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Pseudocodewords of Parity-Check Codes
over Fields of Prime Cardinality

Wittawat Kositwattanarerk and Gretchen L. Matthews, Senior Member, IEEE

Abstract—This paper considers pseudocodewords of
LDPC codes over alphabets with prime cardinality p for
use over the p-ary symmetric channel. Pseudocodewords
are decoding algorithm outputs that may not be legitimate
codewords. Here, we consider pseudocodewords arising
from graph cover decoding and linear programming de-
coding. For codes over the binary alphabet, such pseudo-
codewords correspond to rational points of the fundamental
polytope. They can be characterized via the fundamental
cone which is the conic hull of the fundamental polytope;
the pseudocodewords are precisely those integer vectors
within the fundamental cone that reduce modulo 2 to a
codeword. In this paper, we determine a set of conditions
that pseudocodewords of codes over Fp, the finite field of
prime cardinality p, must satisfy. To do so, we introduce a
class of critical multisets and a mapping which associates
a real number to each pseudocodeword over Fp. The
real numbers associated with pseudocodewords are subject
to lower bounds imposed by the critical multisets. The
inequalities are given in terms of the parity-check matrix
entries and critical multisets. This gives a necessary and
sufficient condition for pseudocodewords of codes over F2

and F3 and a necessary condition for those over larger
alphabets. In addition, irreducible pseudocodewords of
codes over F3 are found as a Hilbert basis for the lifted
fundamental cone.

Index Terms—iterative decoding, low-density parity-
check (LDPC) code, fundamental cone, pseudocodewords,
irreducible pseudocodewords, nonbinary code

I. INTRODUCTION

LOW-density parity-check (LDPC) codes have re-
ceived much attention due to the fact that certain

families of such codes have been shown to approach
capacity over large classes of channels when paired
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with iterative message-passing decoding algorithms. One
drawback of these decoding algorithms is that they may
produce noncodeword outputs, called pseudocodewords.
Because there are various types of decoding algorithms
for parity-check codes (especially for LDPC codes),
several kinds of pseudocodewords exist in the literature.
In this introduction, we use the term pseudocodeword
rather generically to facilitate the discussion while avoid-
ing technicalities. In the next section, we will make
precise the definitions of the types of pseudocodewords
we consider and keep that level of rigor throughout the
remainder of the paper.

Pseudocodewords of binary codes have been studied
extensively in the literature. In particular, analysis of
pseudocodewords as a means to understand iterative
message-passing decoding algorithms began in the work
of Wiberg [27] where computation trees were used to
backtrack the calculations done by the algorithms. In
[18], [26], Koetter and Vontobel analyzed the pseudo-
codewords using a finite degree lift of the Tanner graph
called a graph cover. They also introduced the fundamen-
tal polytope whose rational points correspond to pseudo-
codewords. Taking the conic hull of the fundamental
polytope yields the fundamental cone, a convex cone
that contains all pseudocodewords of a binary code; its
description can be simpler than that of the fundamental
polytope while encapsulating the information relevant
to pseudocodewords. Generators of this cone are called
minimal pseudocodewords.

Bounds on the weights of minimal pseudocodewords
were given in [15] (see also [26]) along with a defini-
tion of irreducible pseudocodewords, which are build-
ing blocks for pseudocodewords. The pseudocodewords
within the fundamental cone were characterized by Koet-
ter et al. [17]. It turns out that these pseudocodewords co-
incide with noncodeword outputs of linear programming
decoding [6], [7], and connections among different types
of pseudocodewords were discussed in [1]. Nonetheless,
most discussions on the pseudocodewords thus far fo-
cused on codes over the binary alphabet.

The application of nonbinary LDPC codes was first
considered in 1998 by Davey and MacKay [5]. Their
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Monte Carlo simulations demonstrated that codes over
finite fields of size greater than 2 have significantly
improved performance over binary codes. This calls
for an investigation of nonbinary LDPC codes. Pseudo-
codewords of nonbinary codes were defined by Kelley
et al. [16] in 2006 and revisited with the introduction
of linear programming decoding for nonbinary codes
[8], [24]. The fundamental cone was then generalized
to codes over the ternary alphabet in [22]. While it has
been noted that codes over larger alphabets are more
appropriate for certain applications, thorough analysis
of nonbinary LDPC codes remains. As a step in this
direction, we consider p-ary LDPC codes where p is a
prime. The results presented here may be applied to any
p-ary parity-check code, though it is more natural to do
so when the code is represented by a low-density parity-
check matrix. One may consider this as an initial step in
the study of LDPC codes over arbitrary finite fields.

Recent work on nonbinary LDPC codes includes
that of Burshtein and Goldenberg [2] and Goldin and
Burshtein [12]. In [2], the authors provide a procedure
for obtaining the fundamental polytope of a parity-check
code. Their approach relies on the double description
method which is an algorithm for extreme ray enumera-
tion. While the double description method can be quite
practical for certain problems when implemented with
particular heuristic strategies, it can be exponential in
the input size and its running time depends substantially
on choices made in the execution of the algorithm. See
[11] for a thorough discussion of the double description
method. In [2], it is applied to LDPC codes over finite
rings to give facet representations of the local code poly-
topes (from their vertex descriptions). This procedure can
be implemented computationally to yield facet defining
inequalities and is said to work reasonably well only if
the code is small.

In this paper, we explore pseudocodewords of non-
binary parity-check codes over the p-ary symmetric
channel, where p is the size of the input alphabet. Our
approach is via the fundamental cone, and we seek the
inequalities that define this cone. Our work differs from
that of Burshtein and Goldenberg in that it relies on
a combinatorial notion, termed a critical multiset, that
we introduce in this paper. It yields inequalities that
the pseudocodewords of a p-ary code must satisfy. An
advantage of our method is that the inqualities come
directly from the parity-check matrix and the set of
partitions of p� 1. A drawback is that the cone defined
by these inequalities may be strictly larger than the fun-
damental cone for larger values of p. While our method
applies only to codes over fields of prime cardinality (as

opposed to more general finite rings), it does not rely
on an underlying algorithm which is sensitive to issues
such as the ordering of rows of the parity-check matrix
and whose efficient implementation is a current topic of
research.

This paper is organized as follows. A summary of no-
tation is provided at the end of this section and relevant
background is covered in Section II. Section III discusses
p-ary pseudocodewords. Here, we determine inequalities
that define a cone containing all p-ary pseudocodewords.
For p = 2 (resp. p = 3), this cone coincides with the
fundamental cone as defined by Koetter and Vontobel
[18] (resp. Skachek [22]). The ternary case is considered
in greater detail in Section IV where pseudocodewords
are found as integer points in a lifting of the cone defined
in the previous section. The final sections, Sections V
and VI, contain examples and the conclusion.

Notation. The set of real numbers is denoted R, Z is
the set of integers, and Q is the set of rational numbers.
The set of nonnegative integers is denoted by N, the set
of nonnegative real numbers is denoted by R�0

, and the
set of positive real numbers is written R

+

. The set of
all r ⇥ n matrices with entries in a field F is denoted
Fr⇥n, and Fn

:

= F1⇥n. Given a matrix H 2 Fr⇥n, hji

denotes the entry of H in the jth row and ith column,
Rowj(H) denotes the jth row of H , Coli(H) denotes
the ith column of H , and HT denotes the transpose
of H . The support of Rowj(H) is supp (Rowj(H))

:

=

{i : hji 6= 0}. The ith coordinate of a vector v 2 Rn

is denoted vi. Given a prime p, the finite field with p
elements is denoted Fp :

= {0, 1, . . . , p � 1}, and F⇤
p :

=

Fp \ {0}. Finite field multiplication is denoted by � if
it is not clear from the context.

