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Abstract. In this paper, we introduce multivariate Goppa codes, which contain as a
special case the well-known, classical Goppa codes. We provide a parity check matrix for
a multivariate Goppa code in terms of a tensor product of generalized Reed-Solomon
codes. We prove that multivariate Goppa codes are subfield subcodes of augmented
Cartesian codes. By showing how this new family of codes relates to tensor products
of generalized Reed-Solomon codes and augmented codes, we obtain information about
the parameters, subcodes, duals, and hulls of multivariate Goppa codes. We see that
in certain cases, the hulls of multivariate Goppa codes (resp., tensor product of gener-
alized Reed-Solomon codes), are also multivariate Goppa codes (resp. tensor product
of generalized Reed-Solomon codes). We utilize the multivariate Goppa codes to ob-
tain entanglement-assisted quantum error-correcting codes and to build families of long
LCD, self-dual, or self-orthogonal codes.

1. Introduction

Goppa codes were introduced in 1971 by V. D. Goppa [14, 15] using a polynomial g(x),
called a generator polynomial, over the finite field Fq with q elements. Properties of a
Goppa code are tied to those of the generator polynomial. For instance, such codes have
minimum distance at least deg(g)+1. Many Goppa codes have parameters exceeding the
Gilbert bound. Moreover, Goppa codes have efficient decoding algorithms. The McEliece
cryptosystem, of current interest as the basis for one of only remaining candidates in the
NIST Post-Quantum Cryptography Standardization [1, 4], employs Goppa codes [28].
Goppa codes can be viewed from several different perspectives, each giving a window
into their capabilities. We aim in this work to generalize Goppa codes to a multivariable
case.

Let Fqt be a finite field with qt elements. The polynomial ring over Fqt in m vari-
ables is denoted by Fqt [x1, . . . , xm] or Fqt [x], when there is no ambiguity on the number
of variables. A multivariate Goppa code is defined as follows. Fix non-empty subsets
S1, . . . , Sm ⊆ Fqt and their Cartesian product

S := S1 × · · · × Sm ⊆ Fm
qt .

Enumerate the elements of S = {s1, . . . , sn} ⊆ Fm
qt . Take g ∈ Fqt [x] such that g(si) 6= 0

for all i ∈ [n]. In addition, assume that g can be expressed as a product g = g1 · · · gm,
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where gi ∈ Fqt [xi]. The multivariate Goppa code is denoted and defined by

Γ(S, g) :=

{
(c1, . . . , cn) ∈ Fn

q :
n∑

i=1

ci∏m
j=1(xj − sij)

= 0 mod g(x)

}
,

where si := (si1, . . . , sim) ∈ S .
Taking m = 1, we obtain the Goppa codes as in [3, 14, 15]. Setting m = t = 1 gives

the codes considered in [12]. It is worth noting that Γ(S, g) is a code over Fq of length
n given by | S | where S ⊆ Fm

qt ; thus, n ≤ qtm . Hence, allowing larger values of t and
m provides longer codes over the same field. As we will see in Corollary 5 at the end of
Section 2, taking larger values of m allows one to obtain codes of the same lengths over
the same field but with potentially larger dimensions.

As usual, an [n, k, d] code over Fqt is a code of length n , dimension k , and minimum
distance d := min{| supp(c)| : 0 6= c ∈ C}, where supp(c) denotes the support of c , that
is, the set of all non-zero entries of c. Given v ∈ Fn , we denote its ith component by vi
where i ∈ [n] . The dual of an [n, k, d] code C is

C⊥ := {w ∈ Fn : w · c = 0 ∀c ∈ C} ;

that is, the dual is taken with respect to the Euclidean inner product. The hull of C is
Hull(C) = C∩C⊥. The code C is linear complementary dual (LCD) [27] if Hull(C) = {0}
and is self-orthogonal if C ⊆ C⊥.

In Section 2, we recall the definition of a generalized Reed-Solomon (GRS) code, which
is a well-known code that depends of an integer k and a polynomial g ∈ Fqt [x]. When
k = deg(g), the GRS code is called a GRS code via a Goppa code. This family was recently
studied by Y. Gao, Q. Yue, X. Huang, and J. Zhang in [12] where the authors describe
conditions, using the properties of classical Goppa codes, so the dual of a GRS code via
a Goppa code is again a GRS code via a Goppa code. Thus, having the control over the
dual, the authors are able to find the hull and give applications to quantum, LCD, self-
orthogonal, and self-dual codes. Then we introduce the tensor product of GRS codes and
the tensor product of GRS codes via a Goppa code. The former has been studied before
due to their decoding properties. In [13], the authors provide a list decoding algorithm
for the tensor product of GRS codes. In [8], they authors use the tensor product of GRS
codes to decode hyperbolic codes, which are augmented Reed-Muller codes, in the sense
that the dimension is greater than or equal, but the minimum distance is the same. The
tensor product of GRS codes via a Goppa code is important in obtaining the following
result, which is proved in Section 2. Given a multivariate Goppa code Γ(S, g),

Γ(S, g) = {c ∈ Fn
q : T cT = 0},

where T is a generator matrix of certain tensor product of GRS codes via a Goppa code
that depends of g. As a consequence, we see that the Goppa code Γ(S, g) is a subfield
subcode of the dual of a tensor product of GRS codes via Goppa codes.

In Section 3, we prove that the multivariate Goppa code Γ(S, g) is a subfield subcode
of an augmented Cartesian code. Augmented Cartesian (ACar) codes are a family of
evaluation codes recently introduced in [22, 25] where the authors present linear exact
repair schemes for the ACar and give examples where ACar codes provide a lower band-
width (resp., bitwidth) than RS codes (resp., Hermitian) codes when the dimension and
basefield are fixed. Even more, ACar are decreasing monomial-Cartesian codes, which
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have applications to certain polar codes [7]. In this paper, we demonstrate that

Γ(S, g) = ACar (S, g)q ,

where ACar (S, g)q represents the subfield subcode of certain ACar code which yields

information about the basic parameters of the multivariate Goppa code Γ(S, g).
In Section 4, we study the three families just described: multivariate Goppa codes,

tensor product of GRS codes via a Goppa code, and augmented Cartesian codes. Each of
these families depend of a polynomial g in Fqt [x]. We give conditions on g to determine
determine subcodes, intersections, and hulls. One of the main results states that for
certain f, g in Fqt [x], then

(i) Hull (T(S, g)) = T(S, gcd(f, g)) = Hull (ACar(S, g)) , and
(ii) Γ(S, lcm(f, g)) ⊆ Hull (Γ(S, g)) , with equality when t = 1.

In Section 5, we design quantum, LCD, self-orthogonal, and self-dual codes from mul-
tivariate Goppa codes and tensor product of GRS codes via Goppa codes, relying on the
results of Section 4. One of the main contributions in Section 5 provides an algorithm to
find LCD, self-orthogonal and self-dual codes. This approach is different than that given
in [12]. An immediate difference is that using GRS codes, the length of the code is always
bounded by the size of the field whereas this restriction is not needed in Section 5, for
instance, for the tensor product. Even more, the results of Section 5 enable a single set
of defining polynomials to produce a family of codes with different lengths over a certain
field (cf. [12, Theorem 2.6]). We provide some examples at the end of Section 5. Finally,
a brief summary is given as a conclusion in Section 6.

More information about basic theory for coding theory can be found in [20, 26, 29].
References for the theory of vanishing ideals and algebraic concepts used in this work are
[9, 11, 19, 30].

2. A parity check matrix given by the tensor product of GRS codes

In this section, we introduce the tensor product of generalized Reed-Solomon codes via
Goppa codes. We show that this family provides a parity check matrix for the multivariate
Goppa codes. As a consequence, we are able to give bounds for the dimension of the Goppa
code. In addition, we give a representation for the dual of a multivariate Goppa code in
terms of the trace of the tensor product.

