
Note that by Corollary 1 of [10], the minimum distance d′ uniquely determines k′,
so there is no one-point code with minimum distance d′ and dimension larger than
k′.

The proof of the last statement is deferred to Section 4 as we will need more
information about the structure of the gap set of a pair of points on a Hermitian
curve to conclude this. ¤

Note that the numbers 2g + q2− aq− b− 3, 1 ≤ a < b ≤ q− 1, form a “triangle”
with legs of length q − 2:

2g + q − 2,
2g + 2q − 2, 2g + 2q − 1,
2g + 3q − 2, 2g + 3q − 1, 2g + 3q,

...
...

. . .
2g + (q − 2)q − 2, 2g + (q − 2)q − 1, . . . , 2g + (q − 2)q + q − 5.

Remark 3.3. Let CΩ(D, G) be a two-point code on the curve yq + y = xq+1 over
Fq2 that satisfies the hypotheses of Theorem 3.1. Then, by Theorem 3.1, CΩ(D, G)
is a [q3 − 1, k,≥ deg G− 2g + 3] code, where k denotes the dimension of the code.
Suppose CΩ(D′, m′P∞) is a one-point code of dimension k on the same curve. Let d′
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denote the minimum distance of this one-point code. Then deg G−2g+3 ≥ d′ only
if the degree of G is of the form given in Proposition 3.2 or deg G = 2g+q2−aq−3,
with 0 ≤ a ≤ q − 1. However, in the latter case, there is another one-point code
with minimum distance d′ and dimension greater than k.

4. Computation of G(P1, P2) on a Hermitian Curve

In this section we determine the Weierstrass gap set of a pair of any two distinct
Weierstrass points on a Hermitian curve. It is well known that the Weierstrass
points of the Hermitian curve yq + y = xq+1 over Fq2 are exactly the Fq2-rational
points. We will need some results of Kim [7].

Lemma 4.1. If (α1, α2), (α′1, α
′
2) ∈ H(P1, P2) with α1 ≥ α′1 and α2 ≤ α′2, then

(α1, α
′
2) ∈ H(P1, P2).

Definition 4.2. For a gap α1 at P1, let βα1 = min {α2 : (α1, α2) ∈ H(P1, P2)}.
Lemma 4.3. For a gap α1 at P1, α1 = min {α : (α, βα1) ∈ H(P1, P2)}. Also,
{βα1 : α1 ∈ G(P1)} = G(P2).

Keeping this notation, we have

Theorem 4.4. For any two distinct Weierstrass points P1 and P2 on the Hermitian
curve yq + y = xq+1 over Fq2 ,

β(t−j)(q+1)+j = (q − t− 1)(q + 1) + j

for 1 ≤ j ≤ t ≤ q − 1.

Proof. Proof Let P1 = P00 and P2 = P∞ be the point at infinity, where Pab denotes
the common zero of x− a and y − b. The divisors of x and y are given by

(x) =
∑

βq+β=0

P0β − qP∞ and (y) = (q + 1)(P00 − P∞).

It is well known that the gap sequence at P1 (and at P2) is

(1)

1 2 . . . q − 2 q − 1
(q + 1) + 1 (q + 1) + 2 . . . (q + 1) + (q − 2)

...
... . . .

(q − 3)(q + 1) + 1 (q − 3)(q + 1) + 2
(q − 2)(q + 1) + 1

Consider the diagonals in (1) running from the bottom left to the upper right (i.e.
in the direction of ↗). Label these diagonals from 1 to q − 1 starting at the upper
left corner. Label the columns (resp. rows) of (1) from left to right (resp. top to
bottom) starting with 1. Then, for a fixed t, 1 ≤ j ≤ t ≤ q− 1, (t− j)(q + 1) + j is
the number on the tth diagonal in the jth column.