We adopt the conventional coding theory terminology
and notation. A linear code C over a finite field F
of length n and dimension k is a subspace of Fn of
dimension k; we use the term code to mean linear code
as this paper only considers such codes. Elements of C
are called codewords. A parity-check matrix for the code
C is a matrix H 2 Fr⇥n such that C is the null space of
H; that is, an element y 2 Fn is a codeword of C if and
only if Hy

T
= 0 2 Fr⇥1. Because a parity-check matrix

of a code is not unique and the set of pseudocodewords
depends on the choice of parity-check matrix, we use the
notation C(H) to emphasize that the code C is given by
the parity-check matrix H; that is, given H 2 Fr⇥n, the
code with parity-check matrix H is

C(H)

:

=

�
c 2 Fn

: Hc

T
= 0 2 Fr⇥1

 
.

2
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II. PRELIMINARIES

Throughout, we assume that data is transmitted over
a memoryless p-ary symmetric channel (though parts of
the discussion in other sections apply more broadly).
Given a code C(H) over Fp, one may associate with
the parity-check matrix H 2 Fr⇥n

p a weighted bipartite
graph called the Tanner graph of H . The Tanner graph
of H , denoted T (H), is a graph with biadjacency matrix
H . Specifically, the vertex set of T (H) is X [F where
X = {x

1

, . . . , xn} is the set of symbol nodes and
F = {f

1

, . . . , fr} is the set of check nodes. If hji 6= 0,
then {xi, fj} is an edge with weight

w(xi, fj) := hji.

Alternatively, one may think of the vertex xi as cor-
responding to the ith column of H , the vertex fj as
corresponding to the jth row of H , and the edge {xi, fj}
as corresponding to the element hji of H . Notice that
c = (c

1

, c
2

, . . . , cn) 2 Fn
p is a codeword of C(H) if

and only if the assignment of the values c
1

, c
2

, . . . , cn
to their corresponding symbol nodes on the Tanner graph
satisfies X

i: xi2N (fj)

w(xi, fj)� ci = 0

for all j, 1  j  r, where the sum and the product
are taken over Fp and N (fj) denotes the set of vertices
adjacent to fj .

An m-cover of T (H) is a weighted bipartite graph eG
such that there exists an m-to-one surjective mapping
⇡ from the vertices of eG to the vertices of T (H)

where ⇡ preserves degree, and the image of adjacent
vertices of eG are adjacent in T (H) with the same edge
weight. For a vertex vi 2 X [ F , the vertices in the
set ⇡�1

(vi) are called copies of vi and are denoted
v
(i,1), v(i,2), . . . , v(i,m)

. Let C(

eG) denote the code of
length mn over Fp defined by an m-cover eG. We write
the codeword ˜

c 2 C(

eG) as

˜

c =

�
c̃
(1,1), . . . , c̃(1,m)

, . . . , c̃
(n,1), . . . , c̃(n,m)

�
.

For each b 2 F⇤
p and 1  i  n, let

mi(b) := |{1  l  m : c̃
(i,l) = b}|;

i.e., mi(b) is the number of copies of the symbol node
xi that take value b 2 Fp. Thus, for each i = 1, . . . , n,
one may associate the values assigned to the copies of
the ith symbol node, meaning c̃

(i,1), . . . , c̃(i,m)

, with a
column vector 2

64
mi(1)

...
mi(p� 1)

3

75 .

As a result, each codeword

˜c =

(c̃(1,1), . . . , c̃(1,m)| {z }
2

66664

m1(1)

...
m1(p� 1)

3

77775

, c̃(2,1), . . . , c̃(2,m)| {z }
2

66664

m2(1)

...
m2(p� 1)

3

77775

, . . . , c̃(n,1) . . . c̃(n,m)| {z }
2

66664

mn(1)

...
mn(p� 1)

3

77775

)

of C(

eG) defines a graph cover pseudocodeword (more
precisely, an unscaled graph cover pseudocodeword),
written in matrix form as

M :

=

2

64
m

1

(1) m
2

(1) · · · mn(1)

...
...

...
m

1

(p� 1) m
2

(p� 1) · · · mn(p� 1)

3

75

in N(p�1)⇥n. Note that Rowb(M) corresponds to an
element b 2 F⇤

p. Thus, one may abuse the notation and
regard the indices of the rows of M as elements of F⇤

p.
This is particularly useful in the following expression. If
˜

c is a codeword of C(

eG), then
a
˜

c

:

=

�
a� c̃

(1,1), . . . , a� c̃
(n,m)

�

is also a codeword of C(

eG) for all a 2 Fp. The resulting
pseudocodeword matrix, denoted aM, can be obtained
by permuting rows of M; specifically, for all 1  b 
p� 1 and a 2 F⇤

p,

Rowb�a(
aM) = Rowb(M).

One may also write a graph cover pseudocodeword in
vector form as

m :=

(m
1

(1), . . . ,mn(1), . . . ,m1

(p� 1), . . . ,mn(p� 1))

2 N(p�1)n.

Notice that
M (m) = M

where the map M : N(p�1)n ! N(p�1)⇥n is defined by

M (v)

:

=

2

6664

v
1

v
2

. . . vn
vn+1

vn+2

. . . v
2n

...
...

...
v
(p�2)n+1

v
(p�2)n+2

. . . v
(p�1)n

3

7775
.

The associated normalized graph cover pseudo-
codeword is

M
m

2 [0, 1](p�1)⇥n

in matrix form and
m

m
2 [0, 1](p�1)n

3
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Fig. 1. The Tanner graph T (H) from Example 2.1.

in vector form, respectively. Henceforth, we use the term
pseudocodeword to mean graph cover pseudocodeword.
Given H 2 Fr⇥n

p , let

PC(H)

:

=

⇢
m 2 N(p�1)n

:

m is a pseudo-
codeword of C(H)

�

denote the set of pseudocodewords of H; note that m 2
PC(H) if and only if there exists a positive integer m
such that m is a pseudocodeword coming from an m-
cover of T (H).

Example 2.1: Consider the ternary code C(H) given
by

H =


1 2 2 1

2 0 1 2

�
2 F2⇥4

3

.

Note that this parity-check matrix was considered in
[22]. Then, C(H) is a code over F

3

of length 4 and
dimension 2. The codewords of C(H) are (0, 0, 0, 0),
(0, 0, 1, 1), (0, 0, 2, 2), (1, 0, 0, 2), (2, 0, 0, 1), (1, 0, 1, 0),
(2, 0, 2, 0), (1, 0, 2, 1), and (2, 0, 1, 2). Here, Figure 1
illustrates the Tanner graph T (H), and Figure 2 shows
a 4-cover of T (H), and the codeword

˜

c = (2, 0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 2, 0, 0)

on eG. Thus, the pseudocodeword matrix M and its
vector form m are

M =


1 3 2 0

2 0 1 1

�

and
m = (1, 3, 2, 0, 2, 0, 1, 1)

respectively.
The terminology for nonbinary pseudocodewords

given thus far coincides with that generally accepted in

1

1

2
2

1

1

2
2

1

1

2
2

1

1

2
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22
1

2

2
1

1

1

2
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1

1
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1
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1
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2
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0

1
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1
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Fig. 2. A 4-cover eG and the codeword
(2, 0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 2, 0, 0) of C(

eG) from Example 2.1.

the binary case. In particular, let H 2 Fr⇥n
2

and eG be
an m-cover of T (H). Given a codeword

�
c̃
(1,1), . . . , c̃(1,m)

, . . . , c̃
(n,1) . . . c̃(n,m)

�
2 C(

eG),

the pseudocodeword matrix and its vector form are

M =

⇥
m

1

(1) m
2

(1) · · · mn(1)
⇤
2 N1⇥n

and

m = (m
1

(1),m
2

(1), . . . ,mn(1)) 2 Nn

respectively. On the other hand, the associated graph
cover pseudocodeword in the binary sense is

p := (p
1

, p
2

, . . . , pn) .

where pi =
Pm

l=1

c̃
(i,l). Here, it follows that

M = m = p

since

mi(1) = |{1  l  m | c̃
(i,l) = 1}| =

mX

l=1

c̃
(i,l) = pi.

