Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field

Gretchen L. Matthews and Justin D. Peachey

Abstract

The norm-trace function field is a generalization of the Hermitian function field which is of importance in coding theory. In this paper, we determine the minimal generating set of the Weierstrass semigroup of the m tuple $\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ of places on the norm-trace function field.

1. Introduction

Let q be a power of a prime and r be an integer with $r \geq 2$. Consider the function field $\mathbb{F}_{q^{r}}(x, y) / \mathbb{F}_{q^{r}}$ where

$$
N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(x)=\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(y)
$$

meaning the norm of x with respect to the extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$ is equal to the trace of y with respect to the extension $\mathbb{F}_{q^{r}} / \mathbb{F}_{q}$. This function field is called the norm-trace function field. If $r=2$, then the norm-trace function field coincides with the wellstudied Hermitian function field. The norm-trace function field was first studied by Geil in $[\mathbf{G}]$ where he considered evaluation codes and one-point algebraic geometry codes constructed from this function field. More recently, Munuera, Tizziotti, and Torres [MTT] examined two-point algebraic geometry codes and associated Weierstrass semigroups on the norm-trace function field.

Given an algebraic function field F / \mathbb{F}, where \mathbb{F} is a finite field, and distinct places P_{1}, \ldots, P_{m} of F of degree one, the Weierstrass semigroup of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is

$$
H\left(P_{1}, \ldots, P_{m}\right)=\left\{\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \mathbb{N}^{m}: \exists f \in F \text { with }(f)_{\infty}=\sum_{i=1}^{r} \alpha_{i} P_{i}\right\}
$$

where $(f)_{\infty}$ denotes the divisor of poles of f and \mathbb{N} denotes the set of nonnegative integers. The Weierstrass gap set $G\left(P_{1}, \ldots, P_{m}\right)$ of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is defined by

$$
G\left(P_{1}, \ldots, P_{m}\right)=\mathbb{N}^{m} \backslash H\left(P_{1}, \ldots P_{m}\right)
$$

[^0]In this paper, we determine the minimal generating set of the Weierstrass semigroup $H\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ on the norm-trace function field for any $m, 2 \leq m \leq q^{r-1}+$ 1.

This paper is organized as follows. This section concludes with notation utilized in the paper. Section 2 contains relevant background on the norm-trace function field. The main result is found in Section 3. This paper concludes with examples given in Section 4

Notation. The set of integers is denoted \mathbb{Z}, and \mathbb{Z}_{+}denotes the set of positive integers. As usual, given $v \in \mathbb{Z}^{m}$ where $m \in \mathbb{Z}_{+}$, the $i^{t h}$ coordinate of v is denoted by v_{i}. Define a partial order \preceq on \mathbb{Z}^{m} by $\left(n_{1}, \ldots, n_{m}\right) \preceq\left(p_{1}, \ldots, p_{m}\right)$ if and only if $n_{i} \leq p_{i}$ for all $i, 1 \leq i \leq m$. When comparing elements of \mathbb{Z}^{m}, we will always do so with respect to the partial order \preceq. We use the notation $n \prec p$ to mean $n \preceq p$ and $n \neq p$.

Given a prime power q, \mathbb{F}_{q} denotes the field with q elements. Let F / \mathbb{F}_{q} be an algebraic function field. The divisor of a function $f \in F \backslash\{0\}$ is denoted by (f).

2. Preliminaries on the norm-trace function field

In this section, we review the necessary background on the norm-trace function field; additional details may be found in [G].