For 1 ≤ j ≤ t ≤ q − 1,

(
xq−j+1

yt−j+1
)∞ = ((t− j)(q + 1) + j)P1 + ((q − t− 1)(q + 1) + j)P2.

Therefore, ((t − j)(q + 1) + j, (q − t − 1)(q + 1) + j) ∈ H(P1, P2). To see that
this gives the βα as claimed, start with t = q − 1 and 1 ≤ j ≤ q − 1. This gives
((q− 1− j)(q +1)+ j, j) ∈ H(P1, P2) for 1 ≤ j ≤ q− 1. Hence, β(q−1−j)(q+1)+j = j

for 1 ≤ j ≤ q − 1, which gives βα for all gaps α at P1 on the (q − 1)th diagonal
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in (1). Now let t = q − 2 and 1 ≤ j ≤ q − 2 to get β(q−2−j)(q+1)+j = (q + 1) + j

for 1 ≤ j ≤ q − 2 (which gives βα for all gaps α at P1 on the (q − 2)th diagonal
of (1). Continuing in this manner, when t = q − i and 1 ≤ j ≤ q − i, we get
β(q−i−j)(q+1)+j = (i − 1)(q + 1) + j for 1 ≤ j ≤ q − i (which gives βα for all
gaps α at P1 on the (q − i)th diagonal of (1)). Finally, when t = j = 1, we get
β1 = (q− 2)(q + 1) + 1 = 2g− 1 and the theorem holds for P1 = P00 and P2 = P∞.

Suppose P1 = Pab with (a, b) 6= (0, 0) and P2 = P∞. There exists an automor-
phism ϕ that fixes P∞ and sends Pab to P00 [9]. Then we can use the rational
function xq−j+1

yt−j+1 ◦ ϕ to compute the βα as before.
Now suppose P1 = Pab and P2 = Pcd, where (a, b) 6= (c, d). There exists an

automorphism ϕ that leaves Pab fixed and sends Pcd to P∞ (namely, the compo-
sition ϕ1 ◦ ϕ2, where ϕ2 is an automorphism that sends Pcd to P∞ and ϕ1 is an
automorphism that takes ϕ2(Pab) to Pab and fixes P∞) [9]. Then, as before, we get
a rational function that gives rise to the βα. ¤

To see what Theorem 4.4 means in terms of (1), we do the following. Make a
new list (2) where the entry in the jth column of row i of (1) is the entry in the jth

column and (q − i)th diagonal of (2):

(2)

(q − 2)(q + 1) + 1 (q − 3)(q + 1) + 2 . . . (q + 1) + (q − 2) q − 1
(q − 3)(q + 1) + 1 (q − 4)(q + 1) + 2 . . . q − 2

...
... . . .

(q + 1) + 1 2
1

Note that the (q − i)th diagonal of (2) is the ith row of (1). Now under each gap α
at P1 we want to write βα. To do this, beginning with row 1, write the ith row of
(2) directly beneath the ith row of (1):

(3)

1 2 . . . q − 2 q − 1
(q − 2)(q + 1) + 1 (q − 3)(q + 1) + 2 . . . (q + 1) + (q − 2) q − 1

(q + 1) + 1 (q + 1) + 2 . . . (q + 1) + (q − 2)
(q − 3)(q + 1) + 1 (q − 4)(q + 1) + 2 . . . q − 2

...
... . . .

(q − 3)(q + 1) + 1 (q − 3)(q + 1) + 2
(q + 1) + 1 2

(q − 2)(q + 1) + 1
1

Thus, if α is on the tth diagonal in the jth column of (1), i.e. α = (t− j)(q +1)+ j,
then βα is the number in (1) on the (q − t + j − 1)th diagonal in the jth column.

We can now prove the last statement of Propostion 3.2.