Alternatively, one may define graph cover pseudo-
codewords from the linear programming decoding per-
spective [8], [24]. To do so, define

� : Fn
p ! {0, 1}(p�1)n

x 7! (ex1 , ex2 , . . . , exn)

4

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2014.2331677

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



where e

0

is the all-zero vector and ei 2 {0, 1}p�1

denotes the standard basis vector with 1 in the ith

coordinate and zeros elsewhere. The codeword polytope
of C(H) ✓ Fn

p is

poly(C(H))

:

=8
<

:
X

c2C(H)

�c�(c) :

P
c2C(H)

�c = 1,

�c � 0

9
=

;

✓ [0, 1](p�1)n.

Given a received word y, maximum-likelihood decoding
is equivalent to

minimize

(p�1)nX

k=1

�kfk subject to f 2 poly(C(H))

where
�
(p�1)(i�1)+a = log

✓
P (yi | 0)
P (yi | a)

◆

for all i = 1, . . . , n and a = 1, . . . , p � 1. The
fundamental polytope of H 2 Fr⇥n

p is

Q(H)

:

= \r
j=1

poly (C (Rowj(H))) .

Note that
poly(C(H)) ✓ Q(H).

Linear code LP decoding is

minimize

(p�1)nX

k=1

�kfk subject to f 2 Q(H).

Since poly(C(H)) ✓ Q(H), LP decoding is easily seen
as a relaxation of maximum-likelihood decoding whose
benefit is the reduction in the number of inequalities used
to define the feasible region. However, this relaxation
may lead to a noncodeword output; such words together
with the codewords are called normalized LP pseudo-
codewords [8, Theorem 6.1].

The relationship between LP pseudocodewords and
graph cover pseudocodewords is described as follows by
Flanagan et al. [8, Corollary 7.2] (see also [26] for the
binary case). There exists a graph cover pseudocodeword
with a (normalized) pseudocodeword matrix M if and
only if there exists a (normalized) LP pseudocodeword
v with M(v) = M.

In the next section, we examine the fundamental cone,
which is the conic hull of the fundamental polytope. The
description of the fundamental cone can be simpler than
that of the fundamental polytope while encapsulating
the information relevant to pseudocodewords. There are
various descriptions of the fundamental polytope, and
it is yet to be determined which among them is the

most convienient for LP decoder implementation and
its analysis. For instance, the recent works [12] and
[21] only utilize the fundamental polytope description
implicitly.

III. PSEUDOCODEWORDS OF CODES OVER Fp

A. Toward inequalities defining the fundamental cone

In this section, we provide bounds that p-ary pseudo-
codewords satisfy. We begin by introducing the notion
of a critical multiset which is key in producing these
bounds.

Definition 3.1: A critical multiset of order p is a
multiset {�

1

, . . . , �t} ✓ {0, 1, . . . , p � 1} where t � 2

and
tX

i=1

�i > (t� 1)p.

For convenience, we refer to the critical multisets of
order p as critical multisets of Fp. The set of critical
multisets of Fp is denoted �p.

Example 3.2: The critical multisets of F
2

, F
3

, F
5

, and
F
7

are as follows:
• �

2

= ;,
• �

3

= {{2, 2}} ,
• �

5

= {{2, 4}, {3, 3}, {3, 4}, {4, 4},
{3, 4, 4}, {4, 4, 4}, {4, 4, 4, 4}}, and

• �

7

= {{2, 6}, {3, 5}, {3, 6}, {4, 4}, {4, 5},
{4, 6}, {5, 5}, {5, 6}, {6, 6},
{3, 6, 6}, {4, 5, 6}, {4, 6, 6}, {5, 5, 5},
{5, 5, 6}, {5, 6, 6}, {6, 6, 6},
{4, 6, 6, 6}, {5, 5, 6, 6}, {5, 6, 6, 6},
{6, 6, 6, 6}, {5, 6, 6, 6, 6},
{6, 6, 6, 6, 6}, {6, 6, 6, 6, 6, 6}}.

Example 3.3: In this example, we consider crit-
ical mulitsets of Fp. The only critical multiset of
cardinality p � 1 is {p� 1, . . . , p� 1}. The criti-
cal multisets of cardinality p � 2, where p � 5,
are {p� 1, . . . , p� 1} and {p� 2, p� 1, . . . , p� 1}.
The critical multisets of Fp of cardinality p � 3,
where p � 5, are {p� 2, p� 2, p� 1, . . . , p� 1},
{p� 3, p� 1, . . . , p� 1}, {p� 2, p� 1, . . . , p� 1} and
{p� 1, . . . , p� 1}. The multiset {a, p� a+ 1} is criti-
cal for all a, 2  a  p� 1.

Proposition 3.4: A multiset {�
1

, . . . , �t} ✓ Fp is
critical if and only if {p� �

1

, . . . , p� �t} is a partition
of a number less than p with at least 2 parts.

Proof It follows from the definition of critical multiset
that

tX

i=1

p� �i < p.

5
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Corollary 3.5: If a multiset {�
1

, . . . , �t} ✓ Fp is crit-
ical, then any multisubset of {�

1

, . . . , �t} of cardinality
greater than 1 is critical. Furthermore,

tX

i=1

�i 6= 0 mod p.

Let �⇤
p denote the set of critical multisets A of Fp that

are not proper multisubsets of any critical multiset of Fp;
we refer to such a multiset as a maximal critical multiset.
In light of the previous corollary, it is useful to have a
characterization of maximal critical multisets. The next
corollary follows immediately from Proposition 3.4.

Corollary 3.6: A multiset {�
1

, . . . , �t} ✓ Fp is a
maximal critical multiset of Fp if and only if {p �
�
1

, . . . , p � �t} is a partition of p � 1 with at least 2
parts. Hence, the number of maximal critical multisets
of order p is | �⇤

p |= P (p� 1)� 1 where P (n) denotes
the partition number of an integer n.

Example 3.7: The maximal critical multisets of F
2

,
F
3

, F
5

, and F
7

are as follows:
• �

⇤
2

= �

2

= ;,
• �

⇤
3

= �

3

= {{2, 2}} ,
• �

⇤
5

= {{2, 4}, {3, 3}, {3, 4, 4}, {4, 4, 4, 4}} , and
• �

⇤
7

= {{2, 6}, {3, 5}, {4, 4}, {3, 6, 6}, {4, 5, 6},
{5, 5, 5}, {4, 6, 6, 6}, {5, 5, 6, 6},
{5, 6, 6, 6, 6}, {6, 6, 6, 6, 6, 6}}.

To provide conditions that pseudocodewords of codes
over Fp must satisfy, it is natural to relate pseudo-
codewords to real numbers. We will see that the
real numbers corresponding to pseudocodewords are
bounded below by sums involving critical multisets.

Let H 2 Fr⇥n
p and eG be an m-cover of T (H). Given

a codeword

˜

c =

�
c̃
(1,1), . . . , c̃(1,m)

, . . . , c̃
(n,1), . . . , c̃(n,m)

�

of C(

eG), we quantify the weighted sum of the neighbors
of every copy of the jth check node in the following
definition.

Definition 3.8: Let H 2 Fr⇥n
p . Given 1  j  r

and a pseudocodeword matrix M 2 Z(p�1)⇥n of C(H),
define

⇥j(M)

:

=

1

p

p�1X

b=1

⇣
b� Rowj(H)

⌘
Rowb(M)

T (1)

where the product b� Rowj(H) is taken in Fp and the
inner product

⇣
b� Rowj(H)

⌘
Rowb(M)

T and the sum
are taken in R.

Proposition 3.9: Let C(H) be the code given by
a parity-check matrix H 2 Fr⇥n

p and let M be a

pseudocodeword matrix of C(H) corresponding to a
codeword ˜

c of C(

eG). Then,

⇥j(M) =

1

p

X

1lm
i2 supp(Rowj(H))

w(xi, fj)� c̃
(i,l)

for all 1  j  r, where the sum is taken in R and ˜G
is an m-cover.