The set of m×n matrices over Fqt is denoted Fm×n
qt . The Kronecker product of matrices

A = [aij] ∈ Fr×s
qt and B ∈ Fm1×m2

qt is the matrix that can be expressed in block form as

A⊗B :=


a11B a12B · · · a1sB
a21B a22B · · · a2sB

...
...

...
ar1B ar2B · · · arsB

 ∈ Frm1×sm2

qt .

A generator matrix for an [n, k, d] code C is any matrix whose row span is C . Given
a generator matrix G1 of a code C1 and a generator matrix G2 of a code C2, the code
C1 ⊗ C2 is defined as the code whose generator matrix is G1 ⊗G2.

Next, we relate the multivariate Goppa codes to generalized Reed-Solomon codes.
Given k ∈ Z+ , Fqt [x]<k denotes the set of polynomials of degree less than k. Recall that
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a generalized Reed-Solomon (GRS) code is defined by

GRS(S, k, g) :=
{(
g(s1)

−1f(s1), . . . , g(sn)−1f(sn)
)

: f ∈ Fqt [x]<k

}
,

where g ∈ Fqt [x] and S ⊆ Fqt . GRS codes in the particular case t = 1 and k = deg(g)
are called GRS codes via a Goppa code and denoted by GRS(S, g), i.e.

GRS(S, g) := GRS(S, deg(g), g).

GRS codes via a Goppa code where studied in [12]. We note that GRS(S, k, g) is an
[n, k, n − k + 1] code over Fqt with n ≤ qt , meaning it is maximum distance separa-
ble (MDS). As we will see, tensor products of generalized Reed-Solomon codes play an
important role in the duals of multivariate Goppa codes. In what follows, ni = |Si| ,
the cardinality of Si for i ∈ [m] := {1, . . . ,m} . From now on, when we take an ele-
ment g = g1 · · · gm ∈ Fqt [x] , we mean that every gi ∈ Fqt [xi] . The expression g(S) 6= 0
represents that g(s) 6= 0 for all s ∈ S.

Definition 1. Let S = S1 × · · · × Sm ⊆ Fm
qt and g = g1 · · · gm ∈ Fqt [x] such that

g(S) 6= 0. Take k = (k1, . . . , km) ∈ Zm with 0 ≤ kj ≤ nj for all j ∈ [m]. We define the
tensor product of generalized Reed-Solomon codes as

T(S,k, g) :=
m⊗
j=1

GRS(Sj, kj, gj).

The tensor product of generalized Reed-Solomon codes via Goppa codes is

T(S, g) :=
m⊗
j=1

GRS(Sj, deg(gj), gj).

A generator matrix of T(S, g) may be specified entrywise by

(1)

(
sai
g(si)

)
a,j

∈ Fdeg(g)×n
qt

where the rows and columns are indexed by a ∈ Ndeg(g1)−1×···×deg(gm)−1 and i ∈ [n],
respectively.

Remark 2. Observe that the tensor product of generalized Reed-Solomon codes T(S,k, g)
has the following basic parameters.

(i) Length n =| S | .
(ii) Dimension k =

∏m
j=1 kj.

(iii) Minimum distance d =
∏m

j=1(nj − kj + 1).

In particular, T(S, g) is an [n, deg(g),
∏m

j=1(nj − deg(gj) + 1)}] code over Fqt .

Remark 3. Note that GRS(Sj, kj, gj) = {0} if and only if kj = 0. Thus, T(S,k, g) =
{0} if and only if there is j ∈ [m] such that kj = 0. In addition, GRS(Sj, kj, gj) = Fnj

qt

if and only if kj = nj. Thus, T(S,k, g) = Fn
qt if and only if k = (n1, . . . , nm).

To relate multivariate Goppa codes to those codes in Definition 1, observe that given
any two polynomials p(x1) = p`x

`
1 + · · · + p1x1 + p0 = (x`1, . . . , x1, 1) · (p`, . . . , p1, p0) ∈
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Fqt [x1] and q(x2) = qkx
k
2 + · · · + q1x2 + q0 = (xk2, . . . , x2, 1) · (qk, . . . , q1, q0) ∈ Fqt [x2], we

may abuse notation and write

p(x1)q(x2) =




x`1
...
x1
1

⊗


xk2
...
x2
1




T 


p`
...
p1
1

⊗


qk
...
q1
1


 .

In addition, if s ∈ Fqt , then, modulo q(x2), the following two equations are valid

1

(x2 − s)
=

(−1)

q(s)

(q(x2)− q(s))
(x2 − s)

(2)

=
(−1)

q(s)


xk−12

...
x2
1


T 

qk 0 · · · 0
qk−1 qk · · · 0

...
...

...
...

q1 q2 · · · qk




1
s
...

sk−1

 .(3)

We come to one of the main results of this section, which gives a representation of a
multivariate Goppa code in terms of a tensor product of GRS codes.

Theorem 4. Given a multivariate Goppa code Γ(S, g),

Γ(S, g) = {c ∈ Fn
q : T cT = 0},

where T is a generator matrix of T(S, g); that is, Γ(S, g) is a subfield subcode of the
dual of a tensor product of GRS codes via Goppa codes.

Proof. According to (1), the following vectors generate the code T(S, g)

(4)

(
sa1
g(s1)

, . . . ,
san
g(sn)

)
=

(
sa111 · · · sam1m

g1(s11) · · · gm(s1m)
, . . . ,

sa1n1 · · · samnm
g1(sn1) · · · gm(snm)

)
,

where for i ∈ [n], si = (si1, . . . , sim) ∈ Fm
qt and 0 ≤ aj < deg(gj) for j ∈ [m].

The proof consists of verifying that the elements in Γ(S, g) are orthogonal to the
vectors shown in Equation 4. We proceed by induction on m. Consider the case m = 1.
Assume g(x) = γ0+γ1x+· · ·+γkxk. Equation 3 implies that if c = (c1, . . . , cn) ∈ Γ(S, g),
then

n∑
i=1

ci
(x− si)

=
n∑

i=1

−ci
g(si)


xk−1

...
x
1


T 

γk 0 · · · 0
γk−1 γk · · · 0

...
...

...
...

γ1 γ2 · · · γk




1
si
...

sk−1i



=


xk−1

...
x
1


T 

γk 0 · · · 0
γk−1 γk · · · 0

...
...

...
...

γ1 γ2 · · · γk

 n∑
i=1

−ci
g(si)


1
si
...

sk−1i

(5)

= 0 mod g(x).(6)
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Observe that the polynomial in (5) has degree k− 1. As deg(g) = k, Equation 6 implies
that the coefficients of the polynomial given in Equation (5) are zero. Hence, we see that

γk 0 · · · 0
γk−1 γk · · · 0

...
...

...
...

γ1 γ2 · · · γk




1
g(s1)

1
g(s2)

· · · 1
g(sn)

s1
g(s1)

s2
g(s2)

· · · sn
g(sn)

...
...

...
...

sk−1
1

g(s1)

sk−1
2

g(s2)
· · · sk−1

n

g(sn)




c1
c2
...
cn

 =


0
0
...
0

 .

As the matrix in terms of γ ’s is invertible, after we multiply both sides of previous
equation by the inverse of this matrix, we see that the element c ∈ Γ(S, g) is orthogonal

to the vectors

(
sa11
g(s1)

, . . . ,
sa1n
g(sn)

)
, where 0 ≤ a1 < k = deg(g). These are the vectors

that appear in Equation (4) when m = 1.
Now we focus on the case m = 2. Assume deg(g1) = k1 and deg(g2) = k2. By

Equation 3, there exist invertible matrices A and B, that depend of the coefficients of
g1 and g2, respectively, such that

n∑
i=1

ci
(x1 − si1)(x2 − si2)

=
n∑

i=1

ci
g1(si1)g2(si2)




xk1−11
...
x1
1

⊗


xk2−12
...
x2
1




T

A⊗B


1
si1
...

sk1−1i1

⊗


1
si2
...

sk2−1i2



=




xk1−11
...
x1
1

⊗


xk2−12
...
x2
1




T

A⊗B
n∑

i=1

ci
g(si)




1
si1
...

sk1−1i1

⊗


1
si2
...

sk2−1i2




= 0 mod g(x).