Consider the norm-trace function field $F:=\mathbb{F}_{q^{r}}(x, y) / \mathbb{F}_{q^{r}}$ which has defining equation

$$
y^{q^{r-1}}+y^{q^{r-2}}+\cdots+y=x^{a+1}
$$

where $a:=\frac{q^{r}-1}{q-1}-1, q$ is a power of a prime, and $r \geq 2$ is an integer. The genus of $F / \mathbb{F}_{q^{r}}$ is $g=\frac{a\left(q^{r-1}-1\right)}{2}$. For each $\alpha \in \mathbb{F}_{q^{r}}$, there are q^{r-1} elements $\beta \in \mathbb{F}_{q^{r}}$ such that

$$
\begin{equation*}
N_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(\alpha)=\operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(\beta) \tag{2.1}
\end{equation*}
$$

For every pair $(\alpha, \beta) \in \mathbb{F}_{q^{r}}^{2}$ satisfying Equation (2.1), there is a place $P_{\alpha \beta}$ of F of degree one which is the common zero of $x-\alpha$ and $y-\beta$. In fact, the places of F of degree one are precisely these $P_{\alpha \beta}$ and P_{∞}, the common pole of x and y. In particular, there are q^{r-1} places $P_{0 b}$ with $b \in \mathcal{B}$ where

$$
\mathcal{B}:=\left\{b \in \mathbb{F}_{q^{r}}: \operatorname{Tr}_{\mathbb{F}_{q^{r}} / \mathbb{F}_{q}}(b)=0\right\} .
$$

In determining the Weierstrass semigroups $H\left(P_{\infty}\right)$ and $H\left(P_{0 b}\right)$, for $b \in \mathcal{B}$, on the norm-trace function field, the following principal divisors are quite useful:

$$
(x)=\sum_{b \in \mathcal{B}} P_{0 b}-q^{r-1} P_{\infty}
$$

and for any $b \in \mathcal{B}$,

$$
(y-b)=(a+1) P_{0 b}-(a+1) P_{\infty}
$$

Combining these with the fact that $|G(P)|=g$ for any place P of degree one, it can be shown that gap set of the infinite place is

$$
G\left(P_{\infty}\right)=\left\{\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}: \begin{array}{l}
1 \leq j \leq i \leq a-s \text { and } \\
\quad(s-1)(q-1) \leq i-j<s(q-1) \\
\text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}
$$

and the gap set of any place $P_{0 b}$ where $b \in \mathcal{B}$ is

$$
G\left(P_{0 b}\right)=\left\{\begin{array}{ll}
& 1 \leq j \leq i \leq a-s \text { and } \\
(i-j)(a+1)+j: \quad & (s-1)(q-1) \leq i-j<s(q-1) \\
& \text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}
$$

Moreover, each element of the gap set $G\left(P_{\infty}\right)$ has a unique representation of the form above; specifically if

$$
\left(q^{r-1}-i+j-1\right)(a+1)-j q^{r-1}=\left(q^{r-1}-i^{\prime}+j^{\prime}-1\right)(a+1)-j^{\prime} q^{r-1}
$$

where $1 \leq j, j^{\prime} \leq a-1$, then

$$
i^{\prime}=i \text { and } j^{\prime}=j
$$

A similar fact holds for elements of the gap set $G\left(P_{0 b}\right)$ where $b \in \mathcal{B}$. Additional details may be found in $[\mathbf{G}]$, $[\mathbf{M T T}]$, and [M09].

3. Weierstrass semigroups on the norm-trace function field

In this section, we determine the minimal generating set of the Weierstrass semigroup $H\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ on the norm-trace function field for any $m, 2 \leq$ $m \leq q^{r-1}$, and any distinct $b_{i} \in \mathcal{B}$.

Definition 3.1. Let P_{1}, \ldots, P_{m} be m distinct places of degree one of an algebraic function field of F / \mathbb{F}. Set $\Gamma\left(P_{1}\right):=H\left(P_{1}\right)$; for $m \geq 2$, set

$$
\Gamma\left(P_{1}, \ldots, P_{m}\right):=\left\{\mathbf{n} \in \mathbb{Z}_{+}^{m}: \begin{array}{l}
\mathbf{n} \text { is minimal in }\left\{\mathbf{p} \in H\left(P_{1}, \ldots, P_{m}\right): p_{i}=n_{i}\right\} \\
\text { for some } i, 1 \leq i \leq m
\end{array}\right\}
$$