Proof We have

⇥j(M) =

1

p

p�1X

b=1

⇣
b� Rowj(H)

⌘
Rowb(M)

T

=

1

p

p�1X

b=1

nX

i=1

⇣
b� hji

⌘
mi(b)

=

1

p

nX

i=1

p�1X

b=1

X

{l|c̃(i,l)=b}

b� hji

=

1

p

nX

i=1

mX

l=1

hji � c̃
(i,l)

where the summations throughout are taken in R.
The desired result follows since hji = 0 if i /2
supp(Rowj(H)) and hji = w(xi, fj) otherwise.

Notice that the definition of ⇥ given in (1) involves
only the parity-check matrix H and pseudocodeword ma-
trix M. However, Proposition 3.9 implies that ⇥j(M)

is equal to a weighted sum of w(xi, fj) � c̃
(i,l) over

all 1  l  m and i 2 supp(Rowj(H)). There-
fore, ⇥j(M) captures an attribute of ˜

c without explicit
knowledge of ˜c and the particular graph cover eG, where
˜

c 2 C(

eG).
Recall that aM is a pseudocodeword matrix obtained

as a multiple of M. The following corollary gives a
similar identity for ⇥j(

aM).
Corollary 3.10: Let C(H) be the code given by

a parity-check matrix H 2 Fr⇥n
p and let M be a

pseudocodeword matrix of C(H) corresponding to a
codeword ˜

c of C(

eG). If a 2 F⇤
p, then

⇥j(
aM) =

1

p

X

1lm
i2 supp(Rowj(H))

a� w(xi, fj)� c̃
(i,l)

for all 1  j  r, where the sum is taken in R and ˜G
is an m-cover .

Next, we develop a set of bounds that all pseudo-
codewords of a code over Fp must satisfy.

Theorem 3.11: Consider a parity-check matrix
H 2 Fr⇥n

p where p is prime. Let M be a
pseudocodeword matrix of C(H). Then, for all

6
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1  j  r, M must satisfy all of the following
conditions.

Column sum bound: For all a 2 F⇤
p and i 2

supp(Rowj(H)),

⇥j(
aM) � mi(1) +mi(2) + · · ·+mi(p� 1). (2)

Critical multiset bound: For all a 2 F⇤
p, distinct

i
1

, . . . , it 2 supp(Rowj(H)), and maximal critical mul-
tisets {�

1

, . . . , �t} 2 �

⇤
p,

⇥j(
aM) �

tX

s=1

mis

�
�s � a�1 � h�1

jis

�
. (3)

Parity condition:

HMT

2

6664

1

2

...
p� 1

3

7775
mod p = 0. (4)

Nonnegativity condition: For all i 2 supp(Rowj(H))

and b 2 F⇤
p,

mi(b) � 0. (5)

Proof Given a pseudocodeword matrix M, there exists
a graph cover eG of the Tanner graph of H such that M
corresponds to a codeword

˜

c = (c̃
(1,1), . . . , c̃(1,m)

, . . . , c̃
(n,1), . . . , c̃(n,m)

)

of C(

eG). To express the parity condition enforced by
copies of the check node fj on the graph cover eG, we
will first fix a labeling of the symbol node. Let 1  j 
r. For each i 2 supp(Rowj(H)), label the vertices of
eG such that if the weight of the edge {xi, fj} of the
Tanner graph of H is w (equivalently, if hji = w), then
{x

(i,l), f(j,l)} is an edge of eG with weight w. In other
words, we index copies of each neighbor of fj using the
indices of copies of fj in eG. This is possible because
adjacency is preserved in the graph cover; however, this
naming convention is dependent on j. (In effect, giving
such labeling for all j at the same time may not be
possible. This does not present a problem here, because
the statements in the theorem do not depend on the index
of the symbol node.) Now, for each 1  l  m, we can
express the parity condition at the lth copy of fj as

X

i2 supp(Rowj(H))

w(xi, fj)� c̃
(i,l) mod p = 0. (6)

Here and throughout, the summation is taken in R.

To prove (2), we fix i 2 supp(Rowj(H)) and count
the number of nonzero copies of xi in ˜

c; that is, we
consider

A :

=

�
1  l  m | c̃

(i,l) 6= 0

 
.

It is clear that

|A | = mi(1) +mi(2) + · · ·+mi(p� 1).

Now, if c̃
(i,l) 6= 0, then

w(xi, fj)� c̃
(i,l) 6= 0

since i 2 supp(Rowj(H)) and w(xi, fj) = hji 6= 0. It
follows from (6) that

X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l)

is a nonzero multiple of p if c̃
(i,l) 6= 0. The fact that

w(xi, fj)� c̃
(i,l) 6= 0 also implies that
X

i02 supp(Rowj(H))

a� w(xi0 , fj)� c̃
(i0,l)

is a nonzero multiple of p for any a 2 F⇤
p. Therefore,

X

i02 supp(Rowj(H))

a� w(xi0 , fj)� c̃
(i0,l) � p

for l, 1  l  m, with c̃
(i,l) 6= 0. Applying Corollary

3.10, we conclude that

⇥j(
aM)

=

1

p

X

1lm

X

i02 supp(Rowj(H))

a� w(xi0 , fj)� c̃
(i0,l)

� 1

p

X

1lm
c̃(i,l) 6=0

p

=

X

1lm
c̃(i,l) 6=0

1

= |A |
= mi(1) +mi(2) + · · ·+mi(p� 1).

Next, we prove (3) for a = 1. Fix i
1

, . . . , it 2
supp (Rowj(H)) and {�

1

, . . . , �t} 2 �

⇤
p. Note that

h�1

jis
exists for all 1  s  t since i

1

, . . . , it 2
supp(Rowj(H)). Consider

B :

=

⇢
(s, l) :

w(xis , fj)� c̃
(is,l) = �s,

1  s  t and 1  l  m

�
.

For each s,

w(xis , fj)� c̃
(is,l) = �s

7

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIT.2014.2331677

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



if and only if

c̃
(is,l) = �s � w(xis , fj)

�1

= �s � h�1

jis
.

Thus,

|B| = mi1

�
�
1

� h�1

ji1

�
+ · · ·+mit

�
�t � h�1

jit

�
.

For each l, let

B(l) := {s | (s, l) 2 B}
=

�
1  s  t | w(xis , fj)� c̃

(is,l) = �s
 
.

Then,
X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l)

�
X

s2B(l)

w(xis , fj)� c̃
(is,l)

=

X

s2B(l)

�s

> (|B(l)|� 1)p.

(7)

To verify the last inequality, we consider the cases
|B(l)| = 0, |B(l)| = 1, and |B(l)| � 2. If |B(l)| = 0,
then clearly

P
s2B(l) �s = 0 > �p. If |B(l)| = 1, thenP

s2B(l) �s = �s for some s. Since {�
1

, . . . , �t} is a
critical multiset, �s > 0 = (|B(l)| � 1)p. In the case
|B(l)| � 2 Corollary 3.5 applies, and

P
s2B(l) �s >

(|B(l)| � 1)p as B(l) is a critical multiset. Now, it
follows from (6) and (7) that

X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l)

is a multiple of p that is larger than (|B(l)|�1)p. Thus,
X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l) � |B(l)|p.

We now apply Proposition 3.9 to obtain

⇥j(M) =

1

p

X

1lm

X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l)

� 1

p

X

1lm

|B(l)|p

= |B|
= mi1

�
�
1

� h�1

ji1

�
+ · · ·+mit

�
�t � h�1

jit

�
.

This completes the proof of (3) when a = 1. For a 2 F⇤
p

we recall that Rowj(
aM) = Rowj�a�1

(M) and apply
the above bound to aM to obtain

⇥j(
aM) �

tX

s=1

mis

�
�s � a�1 � h�1

jis

�

as desired.
Condition (5) is trivial as

mi(b) = |{1  l  m | c̃
(i,l) = b}|.