As degx1
(g) = k1 and degx2

(g) = k2, the previous equation implies

A⊗B
n∑

i=1

ci
g(si)




1
si1
...

sk1−1i1

⊗


1
si2
...

sk2−1i2


 =


0
0
...
0

 .

Multiplying both sides by the inverse (A⊗B)−1 = B−1 ⊗ A−1, we finally obtain

n∑
i=1

ci
g(si)




1
si1
...

sk1−1i1

⊗


1
si2
...

sk2−1i2


 =


0
0
...
0

 .

We conclude that if c ∈ Γ(S, g), then c ·
(

s
a1
11 s

a2
12

g1(s11)g2(s12)
, . . . ,

s
a1
n1s

a2
n2

g1(sn1)g2(sn2)

)
= 0, where

0 ≤ aj < kj = deg(gj), for j ∈ [2]. These are the vectors that appear in Equation (4),



MULTIVARIATE GOPPA CODES 7

for m = 2. For the general case, observe that following the steps of the case m = 2, we
saw that

∑n
i=1

ci∏m
j=1(xj−sij) = 0 mod g(x) implies that

n∑
i=1

ci
g(si)




1
si1
...

sk1−1i1

⊗ · · · ⊗


1
sin
...

skn−1in


 =


0
0
...
0

 .

From this fact, we conclude that if c ∈ Γ(S, g), then c is orthogonal to the vectors that
appear in Equation (4). �

Recall that given a code C ⊆ Fn
qt , the subfield subcode over Fq is

Cq :=
{
c ∈ C : c ∈ Fn

q

}
and the field trace with respect to the extension Fn

qt/Fq is defined as the map

tr : Fqt → Fq

a 7→ aq
t−1

+ · · ·+ aq
0
.

The trace code of an [n, k, d] code C over Fqt is defined by

tr(C) := {(tr(c1), . . . , tr(cn)) : (c1, . . . , cn) ∈ C} .
By [26, Ch. 7. §7.], tr(C) is an [n, k∗, d∗] over Fq, where k ≤ k∗ ≤ tk and d∗ ≥ d.
According to Delsarte’s Theorem [10, Theorem 2], C⊥q = tr

(
C⊥
)
. Putting this together

with the fact that Γ(S, g) =
(
T(S, g)⊥

)
q
, as shown in Theorem 4, we obtain the following

consequences.

Corollary 5. The multivariate Goppa code Γ(S, g) has length n =| S | and dimension
k satisfying n − t deg(g) ≤ k ≤ n − deg(g). Moreover, the dual is the trace code of a
tensor product of generalized Reed-Solomon codes via Goppa codes, specifically,

Γ(S, g)⊥ = tr(T(S, g)).

Example 6. Assume F∗32 = 〈a〉 is the multiplicative group of the finite field F32 . Take
S1 = S2 = {ai : i ∈ [8]} and g1 = g2 = x2 + a. Using the coding theory package [2] for
Macaulay2 [17], and Magma [5], we obtain that Γ(S, g) is an [64, 56, 4] code over F3 ,
which has parameters matching the best known linear code of length 64 and dimension
56 over this field [16]. If we were to restrict ourselves to taking m = 1, then 64 ≤
qt = 3t requires t ≥ 4 to obtain a code of length 64. Furthermore, 4 = deg(g) + 1
implies deg(g) = 3. Consequently, we are only guaranteed that such a code has dimension
64− 4 deg(g) = 64− 12 = 52.

In the next section, we will gain another perspective on the multivariate Goppa codes.
It will allow us to round out Corollary 5 by describing the minimum distance of the
multivariate Goppa codes.

3. As subfield subcodes of augmented codes

In this section, we show that every multivariate Goppa code is a subfield subcode of
an augmented Cartesian code [22, 25]. This useful property allows us to determine the
minimum distance of the multivariate Goppa codes and establishes the necessary results
for determining hulls in Section 4.
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We review first the necessary facts on augmented Cartesian codes. For a lattice point
a ∈ Nm, xa = xa11 · · · xamm denotes the corresponding monomial in Fqt [x]. The graded-
lexicographic order ≺ on the set of monomials of Fqt [x] which is defined as xa11 · · ·xamm ≺
xb11 · · ·xbmm if and only if

∑m
i=1 ai <

∑m
i=1 bi or

∑m
i=1 ai =

∑m
i=1 bi and the leftmost nonzero

entry in (b1 − a1, . . . , bm − am) is positive. The ideal generated by f1, . . . , fr ∈ Fqt [x] is
denoted (f1, . . . , fr) ⊆ Fqt [x] . The subspace of polynomials of Fqt [x] that are Fqt -linear
combinations of monomials xa ∈ Fqt [x], where a ∈ A ⊆ Nm , is denoted by L(A), i.e.

L(A) := SpanFqt
{xa : a ∈ A} ⊆ Fqt [x].

Together, the Cartesian product S = {s1, . . . , sn} ⊆ Fm
qt , the lattice points A, and a

polynomial h ∈ Fqt [x] such that h(s) 6= 0, for all s ∈ S, define the evaluation map

ev(S, h) : L(A) → F|S|qt

f 7→
(
f(s1)
h(s1)

, . . . ,
f(sn)
h(sn)

)
.

The image of the evaluation map ev(S, h)(L(A)), called the generalized monomial-

Cartesian code associated with S,A, and h, is denoted by C(S,A, h) ⊆ F|S|qt :

(7) C(S,A, h) =

{(
f(s1)

h(s1)
, . . . ,

f(sn)

h(sn)

)
: f ∈ L(A)

}
.

We may assume that degxj
(h) < nj for all j ∈ [m] . To see this, consider the polynomial

(8) Lj(xj) :=
∏
s∈Sj

(xj − s)

for each j ∈ [m] . By [23, Lemma 2.3], the vanishing ideal of S, consisting of all polynomi-
als of Fqt [x] that vanish on S, is given by I(S) = (L1(x1), . . . , Lm(xm)) . According to [9,
Proposition 4], {L1(x1), . . . , Lm(xm)} is a Gröbner basis of I(S), relative to the graded-
lexicographic order ≺ . Let r be the remainder of h modulo I(S). As r(si) = h(si)
for all i ∈ [n] and degxj

(r) < deg(Lj) = nj, we may redefine h := r . Consequently,

degxj
(h) < nj. By the same reasoning, we will assume that the degree of each f ∈ L(A)

in xi is less than ni ; i.e., we consider A ⊆
∏m

i=1{0, . . . , ni − 1}. In this case, the eval-
uation map ev(S, h) is injective. Thus, the length and rate of the monomial-Cartesian

code C(S,A, h) are given by |S| and |A|
|S| , respectively [21, Proposition 2.1]. If m = 1 and

A = {0, 1, . . . , k − 1} , then C(S,A, h) = GRS(S, k, h), the generalized Reed-Solomon
code described in Section 2.

A key characteristic of the monomial-Cartesian codes is that commutative algebra
methods may be used to study them. The kernel of the evaluation map ev(S, h) is
precisely L(A) ∩ I(S), where I(S) is the vanishing ideal. Thus, algebraic properties of
Fqt [x]/ (L(A) ∩ I(S)) are related to the basic parameters of C(S,A, h). We now define
the polynomial

(9) L(x) :=
m∏
j=1

L′j(xj),

where L′j(xj) denotes the formal derivative of Lj(xj), defined in Equation (8). The

polynomial L(x) plays an important role in determining the dual code C(S,A, h)⊥,
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which was studied in [21] in terms of the vanishing ideal of S and in [24] in terms of the
indicator functions of S.

Given f1, f2 ∈ Fqt [x] such that f2(s) 6= 0, for all s ∈ S, we write
f1
f2
∈ Fqt [x] to mean

the unique polynomial whose value at s is
f1(s)
f2(s)

, for all s ∈ S, and degxj

(
f1
f2

)
< nj.