In [M04] it is shown that if $2 \leq m \leq|\mathbb{F}|$, then $H\left(P_{1}, \ldots, P_{m}\right)=$

$$
\left\{\begin{array}{ll}
\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}: & \begin{array}{l}
\mathbf{u}_{\mathbf{i}} \in \boldsymbol{\Gamma}\left(\mathbf{P}_{\mathbf{1}}, \ldots, \mathbf{P}_{\mathbf{m}}\right) \text { or }\left(\mathbf{u}_{\mathbf{i}_{\mathbf{1}}}, \ldots, \mathbf{u}_{\mathbf{i}_{\mathbf{k}}}\right) \in \boldsymbol{\Gamma}\left(\mathbf{P}_{\mathbf{i}_{1}}, \ldots, \mathbf{P}_{\mathbf{i}_{\mathbf{k}}}\right) \\
\text { for some }\left\{i_{1}, \ldots, i_{m}\right\}=\{1, \ldots, m\} \text { such that } i_{1}<\cdots<i_{k} \\
\text { and } u_{i_{k+1}}=\cdots=u_{i_{m}}=0 \text { for some } 1 \leq k<m
\end{array}
\end{array}\right\}
$$

where

$$
\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}=\left(\max \left\{\mathbf{u}_{\mathbf{1}_{1}}, \ldots, \mathbf{u}_{\mathbf{m}_{\mathbf{1}}}\right\}, \ldots, \max \left\{\mathbf{u}_{\mathbf{1}_{\mathbf{m}}}, \ldots, \mathbf{u}_{\mathbf{m}_{\mathbf{m}}}\right\}\right) \in \mathbb{N}^{\mathbf{m}}
$$

is least upper bound of the vectors $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}} \in \mathbb{N}^{\mathbf{m}}$. The set $\Gamma\left(P_{1}, \ldots, P_{m}\right)$ is called the minimal generating set of the Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$. Hence, to determine the entire Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$, one only needs to determine the minimal generating sets $\Gamma\left(P_{i_{1}}, \ldots, P_{i_{k}}\right)$. The next lemma aids in finding such sets.

Lemma 3.2. [M04] Let F / \mathbb{F} be an algebraic function field where \mathbb{F} is a finite field. Suppose P_{1}, \ldots, P_{m} are distinct places of F / \mathbb{F} of degree one and $2 \leq m \leq|\mathbb{F}|$. Then
(1) $\Gamma\left(P_{1}, \ldots, P_{m}\right) \subseteq G\left(P_{1}\right) \times \cdots \times G\left(P_{m}\right)$.
(2) $\Gamma\left(P_{1}, \ldots, P_{m}\right)=\left\{\mathbf{n} \in \mathbb{Z}_{+}^{m}: \begin{array}{l}\mathbf{n} \text { is minimal in } \\ \left\{\mathbf{p} \in H\left(P_{1}, \ldots, P_{m}\right): p_{i}=n_{i}\right\} \\ \text { for all } i, 1 \leq i \leq m\end{array}\right\}$.

We aim to find $\Gamma\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ on the norm-trace function field. The case $m=2$ appears in $[\mathbf{M T T}]$ and is recorded here as the next lemma.

Lemma 3.3. [MTT] Let $b \in \mathcal{B}$. The minimal generating set of the Weierstrass semigroup of the pair $\left(P_{\infty}, P_{0 b}\right)$ of places on the norm-trace function field over $\mathbb{F}_{q^{r}}$ is

$$
\Gamma\left(P_{\infty}, P_{0 b}\right)=\left\{\begin{array}{l}
1 \leq j \leq i \leq a-s \\
\left.\left.v_{i j}: \begin{array}{l}
(s-1)(q-1) \leq i-j \leq s(q-1)-1 \\
\text { for some } 1 \leq s \leq a+1-q^{r-1}
\end{array}\right\}, ~\right\} ~
\end{array}\right\}
$$

where

$$
v_{i j}:=\left((a+1)\left(q^{r-1}-i+j-1\right)-j q^{r-1},(a+1)(i-j)+j\right)
$$