We are now left to show that (4) holds. Recall from (1)
that

p⇥j(M) =

p�1X

b=1

⇣
b� Rowj(H)

⌘
Rowb(M)

T .

Thus,

p⇥j(M) mod p

=

p�1X

b=1

⇣
b� Rowj(H)

⌘
Rowb(M)

T
mod p

= Rowj(H)MT

2

6664

1

2

...
p� 1

3

7775
mod p.

(8)

On the other hand, applying Proposition 3.9 and Equa-
tion (6) yields

p⇥j(M) mod p

=

X

1lm

X

i02 supp(Rowj(H))

w(xi0 , fj)� c̃
(i0,l) mod p

= 0.
(9)

Combining (8) and (9) yields

Rowj(H)MT

2

6664

1

2

...
p� 1

3

7775
mod p = 0

for all 1  j  r, and Equation (4) follows.

A corollary to Theorem 3.11 is the next result obtained
by Skachek and Flanagan.

Corollary 3.12: [23, Theorem 3.1] Let H 2 Fr⇥n
p . If

M is a pseudocodeword of C(H), then
X

i02 supp(Rowj(H))\{i}
b2F⇤

p

mi0(b) �
X

b2F⇤
p

mi(b)

for all 1  j  r and i 2 supp(Rowj(H)).

Proof We sum Equation (2) from Theorem 3.11 over
all a 2 F⇤

p to obtain
X

a2F⇤
p

⇥j(
aM) �

X

a2F⇤
p

mi(1) +mi(2) + · · ·+mi(p� 1).

8
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Applying Corollary 3.10 yields
X

a2F⇤
p

⇥j(
aM)

=

X

a2F⇤
p

1

p

X

1lm
i02 supp(Rowj(H))

a� w(xi0 , fj)� c̃
(i0,l)

=

1

p

X

1lm
i02 supp(Rowj(H))

0

@
X

a2F⇤
p

a� w(xi0 , fj)� c̃
(i0,l)

1

A

=

1

p

X
⇢
c̃(i0,l) 6=0 :

1lm,
i02 supp(Rowj(H))

�

p(p� 1)

2

=

p� 1

2

����

⇢
c̃
(i0,l) 6= 0 :

1  l  m,
i0 2 supp(Rowj(H))

�����

=

p� 1

2

X

i02 supp(Rowj(H))

b2F⇤
p

mi0(b).

On the other hand,
X

a2F⇤
p

mi(1) +mi(2) + · · ·+mi(p� 1)

= (p� 1)(mi(1) +mi(2) + · · ·+mi(p� 1))

= (p� 1)

X

b2F⇤
p

mi(b).

We now have
p� 1

2

X

i02 supp(Rowj(H))

b2F⇤
p

mi0(b) � (p� 1)

X

b2F⇤
p

mi(b),

and the desired result follows.

Remark 3.13: The total number of inequalities in
Theorem 3.11 is linear in n if the parity-check matrix H
is sparse and n � p. In particular, the number of column
sum bounds is p�(H), where �(H) is the number of
nonzero entries of H (equivalently, the number of edges
of the Tanner graph). It follows from Corollary 3.6 that
the number of critical multiset bounds in Theorem 3.11
is exponential in p.

The bounds from Theorem 3.11 can be roughly
interpreted in the following manner. We keep the
notation consistent with the proof of the theorem: let us
fix j and label the vertices of eG so that {x

(i,l), f(j,l)}
is an edge of eG with weight w(xi, fj), and assume
that ˜

c = (c̃
(1,1), . . . , c̃(1,m)

, . . . , c̃
(n,1), . . . , c̃(n,m)

) is
a codeword of C(

eG). Column sum bounds guarantee
that if c̃

(i,l) 6= 0 where i 2 supp(Rowj(H)), then
c̃
(i0,l) 6= 0 for some i0 2 supp(Rowj(H)) \ {i}.

Critical multiset bounds consider the case when
hji1 � c̃

(i1,l), hji2 � c̃
(i2,l), . . . , hjit � c̃

(it,l) take
values from critical multiset {�

1

, . . . , �t}. Since a
critical multiset is a gathering of numbers whose
sum is particularly large, we can bound the sum
hji1 � c̃

(i1,l) + · · · + hjit � c̃
(it,l) below by (t � 1)p.

Thanks to Corollary 3.5, similar statements hold
for any multisubset of {�

1

, . . . , �t}. The coefficient
a 2 F⇤

p makes sure that multiples of ˜

c are taken into
consideration. Finally, the parity condition serves as a
counterpart to the parity-check matrix H .

We will see later that the bounds from Theorem
3.11 are sufficient descriptions of the pseudocodewords
for p = 2 and p = 3. An interesting aspect of this
fact is that for these cases the attributes ⇥j(

aM),
a 2 F⇤

p, are powerful enough to determine if M is a
pseudocodeword, given that certain sums of the entries
of M do not exceed this quantity. For larger primes
p, the conditions considered above may only provide
a necessary condition that pseudocodewords of codes
over Fp must satisfy; determining a set of sufficient
conditions remains a topic of further study. This will
be demonstrated in Example 5.1.

Next, we relate the bounds given in Theorem 3.11 to
the fundamental cone of a parity-check matrix. Before
doing so, we recall its definition.

Definition 3.14: The fundamental cone of H 2 Fn⇥r
p ,

denoted Kp(H), is the smallest cone in R(p�1)n that
contains all pseudocodewords of C(H).

The fundamental cone K
2

(H) of a binary code C(H)

has been studied extensively in the literature (see, for
instance, [17], [18], [19]). The ternary case has been
investigated by Skachek [22].

Notice that the bounds given in Theorem 3.11 may
be used to define a cone in R(p�1)n as follows. Given
H 2 Fr⇥n

p , let

Kp(H)

:

=8
><

>:
m :

⇥j(
aM(m)) � 1Coli M(m) and

⇥j(
aM(m)) �

Pt
l=1 m

⇣
�l�a�1�h�1

jil
�1

⌘
n+il

81  j  r, i, i1, . . . , it 2 supp (Rowj(H)) ,
a 2 F⇤

p, {�1, . . . , �t} 2 �

⇤
p

9
>=

>;

✓ R(p�1)n
�0

.

The cone defined above coincides with the fundamen-
tal cone for p = 2 and p = 3. We shall restate this fact
in the following proposition.

Proposition 3.15: The cone Kp(H) is the fundamental
cone for p = 2 and p = 3. In other words, K

2

(H) =

K
2

(H) and K
3

(H) = K
3

(H).

9
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Proof Since 1 is the only nonzero element in F
2

, we
have

⇥j(M(m)) =

1

2

Rowj(H)m

T .

In addition, as F
2

contains no critical multisets, one may
simplify K

2

(H) to

K
2

(H) =

⇢
m 2 Rn

�0

:

Rowj(H)m

T � 2mi

81  j  r, i 2 supp (Rowj(H))

�
.

As a result, K
2

(H) = K
2

(H) according to [18].

Now, a = a�1 for a 2 F⇤
3

, and the only critical
multiset of F

3

is {2, 2}. So,

K
3

(H) =

8
>><

>>:
m 2 R2n

�0

:

⇥j(
aM(m)) � mi +mn+i and

⇥j(
aM(m)) � m

(

2�a�1�hji1
�1

)

n+i1
+m

(

2�a�1�hji2
�1

)

n+i2
81  j  r,
i, i1, i2 2 supp(Rowj(H)), a 2 F⇤

3

9
>>=

>>;
.

It follows that this cone coincides with the fundamental
cone of C(H) [22], meaning K

3

(H) = K
3

(H).

The next result follows immediately from the defini-
tion of Kp(H) and Theorem 3.11.