Observe that this polynomial is unique as it is a linear combination of indicator functions
form by standard monomials. See [24, Proposition 4.6 (a)] for a more detailed explanation
about this fact and these concepts.

We now define augmented Cartesian codes, a particular family of decreasing monomial-
Cartesian codes meaning that they are defined by A such that if M ∈ L(A) and M ′

divides M, then M ′ ∈ L(A) [7].

Definition 7. Let S ⊆ Fm
qt and h ∈ Fqt [x] be such that h(s) 6= 0, for all s ∈ S . An

augmented Cartesian code (ACar code) is defined by

ACar(S,k, h) := C(S,ACar(k), h),

where k = (k1, . . . , km), with 0 ≤ kj ≤ nj, and

ACar(k) :=
m∏
j=1

{0, . . . , nj − 1} \
m∏
j=1

{kj, . . . , nj − 1} .

We also define

ACar (S, h) := ACar

(
S,kh,

L

h

)
,

where kh :=
(
n1 − degx1

(h), . . . , nm − degxm
(h)
)
.

The augmented Cartesian code ACar(S,k, h), where h ∈ Fqt \ {0}, was recently
introduced and studied in [22] due to its local properties. An augmented Cartesian code
is shown in Example 10.

Remark 8. Observe that ACar(S,k, h) = Fn
qt if and only if kj = nj, for some j ∈ [m].

In addition, ACar(S,k, h) = {0} if and only if k = 0.

By previous remark, there are instances where ACar(S,k, h) may be one of the trivial
spaces {0} or Fn

qt . In these cases, their basic parameters are also trivial. For the case

when ACar(S,k, h) is nontrivial, we have the following result.

Lemma 9. The augmented Cartesian code ACar(S,k, h) has the following basic param-
eters.

(i) Length n =| S | .
(ii) Dimension k =

∏m
j=1 nj −

∏m
j=1(nj − kj).

(iii) Minimum distance d = min {nj − kj + 1}j∈[m] .

In particular, ACar(S, h) is an [n, n − deg(h),min{degxj
(h) + 1 : j ∈ [m]}] code

over Fqt . Moreover, the dual of the augmented Cartesian code is ACar(S,k, h)⊥ =
C
(
S,A⊥Car(k), L

h

)
, where A⊥Car(k) =

∏m
j=1 {0, . . . , nj − kj − 1} .

Proof. The length of the code is apparent from the definition. Since ACar(S,k, h) is
monomially equivalent to ACar(S,k, 1), we can assume that h = 1 for (ii) and (iii). Then
(ii) is proven in [22, Proposition 3.3]. To prove (iii), note that Remark 8, ACar(Sk, h)
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gives {0} if and only if k = 0. Assume k 6= 0. Following [7, Definition 3.5], a generating
set of ACar(S,k, h) is defined as a set of monomials B ⊆ ACar(k) with the property that
for every monomial M ∈ ACar(k), there exists a monomial M ′ ∈ B such that M divides

M ′. Observe that B =

{
xn1−1
1 · · ·xnm−1

m

x
nj−kj
j

: kj > 0

}
is a generating set of ACar(S,k, h).

Thus, the result follows from [7, Theorem 3.9 (iii)]. Finally, the dual is a consequence of
the proof of the case h = 1, given in [22, Proposition 3.3], and [7, Theorem 3.3]. �

Example 10. Take K = F17 and h = 1. Let S1, S2 ⊆ K with n1 = |S1| = 6 and n2 =
|S2| = 7. The code ACar(S1×S2, (2, 2), h) is generated by the vectors ev(S1×S2, h)(M ),
where M is a point in Figure 1 (a). The dual code ACar(S1×S2, (2, 2), h)⊥ is generated
by the vectors ev(S1 × S2, L)(M ), where M is a point in Figure 1 (b).

A1

1

2

3

4

5

6

0

A2

1 2 3 4 5

(a)

A2

6

5

4

3

2

1

0
A1

5 4 3 2 1

(b)

Figure 1. The code ACar(S1 × S2, (2, 2), h), with h = 1 and K = F17

in Example 10 is generated by the vectors the vectors ev(S1 × S2, h)(M ),
where M is a point in (a). The dual code ACar(S1 × S2, (2, 2), h)⊥ is
generated by the vectors ev(S1 × S2, L)(M ), where M is a point in (b).

We now show that the dual of the tensor product of generalized Reed-Solomon codes
is an augmented Cartesian code.

Theorem 11. Given a tensor product of generalized RS codes T(S,k, g), its dual is

T(S,k, g)⊥ = ACar

(
S,k′, L

g

)
,

where k′ := (n1 − k1, . . . , nm − km). In particular, T(S, g)⊥ = ACar (S, g) .

Proof. By Lemma 9, the dual of the augmented Cartesian code ACar
(
S,k′, Lg

)
is

C(S,A⊥Car(k), g), where A⊥Car(k) =
∏m

j=1 {0, . . . , kj − 1} . Observe that C(S,A⊥Car(k), g)
is generated by the vectors(

sa1
g(s1)

, . . . ,
san
g(sn)

)
=

(
sa111 · · · sam1m

g1(s11) · · · gm(s1m)
, . . . ,

sa1n1 · · · samnm
g1(sn1) · · · gm(snm)

)
,

where for i ∈ [n], si = (si1, . . . , sim) , and for j ∈ [m], 0 ≤ aj < kj. The result follows
from the fact that these vectors also generate T(S,k, g).
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The particular case T(S, g)⊥ = ACar (S, g) is obtained when we take kj = deg(gj),
for j ∈ [m]. �

Theorem 12. The multivariate Goppa code Γ(S, g) is the subfield subcode of an aug-
mented Cartesian code. Specifically,

Γ(S, g) = ACar (S, g)q .

Proof. By Theorem 11, ACar (S, g)⊥ = T(S, g). Observe that if H is a parity check
matrix of a code C ⊆ Fn

qt , then Cq =
{
c ∈ Fn

q : Hc⊥ = 0
}
. Thus, the result follows from

Theorem 4. �

The point of view given in Theorem 12 reveals additional information about the pa-
rameters of the multivariate Goppa codes, complementing Corollary 5.

Corollary 13. The multivariate Goppa code Γ(S, g) has the following basic parameters.

(i) Length n =| S | .
(ii) Dimension k satisfying n− t deg(g) ≤ k ≤ n− deg(g).

(iii) Minimum distance d ≥ min {deg(gj) + 1}j∈[m] .

Moreover, the dual is the trace code of a tensor product of generalized Reed-Solomon codes
via Goppa codes, specifically,

Γ(S, g)⊥ = tr(T(S, g)).

Proof. Given Corollary 5, it only remains to consider the minimum distance of Γ(S, g).
By Theorem 12 and Lemma 9 (iii), d ≥ min {deg(gj) + 1}j∈[m] . �

4. Subcodes, intersections, and hulls

In this section, we build on the relationships between multivariate Goppa codes, tensor
products of GRS codes, and augmented Cartesian codes to determine subcodes, intersec-
tions, and hulls. To do so, we provide conditions on the defining sets of polynomials to
yield the desired structures. These results will be key to the construction of entanglement-
assisted quantum error correcting codes, LCD, self-orthogonal, or self-dual codes in the
next section.

First, the following result helps to identify subcodes of Goppa codes, augmented Carte-
sian codes and tensor product of GRS codes via Goppa codes.