Proof. Proof Let r = 2g + q2 − aq − b − 3, 1 ≤ a < b ≤ q − 1. Take (α1, α2) =
(1, 2g − 2) and (γ1, γ2) = (1, q2 − aq − b − 1) in Theorem 3.1. By Theorem 4.4,
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β1 = 2g − 1. Then (1, 2g − 2), (1, q2 − aq − b− 2) ∈ G(P1, P2) and by Lemma 2.2,
l(P1 + (2g − 2)P2) = l((2g − 2)P2). ¤

Knowing βα for each gap α at P1 allows us to compute |G(P1, P2)| for any
two distinct Weierstrass points P1 and P2 on a Hermitian curve. We will use the
following result of Homma [6]:

Lemma 4.5. Let P1 and P2 be any two distinct points on a smooth curve of genus
g > 1. Then

|G(P1, P2)| =
∑

α1∈G(P1)

α1 +
∑

α2∈G(P2)

α2 − r(P1, P2),

where r(P1, P2) = |{(α1, α1
′) ∈ G(P1)2 : α1 < α1

′ and βα1 > βα1′}|.
Theorem 4.6. For any two distinct Weierstrass points P1 and P2 on the Hermitian
curve yq + y = xq+1 over Fq2 ,

|G(P1, P2)| = q

12
(3q3 − 4q2 + 3q − 2).

Proof. Proof The sum of all the gaps at P1 (equivalently, the sum of all the gaps
at P2) is

∑

α1∈G(P1)

α1 =
q−1∑
t=1

t∑

j=1

(q − t− 1)(q + 1) + j

=
q−1∑
t=1

tq2 − t2q − t2 − t +
t(t + 1)

2

=
1
6
(q4 − q3 − q2 + q).

Next we compute r(P1, P2). Fix 1 ≤ j ≤ t ≤ q − 1. We need to count all pairs
(t′, j′) such that

(4) (t− j)(q + 1) + j < (t′ − j′)(q + 1) + j′

and

β(t−j)(q+1)+j > β(t′−j′)(q+1)+j′ .

Note that β(t−j)(q+1)+j > β(t′−j′)(q+1)+j′ if and only if

(5) (t′ − t)(q + 1) > j′ − j.

First consider the case t = t′. Since (t′ − t)(q + 1) = 0, in order to satisfy (5), we
must have j > j′. It is easy to see that all pairs with t = t′ and j > j′ satisfy both
(4) and (5) and there are t− j such pairs.

Now suppose t > t′. Then (t′−t)(q+1) < 0. Hence, to satisfy (5), j′ must satisfy
j′ < j. However, j′−j ≥ −q+2 (since 1 ≤ j, j′ ≤ q−1) and (t′−t)(q+1) ≤ −q2−q
(since 1 ≤ t, t′ ≤ q − 1) imply that (5) fails.

The only case left to consider is t′ > t. Here, (5) always holds since j′ − j ≤
q − 2 < (t′ − t)(q + 1). If j′ ≤ j, then tq + t− jq < t′q + t′ − j′q and so (4) holds.
If j′ ≥ j, then (4) holds only in the case t− j < t′ − j′. The number of pairs with
t′ > t satisfying (4) and (5) is

∑q−1
i=t+1 i− (t− j)(q − 1− t).
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Thus,

r(P1, P2) =
q−1∑
t=1

t∑

j=1

(t− j +
q−1∑

i=t+1

i− (t− j)(q − 1− t))

=
q−1∑
t=1

t∑

j=1

t− j +
q(q − 1)

2
− t(t + 1)

2
− tq + t + t2 + jq − j − jt

=
q−1∑
t=1

t∑

j=1

q2

2
− q

2
− t2

2
− t

2
− tq + 2t + t2 + jq − 2j − jt

=
q−1∑
t=1

t(
q2

2
− 1) + t2(

−q

2
)

= (
q2

2
− 1)(

q(q − 1)
2

)− q

2
(
q(q − 1)(2q − 1)

6
)

=
q

12
(q3 − 7q + 6).