Proposition 3.16: Let H 2 Fr⇥n
p and m 2 N(p�1)n.

If m is a pseudocodeword of C(H), then m 2 Kp(H)

and

HM(m)

T

2

6664

1

2

...
p� 1

3

7775
mod p = 0;

that is,

PC(H) ✓
8
>>><

>>>:
m 2 Kp(H) : HM(m)

T

2

6664

1

2

...
p� 1

3

7775
mod p = 0

9
>>>=

>>>;
.

Remark 3.17: If p = 2 or p = 3, then the converse
holds [17], [22, Theorem 4.7]; that is,

PC(H) =

8
>>><

>>>:
m 2 Kp(H) : HM(m)

T

2

6664

1

2

...
p� 1

3

7775
mod p = 0

9
>>>=

>>>;

if p = 2, 3. Hence, Proposition 3.16 provides a charac-
terization of binary and ternary pseudocodewords. For
all primes p, we have Kp(H) ✓ Kp(H).

B. Irreducible and minimal pseudocodewords

We are now equipped to investigate irreducible and
minimal pseudocodewords. As we will demonstrate,
these pseudocodewords are most likely to cause de-
coding failure for LP and iterative decoding algorithms
on the p-ary symmetric channel. Due to the symmetry
conditions on the channel, the probability of codeword
error is independent of the codeword transmitted; see
[8, Example 5.1]. Hence, we may assume the all-
zero codeword is transmitted. Then, low pseudoweight
pseudocodewords play the role in LP and iterative de-
coding algorithms that the low weight codewords do in
maximum likelihood decoding [26], [28]. To make this
precise, we need a few definitions.

Definition 3.18:

1) A nonzero pseudocodeword is said to be irreducible
provided it cannot be written as a sum of two or more
nonzero pseudocodewords. We denote by Irr(H) the
set of all irreducible pseudocodewords of C(H).

2) A pseudocodeword v is called minimal provided
{�v : � 2 R,� � 0} is an edge of the fundamental
cone KP (H).

It follows from the definition that any pseudo-
codeword can be written as a sum of irreducible
pseudocodewords. Therefore, characterizing the irre-
ducible pseudocodewords is sufficient to describe the
set of all pseudocodewords. From a mathematical point
of view, the sets of irreducible pseudocodewords and
minimal pseudocodewords are important, because ir-
reducible pseudocodewords are a Z-basis for PC(H)

whereas minimal pseudocodewords form an R-basis for
Kp(H). Here, the term basis is used in the conic sense,
meaning that the set of irreducible codewords (resp.,
minimal pseudocodewords) generates the set PC(H)

(resp., Kp(H)) via conical combinations
P

aivi with
ai 2 Z (resp., R) and ai � 0.

From a decoding point of view, irreducible pseudo-
codewords and minimal pseudocodewords are important.
Indeed, as we demonstrate below, the pseudoweight of
a pseudocodeword on the p-ary symmetric channel is
bounded below by the minimum of the pseudoweights
of its irreducible pseudocodeword components. We re-
call the definition for the pseudoweight of a nonbinary
pseudocodeword on the p-ary symmetric channel as
follows.

Definition 3.19: [16, Definition 3.1] Let H 2 Fr⇥n
p

and let M be a pseudocodeword of C(H) in matrix
form. Let e be the smallest number with the property
that if mi1(b1), . . . ,mie(be) are the e largest components

10
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from distinct columns of M then
eX

e0=1

mie0 (be0) �
X

i/2{i1,...ie}

p�1X

b=1

mi(b).

The pseudoweight of M on the p-ary symmetric channel
is given by

wp(M)

:

=

8
>>>><

>>>>:

2e if
Pe

e0=1

mie0 (be0)

=

P
i/2{i1,...ie}

Pp�1

b=1

mi(b),

2e� 1 if
Pe

e0=1

mie0 (be0)

>
P

i/2{i1,...ie}
Pp�1

b=1

mi(b).

Proposition 3.20: Let M
1

,M
2

be pseudocodeword
matrices of C(H) where H 2 Fr⇥n

p . If M
3

= M
1

+

M
2

, then wp(M3

) � min{wp(M1

), wp(M2

)}. Hence,
for any pseudocodeword matrix M of C(H),

wp(M) � min {wp(MI) : MI 2 Irr(H)} .

Proof We distinguish the components of M
1

,M
2

, and
M

3

using m1

i (b),m
2

i (b), and m3

i (b) respectively, where
1  i  n and 1  b  p� 1. Now, if

eX

e0=1

m3

ie0
(be0) >

X

i 6=i1,...ie

p�1X

b=1

m3

i (b),

then either
eX

e0=1

m1

ie0
(be0) >

X

i 6=i1,...ie

p�1X

b=1

m1

i (b)

or
eX

e0=1

m2

ie0
(be0) >

X

i 6=i1,...ie

p�1X

b=1

m2

i (b).

On the other hand, if
eX

e0=1

m3

ie0
(be0) =

X

i 6=i1,...ie

p�1X

b=1

m3

i (b),

then either
eX

e0=1

m1

ie0
(be0) �

X

i 6=i1,...ie

p�1X

b=1

m1

i (b)

or
eX

e0=1

m2

ie0
(be0) �

X

i 6=i1,...ie

p�1X

b=1

m2

i (b).

In both cases it readily follows that

wp(M3

) � min{wp(M1

), wp(M1

)}.

It follows from the previous proposition that pseudo-
codewords with low pseudoweight must be irreducible.
Hence, irreducible pseudocodewords are especially prob-
lematic for LP and iterative decoders as they are most
likely to be confused with the all-zero word due to their
lower pseudoweights.

We close this section with an observation relating the
sets of irreducible and minimal pseudocodewords of a
p-ary parity-check code.

Proposition 3.21: Let H 2 Fr⇥n
p . Then the set of ir-

reducible pseudocodewords Irr(H) contains a multiple
of each minimal pseudocodeword of C(H).

Proof Let m be a pseudocodeword and suppose that
m /2 Irr(H). Then certainly m = m

1

+m

2

for some
m

1

,m
2

2 PC(H). From this, it follows that

{�m|� 2 R
+

}

is not an extreme ray of K
3

(H). Hence, m is not a
minimal pseudocodeword.

From the previous proposition, we see that each
minimal pseudocodeword gives rise to an irreducible
pseudocodeword. However, it is not necessary that all
irreducible pseudocodewords arise in this way. Example
5.2 in Section V will demonstrate this presumption.

In the next section, we will develop tools which allow
us to find the irreducible pseudocodewords of codes over
F
3

, just as in the binary case [19].

IV. TERNARY PSEUDOCODEWORDS

In this section, we focus on pseudocodewords of
ternary codes over the ternary symmetric channel. Recall
from the previous section that for H 2 Fr⇥n

3

and
m 2 N2n, the following are equivalent:

1) m is a pseudocodeword of C(H).
2) m 2 K

3

(H) and

HM(m)

T


1

2

�
mod 3 = 0.

While this result characterizes the points within the fun-
damental cone that are pseudocodewords, it is convenient
to have a cone whose integer points are in a one-to-
one correspondence with the pseudocodewords of C(H).
This is due to the fact that there are a number of algo-
rithms and computational tools available for computing
integer points in rational cones. The application of these
tools in the binary case is detailed in [19]. With this in
mind, we define the lifted fundamental cone of a ternary
code.

11
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Definition 4.1: Given H 2 Fr⇥n
3

, the lifted fundamen-
tal cone of C(H) is
ˆK
3

(H)

:

=8
<

:(m,a) 2 R2n+r
:

m 2 K
3

(H),

HM(m)

T


1

2

�
= 3a

T

9
=

; .

Now, the lifted fundamental cone and the fundamental
cone can be related via the projection

⇡ : R2n+r ! R2n

(m,a) 7! m.
(10)

The relationship between the lifted cone ˆK
3

(H), the
fundamental cone K

3

(H), and the pseudocodewords of
C(H) is made precise in the following proposition.