Proposition 14. Let g = g1 · · · gm, g′ = g′1 · · · g′m ∈ Fqt [x] be such that g(S) 6= 0 6=
g′(S). Then the following hold:

(i) T(S, g) ⊆ T(S, gg′).
(ii) Γ(S, gg′) ⊆ Γ(S, g).
(iii) ACar (S, gg′) ⊆ ACar (S, g) .
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Proof. (i) By Equation (7) and the definition of a GRS code,

T(S, g) =

{(
f(s1)

g(s1)
, . . . ,

f(sn)

g(sn)

)
: degxj

(f) < deg(gj)

}
=

{(
(fg′)(s1)

(gg′)(s1)
, . . . ,

(fg′)(sn)

(gg′)(sn)

)
: degxj

(f) < deg(gj)

}
⊆

{(
f ′(s1)

(gg′)(s1)
, . . . ,

f ′(sn)

(gg′)(sn)

)
: degxj

(f ′) < deg(gjg
′
j)

}
= T(S, gg′).

(ii) By (i), tr (T(S, g)) ⊆ tr (T(S, gg′)) . Thus, the result follows from Theorem 4.
(iii) This is a consequence of (i) and Theorem 11. �

Next, we see that the intersection of multivariate Goppa codes is again a multivariate
Goppa code. In addition to generalizing [12, Theorem 3.1] to multiple variables, the next
result demonstrates that in order for the intersection of GRS code via a Goppa code to be
of the same type, we only require that the sum of the degrees of the defining polynomials
is bounded above rather than that the two polynomials are related to one another as
specified in [12, Theorem 3.1].

Theorem 15. Let g = g1 · · · gm, g′ = g′1 · · · g′m ∈ Fqt [x] be such that g(S) 6= 0 6= g′(S)
and deg(gjg

′
j) ≤ nj, for j ∈ [m]. Then the following hold:

(i) T(S, g) ∩ T(S, g′) = T(S, gcd(g, g′)).
(ii) Γ(S, g) ∩ Γ(S, g′) = Γ(S, lcm(g, g′)).

(iii) ACar (S, lcm(g, g′)) ⊆ ACar (S, g) ∩ ACar (S, g′)
⊆ ACar (S, g) + ACar (S, g′) = ACar (S, gcd(g, g′)) .

Proof. For j ∈ [m], define gcdj := gcd(gj, g
′
j) ∈ Fqt [xj] and lcmj := lcm(gj, g

′
j) ∈ Fqt [xj].

Observe that gcd := gcd(g, g′) = gcd1 · · · gcdm and lcm := lcm(g, g′) = lcm1 · · · lcmm .
There are p, p′, t, t′ ∈ Fqt [x] such that g = p gcd, g′ = p′ gcd, lcm(g, g′) = gt and
lcm(g, g′) = g′t′.

(i) By Proposition 14 (i),

T(S, gcd) ⊆ T(S, p gcd) = T(S, g)

and

T(S, gcd) ⊆ T(S, p′ gcd) = T(S, g′).

Thus T(S, gcd) ⊆ T(S, g) ∩ T(S, g′). Now take c ∈ T(S, g) ∩ T(S, g′). There are
f, f ′ ∈ Fqt [x] such that for j ∈ [m], degxj

(f) < degxj
(g), degxj

(f ′) < degxj
(g′), and

(10) c =

(
f(s1)

g(s1)
, . . . ,

f(sn)

g(sn)

)
=

(
f ′(s1)

g′(s1)
, . . . ,

f ′(sn)

g′(sn)

)
.

Observe that g′f − gf ′ ∈ I(S). As degxj
(g′f − gf ′) ≤ max

{
degxj

(g′f), degxj
(gf ′)

}
<

degxj
(gg′) ≤ nj, then g′f = gf ′. This implies that g′

gcd
f = g

gcd
f ′. As g′

gcd
and g

gcd
share

no common factors, g
gcd

divides f. There is r ∈ Fqt [x] such that f = r g
gcd
. Thus,
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g′f = r gg′

gcd
= r lcm, due lcm gcd = gg′. As lcm divides g′f, then

degxj

(
g′f

lcm

)
= degxj

(g′) + degxj
(f)− degxj

(lcm)

= degxj
(gcd) + degxj

(lcm)− degxj
(g) + degxj

(f)− degxj
(lcm)

= degxj
(gcd)− degxj

(g) + degxj
(f)

< degxj
(gcd),

where the inequality holds because degxj
(f) < degxj

(g). Equations 10 imply

c =

(
(g′f)(s1)

(lcm gcd)(s1)
, . . . ,

(g′f)(sn)

(lcm gcd)(sn)

)
=


(

g′f
lcm

)
(s1)

gcd(s1)
, . . . ,

(
g′f
lcm

)
(sn)

gcd(sn)

 .

As degxj

(
g′f
lcm

)
< degxj

(gcd), we obtain that c ∈ T(S, gcd).

(ii) By Proposition 14 (ii),

Γ(S, lcm) = Γ(S, tg) ⊆ Γ(S, g)

and

Γ(S, lcm) = Γ(S, t′g′) ⊆ Γ(S, g′).
We conclude that Γ(S, lcm) ⊆ Γ(S, g) ∩ Γ(S, g′). If c ∈ Γ(S, g) ∩ Γ(S, g′), then

n∑
i=1

ci∏m
j=1(xj − sij)

= 0 mod g(x)

and
n∑

i=1

ci∏m
j=1(xj − sij)

= 0 mod g′(x).

Thus,
n∑

i=1

ci∏m
j=1(xj − sij)

= 0 mod lcm(g, g′)(x), which means that c ∈ Γ(S, lcm(g, g′)).

(iii) By Proposition 14 (iii),

ACar (S, lcm) = ACar(S, tg) ⊆ ACar(S, g)

and

ACar(S, lcm) = ACar(S, t′g′) ⊆ ACar(S, g′).
This means that ACar(S, lcm) ⊆ ACar(S, g) ∩ ACar(S, g′). By (i) and [26, Ch. 1. §8.],
T(S, g)⊥ + T(S, g′)⊥ = T(S, gcd)⊥. Thus, by Theorem 11 we obtain

ACar (S, g) ∩ ACar (S, g′) ⊆ ACar (S, g) + ACar (S, g′) = ACar (S, gcd(g, g′)) .

�

Let (pis
a
i )a,i ∈ Fk×n

qt and (tis
a
i )a,i ∈ Fk×n

qt be two generator matrices of the same GRS

code, where the rows and columns are indexed by 0 ≤ a < k and i ∈ [n], respectively.
In [12, Lemma 2.5], the authors describe a property that these matrices should satisfy.
Specifically, if k ≤ n/2, then for i ∈ [n], pi = λti, where λ ∈ F∗qt . When k = n, it is
clear that the relation pi = λti is not valid anymore, as in this case, for any coefficients
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pi, ti, both matrices (pis
a
i )a,i ∈ Fk×n

qt and (tis
a
i )a,i ∈ Fk×n

qt generate the full space Fn
qt . The

following result extends [12, Lemma 2.5] to more variables and changes the restriction
from k ≤ n/2 to k < n. This result will be helpful in characterizing when the dual of a
tensor product of GRS codes via Goppa codes is of the same form.

Lemma 16. Let f, F ∈ Fqt [x] be such that f(S) 6= 0 6= F (S). Define k :=

(n1, . . . , nj∗−1, k, nj∗+1, . . . , nm), where k < n. Then, degxj∗

(
F
f

)
= 0 if and only if

T(S,k, f) = T(S,k, F ).

Proof. (⇒) Assume degxj∗

(
F
f

)
= 0. Recall ev(S, f)(h) =

(
h(s1)
f(s1)

, . . . ,
h(sn)
f(sn)

)
. Take

ev(S, f)(h) ∈ T(S,k, f). Then degxj∗
(h) < k. As degxj∗

(
F
f

)
= 0, we have that

degxj∗

(
hF

f

)
< k, which means that ev(S, F )(hF

f
) ∈ T(S,k, F ). Thus, ev(S, f)(h) =

ev(S, F )(hF
f

) ∈ T(S,k, F ). Now take ev(S, F )(h) ∈ T(S,k, F ). Then degxj∗
(h) < k.

As degxj∗

(
f
F

)
= degxj∗

(
F
f

)
= 0, we have that degxj∗

(
h f
F

)
< k, which means that

ev(S, f)(h f
F

) ∈ T(S,k, f). Thus, ev(S, F )(h) = ev(S, f)(h f
F

) ∈ T(S,k, f).