Therefore,

|G(P1, P2)| =
∑

α1∈G(P1)

α1 +
∑

α2∈G(P2)

α2 − r(P1, P2)

=
1
3
(q4 − q3 − q2 + q)− q

12
(q3 − 7q + 6)

=
1
12

(3q4 − 4q3 + 3q2 − 2q).

¤

Actually, Theorem 4.4 enables us to do more than just find the cardinality of
G(P1, P2). It allows us to determine the set G(P1, P2). Let S = {(α1, α2) ∈ N2

0 :
α1 +α2 ≤ 2g− 1}. It follows from Lemma 2.1 that G(P1, P2) ⊆ S. In the following
we will use the interval notation [a, b] to mean {c ∈ N0 : a ≤ c ≤ b} and [a, b]× [s, t]
to denote {(i, j) ∈ N2

0 : a ≤ i ≤ b, s ≤ j ≤ t}.
Consider q− 1 ∈ G(P1). By Theorem 4.4, βq−1 = q− 1. Since (0, q), (0, q + 1) ∈

H(P1, P2), we can apply Lemma 4.1 to get that (q−1, q), (q−1, q+1) ∈ H(P1, P2).
Similarly, (q, q − 1), (q + 1, q − 1) ∈ H(P1, P2). Another application of Lemma 4.1
gives (q, q), (q, q + 1), (q + 1, q), (q + 1, q + 1) ∈ H(P1, P2). Thus, we get a block
Bq−1 = [q − 1, q + 1]× [q − 1, q + 1] of elements of H(P1, P2).

Now consider q − 2 ∈ G(P1). Recall that βq−2 = 2q − 1. Now since Bq−1 ⊆
H(P1, P2) and (q − 2, 2q − 1), (0, 2q), (0, 2q + 1), (0, 2q + 2) ∈ H(P1, P2), applying
Lemma 4.1 gives that [q−2, q +1]× [2q−1, 2q +2] ⊆ H(P1, P2), a 4×4 block Bq−2

of elements of H(P1, P2).
Continuing in this manner, each gap α = q − i, 1 ≤ i ≤ q − 3, at P1 gives an

(i + 2)× (i + 2) block Bα of elements of H(P1, P2).
Now consider 2 ∈ G(P1). From Theorem 4.4, β2 = q2−2q−1. Applying Lemma

4.1 as before gives a “triangle” B2 consisting of q(q−1)
2 elements of H(P1, P2) ∩ S.

As β1 = 2g − 1 and (1, 2g − 1) /∈ S, we do not need to consider β1.
We can continue this process, considering βα for each gap α at P1 not in the

first column of (1). For α = (t− j)(q + 1) + j ∈ G(P1), 3 ≤ j ≤ t ≤ q − 1, we will
get a block Bα ⊆ S of elements of the Weierstrass semigroup of the pair (P1, P2).
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For α = (t− 2)(q + 1) + 2 ∈ G(P1), 2 ≤ t ≤ q − 1, we will get a “triangle” Bα ⊆ S

consisting of q(q−1)
2 elements of H(P1, P2). Then, by definition of βα and by Lemma

4.3, all elements of S∩N2 which are not in Bα for some α ∈ G(P1) are the elements
of the Weierstrass gap set G(P1, P2) of the pair (P1, P2).

Theorem 4.7. Let P1 and P2 be any two distinct Weierstrass points on the Hermit-
ian curve yq +y = xq+1 over Fq2 . Then the Weierstrass gap set of the pair (P1, P2)
is G(P1, P2) = S \ [(H(P1)×{0})∪ ({0}×H(P2))∪{Bα : α = (t− j)(q +1)+ j, 2 ≤
j ≤ t ≤ q − 1}].

Remark 4.8. Note that the computation of the βα is independent of the particular
choice of Weierstrass points P1 and P2 and, thus, so is the set G(P1, P2).