Proposition 4.2: Let H 2 Fr⇥n
3

. The projection
⇡|

ˆK3(H)

is one-to-one and

⇡
⇣
ˆK
3

(H)

⌘
= K

3

(H).

Furthermore,

⇡
⇣
ˆK
3

(H) \ Zn+r
⌘
= PC(H).

In other words, ˆK
3

(H) is a cone in R2n+r whose
projection is K

3

(H), and its integer points correspond
precisely to the pseudocodewords of C(H).

Proof Suppose that ⇡(m,a) = ⇡(m0,a0) where
(m,a), (m0,a0) 2 ˆK

3

(H). Then m = m

0 and

3a

T
= HM(m)

T


1

2

�
= HM(m

0
)

T


1

2

�
= 3a

0T .

We can then conclude that (m,a) = (m

0,a0). Hence,
⇡|

ˆK3(H)

is injective.
Now,

⇡
⇣
ˆK
3

(H)

⌘

=

8
>><

>>:
m 2 R2n

:

m 2 K
3

(H) and

HM(m)

T


1

2

�
= 3a

T

for some a 2 Rr

9
>>=

>>;

= K
3

(H).

Lastly, let (m,a) be an integer point in ˆK
3

(H). Then,

m = ⇡(m,a) 2 K
3

(H) and HM(m)

T


1

2

�
= 3a

T ,

implying that HM(m)

T


1

2

�
mod 3 = 0. By Re-

mark 3.17, ⇡(m,a) = m is a pseudocodeword of C(H).
On the other hand, let m 2 PC(H). Then m is an integer
vector in K

3

(H) such that

HM(m)

T


1

2

�
mod 3 = 0.

Since ⇡
⇣
ˆK
3

(H)

⌘
= K

3

(H), (m,a) 2 ˆK
3

(H) for some
a 2 Rr. The fact that

HM(m)

T


1

2

�
mod 3 = 0

implies a 2 Zr. We conclude that
⇡
⇣
ˆK
3

(H) \ Zn+r
⌘
= PC(H).

Next, we will see that the lifted fundamental cone
allows us to find the irreducible pseudocodewords via
Proposition 4.2. We review here terminology that will
be helpful in demonstrating this. The lifted fundamental
cone is certainly a rational cone; a rational cone K is
the solution space of a system of finitely many linear
inequalities with integer coefficients such that �v 2 K
for all v 2 K and � � 0. A rational cone is pointed
provided it has a vertex at the origin. The set of integer
vectors in a rational cone whose vertex is at the origin
forms an additive semigroup. The minimal set of gener-
ators B of this semigroup is called the Hilbert basis of
the cone. More precisely, given a pointed rational cone
K ✓ Rn, the Hilbert basis of K is the minimal set of
vectors {b

1

, . . . ,bt} with the property that

{�
1

b

1

+ · · ·+ �tbt : �1

, . . . ,�t 2 N} = K \ Zn.

The following proposition relates the Hilbert basis of
the lifted fundamental cone ˆK

3

(H) to the irreducible
pseudocodewords of C(H).

Proposition 4.3: Let H 2 Fr⇥n
3

. The set of irreducible
pseudocodewords of C(H) is

Irr(H) = ⇡ (B)

where B is the Hilbert basis of ˆK
3

(H); that is, the set of
irreducible pseudocodewords of C(H) can be found as a
projection of the Hilbert basis of the lifted fundamental
cone of C(H).

Proof Let B :

= {b
1

, . . . ,bt} be the Hilbert basis of
ˆK
3

(H).
Let p 2 Irr(H) be an irreducible pseudocodeword

of C(H). By Proposition 4.2, p = ⇡ (y) for some y 2
ˆK
3

(H) \ Zn+r. Since B is a Hilbert basis for ˆK
3

(H),
y =

Pt
i=1

�ibi for some �i 2 Z with �i � 0. Clearly,

⇡ (y) =

tX

i=1

�i⇡ (bi) .

According to Proposition 4.2, each ⇡ (bi) is a pseudo-
codeword. Being irreducible, p cannot be written as a
sum of two or more nonzero pseudocodewords. Thus,
�i = 1 for some i 2 {1, . . . , t} and �j = 0 for all j 6= i.
Therefore, p = ⇡ (bi) and Irr(H) ✓ ⇡ (B).
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Now consider ⇡ (b) where b 2 B. Since b 2
ˆK
3

(H) \ Zn+r, ⇡ (b) is a pseudocodeword by Propo-
sition 4.2. Suppose ⇡ (b) = p

1

+ p

2

for some nonzero
pseudocodewords p

1

and p

2

of C(H). By Proposition
4.2, p

1

= ⇡ (p

1

,a
1

) and p

2

= ⇡ (p

2

,a
2

) for some
(p

1

,a
1

) , (p
2

,a
2

) 2 ˆK
3

(H). It then follows that

b = (p

1

,a
1

) + (p

2

,a
2

) ,

contradicting the minimality of B. Therefore, ⇡ (b) is
irreducible, and ⇡ (B) ✓ Irr(H).

Definition 4.4: Given H 2 Fr⇥n
3

, the t-value of
the Tanner graph of H , denoted t, is defined to be
the maximum value that a coordinate of an irreducible
pseudocodeword of C(H) can have; that is,

t := max {mi : m 2 Irr(H)} .

According to [15, Theorem 3.5], the t-value of a
Tanner graph corresponding to a binary parity-check
code is finite. Next, we obtain an analogous result for
ternary parity-check codes as a corollary to Proposition
4.3.

Corollary 4.5: Given H 2 Fr⇥n
3

, the t-value of the
Tanner graph of H is finite.

Proof Let H 2 Fr⇥n
3

. According to [4], the lifted
fundamental cone ˆK

3

(H) has a unique Hilbert basis B.
Applying Proposition 4.3, we see that the set of irre-
ducible pseudocodewords of C(H) is Irr(H) = ⇡ (B).
The result follows from the fact that the Hilbert basis B
is finite [13].

V. EXAMPLES

Example 5.1 below demonstrates bounds from Theo-
rem 3.11 for a code over F

5

. As we will see, there are
words which are not pseudocodewords that satisfy the
bounds, indicating that the cone Kp(H) is not tight in
general.

In Example 5.2, we find irreducible and minimal
pseudocodewords of a ternary code with two different
choices for the parity-check matrix. We will see in this
example that the representation of a code greatly impacts
the set of pseudocodewords.

Example 5.1: Consider a code C(H) over F
5

given by
a parity-check matrix

H =


1 1 2 4

0 3 3 0

�
2 F2⇥4

5

.

We then have

⇥

1

(M) =

1

5

4X

b=1

⇣
b� Row

1

(H)

⌘
Rowb(M)

T

=

1

5

⇣
( 1 1 2 4 )Row

1

(M)

T

+ ( 2 2 4 3 )Row

2

(M)

T

+ ( 3 3 1 2 )Row

3

(M)

T

+ ( 4 4 3 1 )Row

4

(M)

T
⌘

and

⇥

2

(M) =

1

5

4X

b=1

⇣
b� Row

2

(H)

⌘
Rowb(M)

T

=

1

5

⇣
( 0 3 3 0 )Row

1

(M)

T

+ (

0 1 1 0

)Row

2

(M)

T

+ ( 0 4 4 0 )Row

3

(M)

T

+ (

0 2 2 0

)Row

4

(M)

T
⌘
.