(⇐) Assume T(S,k, f) = T(S,k, F ). As ev(S, f)(1), . . . , ev(S, f)(xk−1j∗ ) ∈ T(S,k, f) =

T(S,k, F ), there are λ`p ∈ Fqt [x], with p, t ∈ {0, . . . , k − 1}, such that

ev(S, f)(1) = ev(S, F )(λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ),

ev(S, f)(xj∗) = ev(S, F )(λ10 + λ11xj∗ + · · ·+ λ1k−1x
k−1
j∗ ),

...

ev(S, f)(xk−1j∗ ) = ev(S, F )(λk−10 + λk−11 xj∗ + · · ·+ λk−1k−1x
k−1
j∗ ),

where degxj
(λ`p) < nj for j ∈ [m] \ {j∗} and degxj∗

(λ`p) = 0 for all p, t ∈ {0, . . . , k − 1}.
Observe that for every r ∈ [k − 1],

ev(S, f)(xrj∗) = ev(S, f)(1 · xrj∗) = ev(S, F )((λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗).

Thus, for every r ∈ [k − 1],

ev(S, F )((λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗) = ev(S, F )(λr0 + λr1xj∗ + · · ·+ λrk−1x

k−1
j∗ ),

which means that

(λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗ = λr0 + λr1xj∗ + · · ·+ λrk−1x

k−1
j∗ mod I(S).

Define hr := (λ00+λ01xj∗+· · ·+λ0k−1xk−1j∗ )·xrj∗ and h′r := λr0+λr1xj∗+· · ·+λrk−1xk−1j∗ . Recall
that the generators of the vanishing ideal I(S) have degree nj respect to xj, for j ∈ [m].
As degxj

(λ`p) < nj and degxj
(hr), degxj

(h′r) < nj for r ∈ [k − 1] and j ∈ [m] \ {j∗}.
We can also see that degxj∗

(h′r) < k < nj∗ for r ∈ [k − 1]. Thus, in order to be able to

compare hr and h′r, we just need to know degxj∗
(hr).

As degx∗j
(h1) = k < nj∗ , h1 = h′1. Thus, λ0k−1 = 0. As λ0k−1 = 0, degx∗j

(h2) = k < nj∗ .

This implies that h2 = h′2. Thus, λ0k−2 = 0. By induction, we see that λ0k−1 = λ0k−2 =
· · · = λ02. As a consequence, degx∗j

(hk−1) = k < nj∗ . Thus, hk−1 = h′k−1, which means
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that λ01 = 0. We conclude that ev(S, f)(1) = ev(S, F )(λ00). Then, F
f

= λ00, from which

we get that degxj∗

(
F
f

)
= 0. �

Observe that the condition degxj∗

(
F
f

)
= 0 means that there is an element p(x)

in Fqt [x] such that degxj∗
(p) = 0 and p(si) = F (si)

f(si)
, which happens if and only if

F − pf ∈ I(S). When m = 1, p = λ ∈ Fqt . Since deg(F − λf) < n, F = λf. Thus,
for the case m = 1, i.e. only one variable, if T(S, k, f) = T(S, k, F ) and k < n, then
F = λf, which is [12, Lemma 2.5] without the restriction k ≤ n

2
.

By Remark 3, if T(S, g) is one of the trivial spaces {0} or Fn
qt , then the dual is also a

tensor product of GRS codes via Goppa codes. For the case when T(S, g) is nontrivial,
we have the following result.

Theorem 17. Given g = g1 . . . gm ∈ Fqt [x], there exists f = f1 . . . fm ∈ Fqt [x] such that

T(S, g)⊥ = T(S, f),

if and only for some j∗ ∈ [m], the following hold:

(i) deg(fj∗gj∗) = nj∗ ,
(ii) deg(fj) = deg(gj) = nj, for all j ∈ [m] \ {j∗}, and

(iii) degxj∗

(
fg
L

)
= 0.

Proof. By Theorem 11, we just need to check that T(S, f) = ACar(S, g) if and only

if (i)-(iii) are valid. By Definition 7, ACar (S, g) = ACar
(
S,kg,

L
g

)
, where kg =

(n1 − deg(g1), . . . , nm − deg(gm)) . Thus, we will prove that T(S, f) = ACar
(
S,kg,

L
g

)
if and only if (i)-(iii) are true. Denote the j -th standard vector in Fm

qt by ej .

(⇐) Assume (i)-(iii). By (iii), degxj∗

(
L
fg

)
= degxj∗

(
fg
L

)
= 0. There is p(x) ∈ Fqt [x]

such that degxj∗
(p) = 0 and p(si) = L(si)

(fg)(si)
. Then L(si)

g(si)
= (fp)(si), which means

that degxj∗

(
L
g

)
= degxj∗

(f) = deg (fj∗) . By (ii), kg = (0, . . . , nj∗ − deg(gj∗), . . . , 0)) =

(nj∗ − deg(gj∗)) ej∗ . Using (i), kg = deg(fj∗)ej∗ . Thus, due Definition 7, ACar
(
S,kg,

L
g

)
is generated by the vectors

(
sa1

L
g
(s1)

, . . . , san
L
g
(sn)

)
, where 0 ≤ aj < nj, for all j ∈ [m]\{j∗},

and 0 ≤ aj∗ < deg(fj∗). We conclude that for k := (n1, . . . , nj∗−1, deg(fj∗), nj∗+1, . . . , nm),

ACar
(
S,kg,

L
g

)
= T

(
S,k, Lg

)
. By (ii) T (S,k, f) = T(S, f). Combining (iii) and

Lemma 16, we obtain ACar
(
S,kg,

L
g

)
= T

(
S,k, Lg

)
= T (S,k, f) = T(S, f).

(⇒) Assume T(S, f) = ACar
(
S,kg,

L
g

)
, where kg = (n1 − deg(g1), . . . , nm − deg(gm)) .

By Remark 3, as T(S, f) is nontrivial, then deg(gj) > 0, for j ∈ [m]. According to

the proof of Lemma 9 (iii), B =

{
xn1−1
1 · · ·xnm−1

m

x
deg(gj)
j

: j ∈ [m]

}
is a generating set of

ACar
(
S,kg,

L
g

)
. By Definition 1, there is a unique generating monomial for T(S, f),

meaning a monomial xa ∈ Fqt [x] such that xb divides xa if and only if ev(S, f)(xb) is in
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T(S, f). This means that the augmented code ACar
(
S,kg,

L
g

)
has a unique generating

monomial, and it should be one of the elements in B. Thus, there is j∗ ∈ [m] such that

M :=
xn1−1
1 · · ·xnm−1

m

x
deg(gj∗ )
j∗

is the generating monomial for both T(S, f) and ACar
(
S,kg,

L
g

)
.

As M is a generating monomial of T(S, f), then deg(fj) = nj, for all j ∈ [m] \ {j∗},
and deg(fj∗) = nj∗−deg(gj∗). As M is a generating monomial of ACar

(
S,kg,

L
g

)
, then

kg = (0, . . . , nj∗ − deg(gj∗), . . . , 0) , which implies deg(gj) = nj, for all j ∈ [m] \ {j∗}.
Thus, (i)-(ii) are valid and T(S,k, f) = T(S, f) = ACar

(
S,kg,

L
g

)
= T

(
S,k, Lg

)
,

where k := (n1, . . . , nj∗−1, deg(fj∗), nj∗+1, . . . , nm). By Lemma 16, (iii) is also true. �

In [12], the authors use Goppa codes (the case t = m = 1) to prove that the intersection
of certain generalized Reed-Solomon codes are also generalized Reed-Solomon codes. As
a consequence, they determine the hulls of certain generalized Reed-Solomon codes. Here,
our focus is slightly different. Even so, taking the special case t = m = 1 allows us to
recover those results. More generally, the hull of a tensor product of generalized Reed-
Solomon codes via Goppa codes is also a tensor product of generalized Reed-Solomon
codes via Goppa codes, and the hull of a multivariate Goppa code contains a multivariate
Goppa code (with equality when t = 1). More precisely, we have the following result.