Example 4.9. Consider y8 +y = x9 over F64. Let P1 = P00 and P2 = P∞. We use
Theorem 4.4 to determine βα for all gaps α at P1 and as in (3), write βα directly
beneath α:

(6)

1 2 3 4 5 6 7
55 47 39 31 23 15 7

10 11 12 13 14 15
46 38 30 22 14 6

19 20 21 22 23
37 29 21 13 5

28 29 30 31
28 20 12 4

37 38 39
19 11 3

46 47
10 2

55
1

Next, we apply Lemma 4.1 to find the blocks and “triangles” Bα for α in the
first row of (6): B7 = [7, 9] × [7, 9], B6 = [6, 9] × [15, 18], B5 = [5, 9] × [23, 27],
B4 = [4, 9] × [31, 36], B3 = [3, 9] × [39, 45], and B2 is the “triangle” with vertices
(2, 47), (8, 47), and (2, 53). Next, we do this for the gaps at P1 in the second row
of (6): B14 = [14, 18] × [14, 18], B13 = [13, 18] × [22, 27], B12 = [12, 18] × [30, 36],
and B11 is the “triangle” with vertices (11, 38), (17, 38), and (11, 44). Continuing,
B21 = [21, 27] × [21, 27] and B20 is the “triangle” with vertices (20, 29), (26, 29),
and (20, 35). By symmetry, we determine B15, B23, B31, B39, B47, B22, B30, B38,
and B29.
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Figure 1

Let T denote the set of all non-negative integers less than 2g+1. Figure 1 depicts
H(P1, P2) ∩ T 2. The line segment in Figure 1 is given by x + y = 56. All pairs
on this line segment as well as those to the right of or above the line segment are
elements of the Weierstrass semigroup H(P1, P2) by Lemma 2.1. The Weierstrass
gap set G(P1, P2) is the complement of the set H(P1, P2) ∩ T 2 in T 2.

5. Results for Codes on Hermitian Curves

Because much is known about Hermitian curves, placing further restrictions on
the Weierstrass gap set of a pair may allow one to improve the bound given in
Theorem 3.1. Throughout this section, let X denote the Hermitian curve yq + y =
xq+1 over Fq2 . Recall from the previous section that the Weierstrass gap set of a
pair of Weierstrass points on X does not depend on the particular points chosen.

Theorem 5.1. Consider CΩ(D,G) on X with G = (α1+γ1−1)P1+(α2+γ2−1)P2

and D = Q1 + · · ·+ Qn, where P1, P2, Q1, . . . , Qn are distinct Fq2-rational points.
Suppose (α1, α2) ∈ G(P1, P2), α1 ≥ 1, and l(α1P1 + α2P2) = l((α1− 1)P1 + α2P2).
Also assume (γ1, γ2−t−1), (γ1+1, γ2−t−1), (γ1+q+1, γ2−t−1), (γ1, γ2) ∈ G(P1, P2)
for all t, 0 ≤ t ≤ min{γ2 − 1, 2g − 1− (α1 + α2)}. If the dimension of this code is
positive, then the minimum distance is at least deg G− 2g + 4.

Proof. Proof Assume P1 = P∞. By Theorem 3.1, the minimum distance of CΩ(D, G)
is at least deg G − 2g + 3. Put w = deg G − 2g + 3. If there exists a codeword
of weight w, then there exists a differential η ∈ Ω(G − D) with exactly w simple
poles Q1, . . . , Qw. We have (η) ≥ G − (Q1 + · · · + Qw). Since 2g − 2 = deg (η) =
deg G− w + 1,

(η) = G− (Q1 + · · ·+ Qw) + A,
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where A is an Fq2-rational point, A 6= Qi for 1 ≤ i ≤ w. Since l(α1P1 + α2P2) =
l((α1 − 1)P1 + α2P2), there exists a rational function h with divisor

(h) = (α1 − 1)P1 + (α2 + t)P2 −K + E,

where E is an effective divisor whose support does not contain P1 or P2 and 0 ≤
t ≤ 2g − 1− (α1 + α2). Then

G− (Q1 + · · ·+ Qw) + A = (η) ∼ K ∼ (α1 − 1)P1 + (α2 + t)P2 + E

implies that there exists a rational function f with divisor

(f) = −γ1P1 − (γ2 − t− 1)P2 −A + (Q1 + · · ·+ Qw) + E.