Utilizing the two lemmas above, we next prove the main result.
Theorem 3.4. Suppose $2 \leq m \leq q^{r-1}+1$. The minimal generating set of the Weierstrass semigroup of the m-tuple $\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ of places of the normtrace function field over $\mathbb{F}_{q^{r}}$ is

$$
\Gamma\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)=\left\{\begin{array}{l}
\sum_{j, \mathbf{t}}^{m} t_{k}=i-j+1, t_{k} \in \mathbb{Z}_{+}, 1 \leq j \leq i \leq a-s \\
\begin{array}{l}
k=2 \\
(s-1)(q-1) \leq i-j \leq s(q-1)-1 \\
\text { where } 1 \leq s \leq a+1-q^{r-1}
\end{array}
\end{array}\right\}
$$

where

$$
\gamma_{j, \mathbf{t}}=\left(\left(q^{r-1}-\sum_{k=2}^{m} t_{k}\right)(a+1)-j q^{r-1},\left(t_{2}-1\right)(a+1)+j, \ldots,\left(t_{m}-1\right)(a+1)+j\right) .
$$

Proof. For $2 \leq m \leq q^{r-1}+1$, set

When convenient, we write H_{m} to mean $H\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ and Γ_{m} to mean $\Gamma\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right), m \geq 2$. We prove that $S_{m}=\Gamma_{m}$ by induction on m. By Lemma 3.3, $S_{2}=\Gamma_{2}$. Assume that $\Gamma_{l}=S_{l}$ for $2 \leq l \leq m-1$. First, we show that $S_{m} \subseteq \Gamma_{m}$.

Let $s:=\gamma_{j, \mathbf{t}} \in S_{m}$. Hence,

$$
s_{1}=\left(q^{r-1}-\sum_{i=2}^{m} t_{i}\right)(a+1)-j q^{r-1}
$$

and for $2 \leq i \leq m$,
Then $s \in H_{m}$, since $\left(\frac{x_{i}=\left(t_{i}-1\right.}{\prod_{i=2}^{m}\left(y-b_{i}\right)^{t_{i}}}\right)_{\infty}=$

$$
\left(\left(q^{r-1}-\sum_{i=2}^{m} t_{i}\right)(a+1)-j q^{r-1}\right) P_{\infty}+\sum_{i=2}^{m}\left(\left(t_{i}-1\right)(a+1)+j\right) P_{0 b_{i}}
$$

It remains to show that $s \in \Gamma_{m}$.
Let $Q_{1}:=\left\{p \in H_{m}: p_{1}=s_{1}\right\}$. Then $s \in Q_{1}$. We claim that s is minimal in Q_{1}. Suppose not; that is, suppose there exists $w \in Q_{1}$ such that

$$
w \prec s .
$$

Then there exists $f \in F$ with divisor

$$
(f)=A-\left(w_{1} P_{\infty}+w_{2} P_{0 b_{2}}+\cdots+w_{m} P_{0 b_{m}}\right)
$$

where A is effective. Clearly, $w_{i} \leq s_{i}$ for $1 \leq i \leq m$ and $w_{i}<s_{i}$ for some $2 \leq i \leq m$. We may assume $w_{2}<s_{2}$ as a similar argument holds for any other i. Then

$$
w_{2}=\left(t_{2}-1\right)(a+1)+j-k
$$

for some $k \in \mathbb{Z}^{+}$.
Suppose that $j \leq k$. Notice that

$$
\left(f\left(y-b_{2}\right)^{t_{2}-1}\right)=A^{\prime}-\left(w_{1}+\left(t_{2}-1\right)(a+1)\right) P_{\infty}-(j-k) P_{0 b_{2}}-\sum_{k=3}^{m} w_{k} P_{0 b_{k}}
$$