Corollary 18. Let S ⊆ Fm
qt , g and f be as in Theorem 17. Then the following hold.

(i) Hull (T(S, g)) = T(S, gcd(f, g)) = Hull (ACar(S, g)) .
(ii) Γ(S, lcm(f, g)) ⊆ Hull (Γ(S, g)) , with equality when t = 1.

Proof. (i) By Theorems 11 and 17,

T(S, f) = T(S, g)⊥ = ACar(S, g) and T(S, g) = T(S, f)⊥ = ACar(S, f).

Thus, the result is a consequence of Theorem 15 (i).
(ii) By the poof of (i), T(S, g) = T(S, f)⊥ = ACar(S, f). By Corollary 5, Γ(S, g)⊥ =

tr (T(S, g)) = tr (ACar(S, f)) ⊇ Γ(S, f). Thus,

Hull (Γ(S, g)) = Γ(S, g) ∩ Γ(S, g)⊥ ⊇ Γ(S, g) ∩ Γ(S, f) = Γ(S, lcm(g, f)),

where the last equation holds due to Theorem 15 (ii). When t = 1, ACar(S, f) = Γ(S, f),
so tr (ACar(S, f)) = Γ(S, f). �

Using the conditions in Theorem 17, we can also conclude that the dimension of the
Hull of the tensor product of GRS via Goppa code is

(11) dim (Hull (T(S, g))) = dim (T(S, gcd(f, g))) = deg (gcd(f, g)) ,

and the dimension of the hull of the multivariate Goppa code is lower bounded by

(12) dim (Hull (Γ(S, g)))≥ dim (Γ(S, lcm(f, g)))≥n− t deg (lcm(f, g)) ,

with equality when t = 1.
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5. Quantum, LCD, self-orthogonal and self-dual codes

In this section, we design entanglement quantum error-correcting codes, LCD, self-
orthogonal, and self-dual codes from multivariate Goppa codes and tensor product of
GRS codes via a Goppa code relying on the hulls found in the previous section.

Entanglement-assisted quantum error-correcting codes, introduced in [6], utilize en-
tangled qubits as an enabling mechanism which allows for any linear code to be used to
construct a quantum error-correcting code. These codes are a departure from construc-
tions that employ self-dual codes. Below we use the standard notation [[n, k, d; c]]q code
to mean a q -ary entanglement-assisted quantum error-correcting code (EAQECC) that
encodes k qubits into n qubits, with minimum distance d , and c required entangled
qubits. Guenda, Jitman and Gulliver [18], building on work of Wilde and Brune [31],
showed that the shared entanglement necessary can be captured by the dimension of the
hull of the linear code used. In particular, they prove the following.

Lemma 19. [18, Corollary 3.2] Given an [n, k, d] code C over Fq , there exist EAQECCs
with parameters

[[n, k − dim (Hull(C)) , d, n− k − dim (Hull(C))]]q and

[[n, n− k − dim (Hull(C)) , d(C⊥), k − dim (Hull(C))]]q.

Proposition 20. Let S ⊆ Fm
qt , g and f be as in Theorem 17. Then the code T(S, g)

gives rise to EAQECCs with parameters

[[n, deg (g)− deg (gcd) , deg(fj∗) + 1; deg (f)− deg (gcd)]]qt and

[[n, deg (f)− deg (gcd) , deg(gj∗) + 1; deg (g)− deg (gcd)]]qt ,

where gcd := gcd(g, g′). The code Γ(S, g) gives rise to EAQECCs with parameters

[[n,≤ t(deg(lcm) + deg(g))− n,≥ deg(fj∗) + 1;≤ t deg (lcm)− deg (g)]]q and

[[n,≤ t deg (lcm)− deg (g) ,≥ deg(gj∗) + 1;≤ t(deg(lcm) + deg(g))− n]]q,

where lcm := lcm(g, g′), and equalities in the parameters of the codes when t = 1.

Proof. The first pair of quantum codes is a consequence of Lemma 19, Remark 2, and
Equation (11). The second pair of quantum codes follows from Lemma 19, Corollary 13,
and Inequality (12). �

Note that when t = 1, which means that S ⊆ Fm
q , the two pairs of q -ary entanglement-

assisted quantum error-correcting codes presented in Proposition 20 coincide. This hap-
pens becase in this case, from Corollary 5, we have that Γ(S, g)⊥ = tr(T(S, g)) = T(S, g),
which means that T(S, g) = Γ(S, f) and T(S, f) = Γ(S, g).

An [[n, k, d; c]]q EAQECC satisfies the Singleton Bound [6] n + c − k ≥ 2(d − 1),
where 0 ≤ c ≤ n− 1. The code attaching this bound is called an MDS EAQECC. As a
consequence of Proposition 20, we recover [12, Theorem 4.5].

Corollary 21. Let S ⊆ Fm
q , g and f be as in Theorem 17. Then the code T(S, g) gives

rise to an MDS EAQECC.

Proof. This is a consequence of Proposition 20. �

Using the results of Section 4, we now give conditions to find families of codes that are
LCD, self-orthogonal, or self-dual.
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Corollary 22. Let S ⊆ Fm
qt , g and f be as in Theorem 17. Then the following hold.

(i) T(S, g) is LCD if there exists j ∈ [m] with gcd(fj, gj) ∈ Fqt .
(ii) T(S, g) is self-orthogonal if g divides f .

(iii) T(S, g) is self-dual if f = g .
(iv) Γ(S, g) is LCD if t = 1 and degxj

(lcm(f, g))≥nj for all j ∈ [m].

(v) Γ(S, g) is self-orthogonal if t = 1 and f divides g.
(vi) Γ(S, g) is self-dual if t = 1 and f = g.

Proof. (i) By Theorems 11 and 17,

T(S, f) = T(S, g)⊥ = ACar(S, g) and T(S, g) = T(S, f)⊥ = ACar(S, f).

Thus, the result is a consequence of Theorem 15 (i).
(ii) By the poof of (i), T(S, g) = T(S, f)⊥ = ACar(S, f). By Corollary 5, Γ(S, g)⊥ =

tr (T(S, g)) = tr (ACar(S, f)) ⊇ Γ(S, f). Thus,

Hull (Γ(S, g)) = Γ(S, g) ∩ Γ(S, g)⊥ ⊇ Γ(S, g) ∩ Γ(S, f) = Γ(S, lcm(g, f)),

where the last equation holds because Theorem 15 (ii). When t = 1, ACar(S, f) =
Γ(S, f), so tr (ACar(S, f)) = Γ(S, f).

By Remark 3, we obtain the conditions about the LCD codes. The self-dual conditions
are a consequence of the fact that when f = g, then g = gcd(f, g) = lcm(f, g). �

Corollary 22 gives a simple path (with some help from the coding theory package [2]
for Macaulay2 [17] or Magma [5]) to find codes with a large length that are LCD, self-
orthogonal, or self-dual codes. The key steps are the following.

(1) Give sets S1, S2 ⊆ Fqt of cardinalities n1 and n2, respectively.
(2) Define Li :=

∏
s∈Si

(x− s) ∈ Fqt [x]. Find the formal derivatives L′i.
(3) Find f1, g1 ∈ Fqt [x] such that f1g1 = λ1L

′
1 + β1L1, with λ1, β1 ∈ Fqt .

(4) Find f2, g2, p ∈ Fqt [x] such that f2g2 = λ2L
′
2 + pL2, with deg(p) = n2.