First, assume that t ≤ γ2 − 1. If A is in the support of E, then (f)∞ =
γ1P1 + (γ2 − t − 1)P2, contradicting (γ1, γ2 − t − 1) ∈ G(P1, P2). If A = P1, then
(f)∞ = (γ1 + 1)P1 + (γ2 − t− 1)P2, contradicting (γ1 + 1, γ2 − t− 1) ∈ G(P1, P2).
Similarly, A 6= P2, since otherwise (γ1, γ2 − t) ∈ H(P1, P2). Thus, A = Qj for
some j, w + 1 ≤ j ≤ n. Let f̃ denote the rational function on X with divisor
(f̃) = (q + 1)Qj − (q + 1)P1. Then (ff̃)∞ = (γ1 + q + 1)P1 + (γ2 − t − 1)P2,
contradicting the fact that (γ1 + q + 1, γ2 − t− 1) ∈ G(P1, P2).

Now suppose γ2 − 1 < t ≤ 2g − 1 − (α1 + α2). If A is in the support of E or
A = P2, then (f)∞ = γ1P1. If A = P1, then (f)∞ = (γ1 + 1)P1. Either case gives
a contradiction as γ1 and γ1 + 1 are gaps at P1. Therefore, A = Qj for some j,
w +1 ≤ j ≤ n. Then (ff̃)∞ = (γ1 + q +1)P1, contradicting the fact that γ1 + q +1
is a gap at P1. This concludes the proof for the case P1 = P∞.

If P1 6= P∞, apply an automorphism ϕ of X such that ϕ(P1) = P∞ [9]. Let P2
′ =

ϕ(P2). Note that P2
′ is again a Weierstrass point. Then from the computations

in the last section, G(P1, P2) = G(P∞, P2
′), and the proof reduces to the case

above. ¤

Proposition 5.2. Consider a q2-ary two-point code CΩ(D, G) on X satisfying
the hypotheses of Theorem 5.1. If deg G = 2g + q2 − aq − b − 3, 2 ≤ a < b ≤
q − 1, then CΩ(D,G) has shorter length and greater minimum distance than that
of the one-point code CΩ(D′,m′P∞) on X with the same dimension as CΩ(D,G).
Furthermore, given any number of the form r = 2g+q2−aq−b−3, 2 ≤ a < b ≤ q−1,
there is a two-point code CΩ(D,G) on X satisfying the hypotheses of Theorem 5.1
such that the degree of the divisor G is r.

Proof. Proof If deg G = 2g + q2 − aq − b − 3, 2 ≤ a < b ≤ q − 1, then CΩ(D, G)
has dimension k = q3− q2 + aq + b− g + 1 and minimum distance at least deg G−
2g + 4 = q2 − aq − b + 1. From [10], the one-point code on X with dimension k is
CΩ(D′, (2q2− (a+1)q− b−2)P∞) which is a [q3, q3−q2 +aq + b−g +1, q2−aq− b]
code.

Let r = 2g + q2 − aq − b− 3, 2 ≤ a < b ≤ q − 1. Take (α1, α2) = (1, 2g − 2) and
(γ1, γ2) = (1, q2 − aq − b− 1) in Theorem 5.1. Theorem 4.4 together with Lemma
2.2 shows that the hypotheses of Theorem 5.1 are satisfied. ¤

Note that the numbers 2g + q2− aq− b− 3, 2 ≤ a < b ≤ q− 1, form a “triangle”
with legs of length q − 3. This triangle can be formed from the one following
Propostion 3.2 by removing the last line.