where A^{\prime} is an effective divisor. Then

$$
v:=\left(w_{1}+\left(t_{2}-1\right)(a+1), w_{3}, \ldots, w_{m}\right) \in H\left(P_{\infty}, P_{0 b_{3}}, \ldots, P_{0 b_{m}}\right)
$$

since $j-k \leq 0$. Now, since

$$
w_{1}+\left(t_{2}-1\right)(a+1)=\left(q^{r-1}-\left(1+\sum_{i=3}^{m} t_{i}\right)\right)(a+1)-j q^{r-1}
$$

we obtain that

$$
\begin{aligned}
v & \preceq\left(\left(q^{r-1}-\sum_{i=3}^{m} t_{i}^{\prime}\right)(a+1)-j q^{r-1},\left(t_{3}^{\prime}-2\right)(a+1)+j, \ldots,\left(t_{m}^{\prime}-1\right)(a+1)+j\right) \\
& \prec \gamma_{j,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)}
\end{aligned}
$$

where $t_{3}^{\prime}=t_{3}+1$ and $t_{i}^{\prime}=t_{i}$ for $4 \leq i \leq m$. We claim that

$$
\gamma_{j,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)} \in \Gamma\left(P_{\infty}, P_{0 b_{3}}, \ldots, P_{0 b_{m}}\right)
$$

To see this, let $i^{\prime}=\sum_{i=3}^{m} t_{i}^{\prime}+j-1$. Then, $i^{\prime}-j+1=\sum_{i=3}^{m} t_{i}^{\prime}$. First, note that $\sum_{i=3}^{m} t_{i}^{\prime} \leq \sum_{i=2}^{m} t_{i}$. Thus, $i^{\prime}-j+1 \leq i-j+1$. Hence, $i^{\prime} \leq i \leq a-s$ and $i^{\prime}-j \leq i-j$. Thus, we can find an s_{l} such that $1 \leq s_{l} \leq s \leq a+1-q^{r-1}$ and $\left(s_{l}-1\right)(q-1) \leq i-j \leq s_{l}(q-1)-1$. Furthermore, $i^{\prime} \leq a-s \leq a-s_{l}$. Also, $i^{\prime}+1=\sum_{i=3}^{m} t_{i}^{\prime}+j$ implies $i^{\prime}>j$. Thus, we have that

$$
v \prec \gamma_{j,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)}
$$

and

$$
\gamma_{j,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)} \in \Gamma\left(P_{\infty}, P_{0 b_{3}}, \ldots, P_{0 b_{m}}\right)
$$

which is a contradiction. Hence, it must be that $j>k$.
Now, note that $\left(f x^{j-k}\left(y-b_{2}\right)^{t_{2}-1}\right)=$

$$
A^{\prime \prime}-\left(w_{1}+\left(t_{2}-1\right)(a+1)+(j-k) q^{r-1}\right) P_{\infty}-\sum_{i=3}^{m}\left(w_{i}-(j-k)\right) P_{0 b_{i}}
$$

where $A^{\prime \prime}$ is an effective divisor. Set

$$
v:=\left(\left(q^{r-1}-\sum_{i=3}^{m} t_{i}-1\right)(a+1)-k q^{r-1}, w_{3}-(j-k), \ldots, w_{m}-(j-k)\right)
$$

Then $v \in H_{m}$. An argument similar to that above shows

$$
v \prec \gamma_{k,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)}
$$

where $t_{3}^{\prime}=t_{3}+1$ and $t_{i}^{\prime}=t_{i}$ for $4 \leq i \leq m$, and

$$
\gamma_{k,\left(t_{3}^{\prime}, \ldots, t_{m}^{\prime}\right)} \in \Gamma\left(P_{\infty}, P_{0 b_{3}}, \ldots, P_{0 b_{m}}\right),
$$

which is a contradiction. This proves that s is minimal in Q_{1}. Hence, $s \in \Gamma_{m}$, and it follows that $S_{m} \subseteq \Gamma_{m}$.