The column sum bounds for the pseudocodewords of
C(H) are given by

⇥

1

(

aM) � m
1

(1) +m
1

(2) +m
1

(3) +m
1

(4),

⇥

1

(

aM) � m
2

(1) +m
2

(2) +m
2

(3) +m
2

(4),

⇥

1

(

aM) � m
3

(1) +m
3

(2) +m
3

(3) +m
3

(4),

⇥

1

(

aM) � m
4

(1) +m
4

(2) +m
4

(3) +m
4

(4),

⇥

2

(

aM) � m
2

(1) +m
2

(2) +m
2

(3) +m
2

(4),

⇥

2

(

aM) � m
3

(1) +m
3

(2) +m
3

(3) +m
3

(4),

for all a 2 {1, 2, 3, 4}. Now, recall that critical multisets
of F

5

are

�

5

= {{2, 4}, {3, 3}, {3, 4}, {4, 4},
{3, 4, 4}, {4, 4, 4}, {4, 4, 4, 4}}.

We will list the critical multiset bounds that correspond
to the multisets {2, 4} and {4, 4, 4, 4}. The ones resulting
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from {2, 4} are

⇥

1

(

aM) � m
1

(a�1 � 2) +m
2

(a�1 � 4),

⇥

1

(

aM) � m
1

(a�1 � 4) +m
2

(a�1 � 2),

⇥

1

(

aM) � m
1

(a�1 � 2) +m
3

(a�1 � 2),

⇥

1

(

aM) � m
1

(a�1 � 4) +m
3

(a�1 � 1),

⇥

1

(

aM) � m
1

(a�1 � 2) +m
4

(a�1 � 1),

⇥

1

(

aM) � m
1

(a�1 � 4) +m
4

(a�1 � 3),

⇥

1

(

aM) � m
2

(a�1 � 2) +m
3

(a�1 � 2),

⇥

1

(

aM) � m
2

(a�1 � 4) +m
3

(a�1 � 1),

⇥

1

(

aM) � m
2

(a�1 � 2) +m
4

(a�1 � 1),

⇥

1

(

aM) � m
2

(a�1 � 4) +m
4

(a�1 � 3),

⇥

1

(

aM) � m
3

(a�1 � 1) +m
4

(a�1 � 1),

⇥

1

(

aM) � m
3

(a�1 � 2) +m
4

(a�1 � 3),

and

⇥

2

(

aM) � m
2

(a�1 � 4) +m
3

(a�1 � 3),

⇥

2

(

aM) � m
2

(a�1 � 3) +m
3

(a�1 � 4)

where a 2 {1, 2, 3, 4}. The critical multiset bounds from
{4, 4, 4, 4} are

⇥

1

(

aM) � m
1

(a�1 � 4) +m
2

(a�1 � 4)

+m
3

(a�1 � 2) +m
4

(a�1 � 1)

where a 2 {1, 2, 3, 4}.
Consider now an integer matrix

M0
=

2

664

5 0 0 0

0 0 0 5

0 0 0 5

5 0 0 0

3

775 .

It is easily shown that ⇥
1

(

aM0
) = 10 and ⇥

2

(

aM0
) = 0

for all a, and M0 satisfies all bounds given in Theorem
3.11. However, there does not exist a codeword on a
graph cover of H that corresponds to M0 since no
combination on the possible values for the first and last
symbol node ({1, 4} and {2, 3}, respectively) can be
made to satisfy the first parity-check.

Example 5.2: In this example, we consider a [4,2]
ternary linear code with two different choices of parity-
check matrix. Let

H
1

=


1 2 2 1

2 0 1 2

�

and
H

2

=


0 2 0 0

2 0 1 2

�
.

Note that first row of H
2

is the sum of the two rows of
H

1

. Hence,
C(H

1

) = C(H
2

).

Using 4ti2 [14] and Proposition 4.3, we find the irre-
ducible pseudocodewords of C(H

1

) and C(H
2

).
The irreducible pseudocodewords of C(H

1

) are listed
below:

(0, 0, 0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 0, 1, 0),
(0, 0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0, 1),
(0, 0, 1, 1, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 1),
(1, 0, 0, 1, 0, 0, 1, 0), (1, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 1, 3, 1, 1), (0, 0, 0, 1, 2, 3, 1, 0),
(0, 0, 1, 0, 1, 3, 0, 1), (0, 0, 1, 1, 0, 3, 1, 1),
(0, 0, 1, 1, 1, 3, 1, 0), (0, 1, 0, 0, 0, 1, 1, 1),
(0, 1, 0, 0, 1, 1, 1, 0), (0, 1, 0, 1, 1, 1, 0, 0),
(0, 1, 1, 0, 1, 1, 0, 1), (0, 1, 1, 1, 0, 1, 0, 0),
(0, 3, 0, 0, 1, 0, 2, 1), (0, 3, 0, 1, 1, 0, 1, 1),
(0, 3, 1, 0, 1, 0, 1, 2), (0, 3, 1, 0, 2, 0, 1, 1),
(0, 3, 1, 1, 0, 0, 1, 1), (0, 3, 1, 1, 1, 0, 1, 0),
(0, 3, 1, 1, 2, 0, 0, 1), (0, 3, 1, 2, 1, 0, 0, 0),
(0, 3, 2, 0, 2, 0, 0, 2), (0, 3, 2, 1, 1, 0, 0, 1),
(1, 0, 0, 0, 0, 3, 1, 2), (1, 0, 0, 0, 1, 3, 1, 1),
(1, 0, 0, 1, 0, 3, 2, 1), (1, 0, 0, 1, 1, 3, 0, 1),
(1, 0, 0, 1, 1, 3, 2, 0), (1, 0, 0, 2, 1, 3, 1, 0),
(1, 0, 1, 0, 0, 3, 1, 1), (1, 0, 1, 0, 1, 3, 1, 0),
(1, 0, 1, 1, 0, 3, 0, 1), (1, 0, 1, 1, 1, 3, 0, 0),
(1, 0, 1, 2, 0, 3, 1, 0), (1, 0, 2, 1, 0, 3, 0, 0),
(1, 1, 0, 0, 0, 1, 0, 1), (1, 1, 0, 1, 0, 1, 1, 0),
(1, 1, 1, 0, 0, 1, 0, 0), (1, 3, 0, 0, 1, 0, 1, 1),
(1, 3, 0, 1, 0, 0, 1, 0), (1, 3, 0, 1, 1, 0, 0, 1),
(1, 3, 1, 0, 0, 0, 1, 1), (1, 3, 1, 0, 1, 0, 0, 2),
(1, 3, 1, 0, 1, 0, 1, 0), (1, 3, 1, 1, 0, 0, 0, 1),
(1, 3, 1, 1, 1, 0, 0, 0), (1, 3, 2, 0, 1, 0, 0, 1),
(2, 0, 0, 1, 0, 3, 1, 1), (2, 0, 0, 2, 0, 3, 2, 0),
(2, 0, 1, 1, 0, 3, 1, 0), (2, 3, 1, 0, 0, 0, 0, 1).

On the other hand, the irreducible pseudocodewords
of C(H

2

) are the first eight pseudocodewords listed
above, which correspond precisely to the codewords of
C(H

1

) = C(H
2

). One may note that the Tanner graph
of H

2

is cycle-free. Hence, this coincides with the theo-
retical result that a code with a cycle-free Tanner graph
representation has no non-codeword pseudocodewords.

The minimal pseudocodewords of C(H
1

) con-
sist of all the pseudocodewords listed above except
(0, 1, 1, 0, 1, 1, 0, 1) and (1, 1, 0, 1, 0, 1, 1, 0). The mini-
mal pseudocodewords of C(H

2

) are, once again, simply
the eight codewords of C(H

1

) = C(H
2

).

VI. CONCLUSION

In this paper, we consider pseudocodewords of parity-
check codes over Fp where p is prime. Inequalities
that define a cone containing all pseudocodewords are
given. In the cases p = 2 and 3, this cone is precisely
the fundamental cone. For larger primes p, a precise
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system of inequalities defining the fundamental cone
of a p-ary code remains a topic of investigation; this
paper contains progress toward that goal. For ternary
codes, Hilbert bases are used to determine the irreducible
pseudocodewords; this characterization provides insight
into the minimal pseudocodewords as well. This method
enables the study of the choice of code representation
for parity-check codes over prime alphabets.
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