Remark 5.3. Let CΩ(D,G) be a two-point code of dimension k satisfying the
hypotheses of Theorem 5.1. Theorem 5.1 allows one to conclude that the two-point
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code has shorter length and greater minimum distance than any one-point code
of dimension k on X only if the degree of the divisor G is of the form given in
Proposition 5.2 or if deg G = 2g + q2−aq− b− 3 with 2 ≤ a < q− 1 and 0 ≤ b ≤ 2.
In the latter case, there is another one-point code with minimum distance d′ and
dimension greater than k.

Using the fact that there are no places of the Hermitian function field of degree
two over Fq2 [3] and placing further restrictions on the gap set G(P1, P2) allows
one to increase once more the lower bound on the minimum distance of the corre-
sponding two-point code.

Theorem 5.4. Consider CΩ(D,G) on X with G = (α1+γ1−1)P1+(α2+γ2−1)P2

and D = Q1 + · · ·+ Qn, where P1, P2, Q1, . . . , Qn are distinct Fq2-rational points.
Suppose (α1, α2) ∈ G(P1, P2), α1 ≥ 1, and l(α1P1 + α2P2) = l((α1− 1)P1 + α2P2).
Also assume that (γ1, γ2 − t − 1), (γ1, γ2), (γ1, γ2 + 1), (γ1 + 1, γ2 − t − 1), (γ1 +
1, γ2), (γ1 +2, γ2− t− 1), (γ1 + q +1, γ2− t− 1), (γ1 + q +1, γ2), (γ1 + q +2, γ2− t−
1), (γ1+2q+2, γ2−t−1) ∈ G(P1, P2) for all t, 0 ≤ t ≤ min{γ2−1, 2g−1−(α1+α2)}.
If the dimension of CΩ(D,G) is positive, then the minimum distance is at least deg
G− 2g + 5.

Proof. Proof By Theorem 5.1, the minimum distance of CΩ(D,G) is at least deg G−
2g+4. Put w = deg G−2g+4. If there is a codeword of weight w, then there exists
a differential η ∈ Ω(G−D) with divisor (η) = G− (Q1 + · · ·+ Qw) + A where A is
an effective divisor of degree two over Fq2 whose support does not contain Qi for
1 ≤ i ≤ w. Note that there are no places of the Hermitian function field of degree
two over Fq2 [3]. Thus A = 2P1, 2P2, P1 + P2, P1 + Qi, P2 + Qi, 2Qi, or Qi + Qj

where w + 1 ≤ i, j ≤ n. Using that

0 ∼ −γ1P1 − (γ2 − t− 1)P2 −A + (Q1 + · · ·+ Qw) + E,

where E is an effective divisor whose support does not contain P1 or P2 and 0 ≤
t ≤ 2g − 1 − (α1 + α2), and the hypotheses about the gap set of the pair, each
possible choice of A can be ruled out. Therefore, the minimum distance is at least
deg G− 2g + 5. ¤

Proposition 5.5. Consider a q2-ary two-point code CΩ(D, G) on X satisfying
the hypotheses of Theorem 5.4. If deg G = 2g + q2 − aq − b − 3, 3 ≤ a < b ≤
q − 1, then CΩ(D,G) has shorter length and greater minimum distance than that
of the one-point code CΩ(D′,m′P∞) on X with the same dimension as CΩ(D,G).
Furthermore, given any number r = 2g + q2 − aq − b− 3, 3 ≤ a < b ≤ q − 1, there
is a two-point code CΩ(D, G) on X as in Theorem 5.4 such that the degree of the
divisor G is r.

Remark 5.6. Let CΩ(D, G) be a two-point code on X of dimension k that satisfies
the hypotheses of Theorem 5.4. Theorem 5.4 allows one to conclude that the two-
point code has better parameters than any one-point code on X with dimension k
only if deg G = 2g + q2 − aq − b− 3 where 3 ≤ a < b ≤ q − 1 or 1 < a ≤ q − 1 and
0 ≤ b ≤ 3.