Next, we show that $\Gamma_{m} \subseteq S_{m}$. Let $n \in \Gamma_{m}$. By Lemma 3.2(1),

$$
n \in G\left(P_{\infty}\right) \times G\left(P_{0 b_{2}}\right) \times \cdots \times G\left(P_{0 b_{m}}\right) .
$$

According to Lemma 3.3, this implies

$$
\begin{aligned}
& n_{1}=(a+1)\left(q^{r-1}-i_{1}+j_{1}-1\right)-j_{1} q^{r-1}, \text { and } \\
& n_{l}=(a+1)\left(i_{l}-j_{l}\right)+j_{l}, \text { for } 2 \leq l \leq m,
\end{aligned}
$$

where for all $l, 2 \leq l \leq m$,

$$
\begin{aligned}
& 1 \leq j_{l} \leq i_{l} \leq a-s_{l}, \\
& \left(s_{l}-1\right)(q-1) \leq i_{l}-j_{l} \leq s_{l}(q-1)-1, \text { for some } s_{l}, \\
& 1 \leq s_{l} \leq a+1-q^{r-1}
\end{aligned}
$$

We may assume without loss of generality that

$$
j_{2}=\min \left\{j_{l}: 2 \leq l \leq m\right\}
$$

since the argument is similar for any j_{l} where $j_{l}=\min \left\{j_{l}: 2 \leq l \leq m\right\}$. Then there exists $h \in F$ with

$$
(h)_{\infty}=n_{1} P_{\infty}+\sum_{k=2}^{m} n_{k} P_{0 b_{k}} .
$$

This implies $\left(h \prod_{k=3}^{m}\left(y-b_{k}\right)^{i_{k}-j_{k}+1}\right)_{\infty}=$

$$
\left(n_{1}+(a+1) \sum_{k=3}^{m}\left(i_{k}-j_{k}\right)+(a+1)(m-2)\right) P_{\infty}-n_{2} P_{0 b_{2}}
$$

and

$$
v:=\left(n_{1}+(a+1) \sum_{k=3}^{m}\left(i_{k}-j_{k}+1\right), n_{2}\right) \in H\left(P_{\infty}, P_{0 b_{2}}\right) .
$$

By Lemma 3.2(2), there exists $u \in \Gamma_{2}$ such that $u \preceq v$ and $u_{2}=n_{2}$. Lemma 3.3 implies

$$
u_{1}=(a+1)\left(q^{r-1}-i_{2}+j_{2}-1\right)-j_{2} q^{r-1}
$$

Furthermore, $u_{1}>n_{1}$; otherwise, $\left(u_{1}, u_{2}, 0, \ldots, 0\right) \prec n$, which contradicts the minimality of n in $\left\{p \in H_{m}: p_{2}=n_{2}\right\}$. Thus, $n_{1}<u_{1} \leq n_{1}+(a+1) \sum_{k=3}^{m}\left(i_{k}-j_{k}+1\right)$. Now, let

$$
w:=\left(w_{1},\left(i_{2}-j_{2}\right)(a+1)+j_{2},\left(i_{3}-j_{3}\right)(a+1)+j_{2}, \ldots,\left(i_{m}-j_{m}\right)(a+1)+j_{2}\right)
$$

where

$$
w_{1}=\max \left\{0, u_{1}-(a+1) \sum_{k=3}^{m}\left(i_{k}-j_{k}+1\right)\right\}
$$

and let $h=\frac{\prod_{b \in \mathcal{B} \backslash\left\{b_{2}, \ldots, b_{m}\right\}}(y-b)}{\prod_{k=2}^{m}\left(y-b_{k}\right)^{)_{k}-j_{k} x^{j_{2}}}}$. Then $(h)_{\infty}=w_{1} P_{\infty}+\sum_{k=2}^{m} w_{k} P_{0 b_{k}}$. Thus, $w \in H_{m}$ and $w \preceq n$. Hence,

$$
w=n
$$

As a result $w_{1}=u_{1}-(a+1) \sum_{k=3}^{m}\left(i_{k}-j_{k}+1\right)>0$ and $j_{l}=j_{2}$ for all $3 \leq l \leq m$. Moreover,