Then the codes T(S, g1g2,m) and Γ(S, g1g2,m), where g2,m := g2(x1) . . . g2(xm), have both
length n1n

m
2 . As m is independent of the steps (1)-(4), after the appropriate polynomials

have been found, codes with different lengths can be derived. Observe that this is a
different approach than given in [12]. An immediate difference is that using GRS codes,
the length of the code is always bounded by the size of the field. This restriction is not
presented in the tensor product. Even more, the results of Section 5 enable a single set
of defining polynomials to produce a family of codes with different lengths over a certain
field (cf. [12, Theorem 2.6]). We show this in the following examples.

Example 23 (Family of long LCD codes). Assume F∗32 = 〈a〉 . Take S1 := {0, 1, a, a7}
and S2 := {1, a5, a7} . Define the polynomials f1 := x + 1, g1 := 2x3 + a5x2 + a5x + 1,
and f2 := g2 := x3 + ax2 + 2x. Then

f1g1 = 2L′1 + 2L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x+ a6. Then, for every m ≥ 0, define the polynomial in m
variables f2,m := f2(x1) . . . f2(xm). As gcd(f1, g1) = 1, by Remark 2 and Corollary 18,
the tensor product T(S, f1f2,m) is a [4 · 3m, 3m] LCD code over F9.
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Example 24 (Family of long self-orthogonal codes). Assume F∗32 = 〈a〉 . Take S1 :=
{0, 1, 2, a} and S2 := {1, a5, a7} . Define the polynomials f1 := ax3 + 2x2 + a7x + a,
g1 := a2x+ 1, and f2 := g2 := x3 + ax2 + 2x. Then

f1g1 = L′1 + a3L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x + a6. Then, for every m ≥ 0, define the polynomial in
m variables g2,m := g2(x1) . . . g2(xm). As g1 divides f1, and g2 divides f2, by Remark 2
and Corollary 18, the tensor product T(S, g1g2,m) is a [4 · 3m, 3m] self-orthogonal code
over F9.

Example 25 (Family of long self-dual codes). Assume F∗32 = 〈a〉 . Take S1 :=
{a, a2, a3, a5, a6, a7} and S2 := {1, a5, a7} . Define the polynomials f1 := g1 := x3 +2x+2
and f2 := g2 := x3 + ax2 + 2x. Then

f1g1 = L′1 + L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x + a6. Then, for every m ≥ 0, define the polynomial
in m variables g2,m := g2(x1) . . . g2(xm). As g1 = f1, and g2 = f2, by Remark 2 and
Corollary 18, the tensor product T(S, g1g2,m) is a [6 · 3m, 3m+1] self-dual code over F9.

6. Conclusion

In this paper, we defined multivariate Goppa codes which generalize the classical Goppa
codes. Similar to classical Goppa codes, they can be described via a parity checks and as
subfield subcodes of a family of evaluation codes. In particular, we show that considering
tensor products of generalized Reed-Solomon codes via Goppa codes leads to a parity
check matrix whose kernel restricted to the base field yields the multivariate Goppa
codes. We also prove that multivariate Goppa codes are subfield subcodes of augmented
Cartesian codes. These perspectives provide information about the code parameters as
well as their hulls. As a consequence, we obtain some entanglement- assisted quantum
error-correcting, LCD, self-orthogonal, and self-dual codes. We leave it as an exercise for
the interested reader to translate the results in this paper to expurgated subcodes of
multivariate Goppa codes.

References

[1] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher, Tanja Lange, Varun
Maram, Ingo von Maurich, Rafael Misoczki, Ruben Niederhagen, Kenneth Patterson, Edoardo Per-
sichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, and Wen. Wang. Classic McEliece: conservative code-based cryptography, 2020.“Sup-
porting documentation”. URL: https://classic.mceliece.org/nist/mceliece-20201010.pdf.

[2] Taylor Ball, Eduardo Camps, Henry Chimal-Dzul, Delio Jaramillo-Velez, Hiram H López, Nathan
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Mart́ınez-Moro, and Eliseo Sarmiento. On decoding hyperbolic codes, 2021. arXiv:2107.12594.

[9] J. Little D. Cox and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathe-
matics, Springer-Verlag, 2008.

[10] P. Delsarte. On subfield subcodes of modified Reed-Solomon codes (corresp.). IEEE Transactions
on Information Theory, 21(5):575–576, 1975. doi:10.1109/TIT.1975.1055435.

[11] D. Eisenbud. Commutative Algebra with a view toward Algebraic Geometry. Graduate Texts in
Mathematics, Springer-Verlag, New York, 1995.

[12] Yanyan Gao, Qin Yue, Xinmei Huang, and Jun Zhang. Hulls of generalized Reed-Solomon codes via
Goppa codes and their applications to quantum codes. IEEE Transactions on Information Theory,
67(10):6619–6626, 2021. doi:10.1109/TIT.2021.3074526.

[13] Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List decoding tensor products
and interleaved codes. SIAM Journal on Computing, 40(5):1432–1462, October 2011. doi:10.1137/
090778274.

[14] V. D. Goppa. A new class of linear correcting codes. Problems Inform. Transmission, 6(3):207–212,
1970.

[15] V. D. Goppa. A rational representation of codes and (l,g)-codes. Problems Inform. Transmission,
7(3):223–229, 1971.

[16] Markus Grassl. Bounds on the minimum distance of linear codes and quantum codes. URL: http:
//www.codetables.de.

[17] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic
geometry. URL: http://www.math.uiuc.edu/Macaulay2/.

[18] Kenza Guenda, Somphong Jitman, and T. Aaron Gulliver. Constructions of good entanglement-
assisted quantum error correcting codes. Designs, Codes and Cryptography, 86(1):121–136, January
2018. doi:10.1007/s10623-017-0330-z.

[19] J. Harris. Algebraic Geometry. A first course. Graduate Texts in Mathematics, Springer-Verlag,
New York, 1992.

[20] W. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press,
Cambridge, 2003.
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[22] Hiram H. López, Gretchen L. Matthews, and Daniel Valvo. Erasures repair for decreasing monomial-
cartesian and augmented reed-muller codes of high rate. IEEE Transactions on Information Theory,
2021. doi:10.1109/TIT.2021.3130096.
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[25] Hiram H. López, Gretchen L. Matthews, and Daniel Valvo. Augmented Reed-Muller codes of high
rate and erasure repair. In 2021 IEEE International Symposium on Information Theory (ISIT),
pages 438–443, 2021. doi:10.1109/ISIT45174.2021.9517854.

[26] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-correcting Codes. North-Holland, 1977.
[27] James L. Massey. Linear codes with complementary duals. Discrete Mathematics, 106-107:337–342,

1992. doi:10.1016/0012-365X(92)90563-U.
[28] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Net-

work Progress Report, 44:114–116, January 1978.

http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1126/science.1131563
http://dx.doi.org/10.1109/TIT.2020.3047624
http://dx.doi.org/10.1109/TIT.2020.3047624
http://arxiv.org/abs/2107.12594
http://dx.doi.org/10.1109/TIT.1975.1055435
http://dx.doi.org/10.1109/TIT.2021.3074526
http://dx.doi.org/10.1137/090778274
http://dx.doi.org/10.1137/090778274
http://www.codetables.de
http://www.codetables.de
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1007/s10623-017-0330-z
http://dx.doi.org/10.1007/s10623-020-00726-x
http://dx.doi.org/10.1109/TIT.2021.3130096
http://dx.doi.org/10.1007/s10623-012-9714-2
http://dx.doi.org/10.1007/s10623-021-00872-w
http://dx.doi.org/10.1109/ISIT45174.2021.9517854
http://dx.doi.org/10.1016/0012-365X(92)90563-U


MULTIVARIATE GOPPA CODES 21

[29] J. H. van Lint. Introduction to coding theory. Graduate Texts in Mathematics, Springer-Verlag,
Berlin, 1999.

[30] R. H. Villarreal. Monomial Algebras. Monographs and Research Notes in Mathematics, 2015.
[31] Mark M. Wilde and Todd A. Brun. Optimal entanglement formulas for entanglement-assisted quan-

tum coding. Phys. Rev. A, 77:064302, Jun 2008. doi:10.1103/PhysRevA.77.064302.
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