6. Examples

Example 6.1. Let X be the hyperelliptic curve of genus 2 over F16 defined by
y2 + y = x5 + 1. Let P1 be any non-Weierstrass point on X and P2 be the point at
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infinity (on a normalization of X). Then the gap sequence at P1 is 1, 2 and the gap
sequence at P2 is 1, 3. By Lemma 4.3, the Weierstrass gap set of the pair (P1, P2)
is

G(P1, P2) = {(0, 1), (0, 3), (1, 0), (1, 1), (1, 2), (2, 1)}.
Now let (α1, α2) = (1, 2),(γ1, γ2) = (1, 3), and G = (α1+γ1−1)P1+(α2+γ2−1)P2 =
P1 + 4P2. By Lemma 2.2, l(P1 + 2P2) = l(2P2). Note that (γ1, γ2 − 1) = (1, 2) ∈
G(P1, P2). The two-point code CΩ(D,G) has dimension 27. Since the Hamming
bound tells us that the minimum distance d of this code satisfies d ≤ 4, Theorem
3.1 allows us to conclude that the minimum distance of CΩ(D, G) is exactly 4.

Example 6.2. Let X denote the Hermitian curve y4 + y = x5 of genus g = 6 over
F16, P1 = P00, and P2 = P∞. Figure 2 depicts H(P1, P2) ∩ T 2, where T denotes
the set of non-negative integers less than 2g + 1. The line segment in Figure 2 is
given by x + y = 12.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2

Let (α1, α2) = (6, 5), (γ1, γ2) = (3, 2), and G = (α1 + γ1 − 1)P1 + (α2 + γ2 −
1)P2 = 8P1 + 6P2. Note that (6, α) ∈ G(P1, P2) for all α, 0 ≤ α ≤ 5, and
(3, 1), (4, 1), (8, 1), (3, 2) ∈ G(P1, P2). Thus by Lemma 2.2, l(6P1 + 5P2) = l(5P1 +
5P2). So the hypotheses of Theorem 5.1 hold and the minimum distance d of the
two-point code CΩ(D,G) is at least 6.

The dimension of CΩ(D,G) is i(G − D) = 54. So CΩ(D, G) is a [63, 54,≥ 6]
code. From [10], the only one-point code on X with dimension 54 is CΩ(D′, 15P2)
which is a [64, 54, 5] code (where D′ is the sum of all the F16-rational points other
than P2).

This example also shows that the two-point code CΩ(D,G) is not a punctured
one-point code as there is no one-point code on X with dimension 54 or greater
and minimum distance at least 6 [10].

Example 6.3. Let X denote the Hermitian curve y8 + y = x9 over F64, P1 = P00,
and P2 = P∞. Then X has genus g = 28. Let (α1, α2) = (1, 54), (γ1, γ2) = (7, 29),
and G = (α1 + γ1 − 1)P1 + (α2 + γ2 − 1)P2 = 7P1 + 82P2. In Section 4 we
determined the Weierstrass gap set of the pair (P1, P2). Using this, together with
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Lemma 2.2, we can see that l(P1 + 54P2) = l(54P2). We can also see that each
of the following is an element of the set G(P1, P2): (7, 28), (8, 28), (16, 28), (7, 29),
(8, 29), (7, 30), (9, 28), (17, 28), (16, 29), and (25, 28). Then, by Theorem 5.4, the
minimum distance of the two-point code CΩ(D,G) is at least deg G− 2g + 5 = 38.
The dimension of CΩ(D, G) is i(G − D) = 449. So CΩ(D, G) is a [511, 449,≥ 38]
code while the one-point code on X with dimension 449 is a [512, 449, 36] code
according to [10].
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