$$
i_{2}+\sum_{k=3}^{m}\left(i_{k}-j_{k}\right)+(m-2)=i_{1} \text { and } j_{2}=j_{1}
$$

by the uniqueness of representation of elements of the gap sets $G\left(P_{\infty}\right)$ and $G\left(P_{0 b}\right)$. Therefore,

$$
n=\gamma_{j_{2},\left(i_{2}-j_{2}+1, i_{3}-j_{3}+1, \ldots, i_{m}-j_{m}+1\right)}
$$

Finally, we must check that $\gamma_{j_{2},\left(i_{2}-j_{2}+1, i_{3}-j_{3}+1, \ldots, i_{m}-j_{m}+1\right)} \in \Gamma_{m}$. To do this, we check that $\gamma_{j_{2},\left(i_{2}-j_{2}+1, i_{3}-j_{3}+1, \ldots, i_{m}-j_{m}+1\right)} \in S_{m}$. Note that

$$
\begin{aligned}
& \sum_{k=2}^{m}\left(i_{k}-j_{k}+1\right)=i_{1}-j_{2}+1 \\
& 1 \leq j_{2}=j_{1} \leq i_{1} \leq a-s, \text { and }
\end{aligned}
$$

which means

$$
(s-1)(q-1) \leq i_{1}-j_{2} \leq s(q-1)-1
$$

where $1 \leq s \leq a+1-q^{r-1}$. Therefore, $\Gamma_{m} \subseteq S_{m}$. Thus, $\Gamma_{m}=S_{m}$ proving the desired description of $\Gamma\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$.

4. Examples

In this section, we consider two examples.
Example 4.1. Consider the norm-trace function field $F / F_{q^{r}}$ with $r=2$. Then $a=q$ and $F / \mathbb{F}_{q^{2}}$ is the Hermitian function field which has defining equation

$$
y^{q}+y=x^{q+1}
$$

Taking $m=2$ in Theorem 3.4 gives the minimal generating set of $\Gamma\left(P_{\infty}, P_{0 b_{2}}\right)$. Because the automorphism group of F is doubly-transitive,

$$
\Gamma\left(P_{1}, P_{2}\right)=\Gamma\left(P_{\infty}, P_{0 b_{2}}\right)
$$

for any pair $\left(P_{1}, P_{2}\right)$ of distinct degree one places of the Hermitian function field. This result first appeared as [M01, Theorem 3.4].

More generally, the minimal generating set of the Weierstrass semigroup of the m-tuple $\left(P_{\infty}, P_{0 b_{2}}, \ldots, P_{0 b_{m}}\right)$ of places of degree one of the Hermitian function field over $\mathbb{F}_{q^{2}}$ is

$$
\Gamma_{m}=\left\{\begin{array}{ll}
\gamma_{j, \mathbf{t}}: & \sum_{k=2}^{m} t_{k}=i-j+1, t_{i} \in \mathbb{Z}_{+}, 1 \leq j<i \leq q-1 \\
& 0 \leq i-j \leq q-2
\end{array}\right\}
$$

where

$$
\gamma_{j, \mathbf{t}}=\left(\left(q-\sum_{i=k}^{m} t_{k}\right)(q+1)-j q,\left(t_{2}-1\right)(q+1)+j, \ldots,\left(t_{m}-1\right)(q+1)+j\right)
$$

This result first appeared as [M04, Theorem 10]. We also note that [MMP] contains some results related to m-tuples on the Hermitian function field.

Example 4.2. Let $\mathbb{F}_{27}=\mathbb{F}_{3}(\omega)$ where $\omega^{3}-\omega+1=0$. The norm-trace function field with $q=3$ and $r=3$ is $\mathbb{F}_{27}(x, y) / \mathbb{F}_{27}$ where

$$
y^{9}+y^{3}+y-x^{13}
$$

The genus of $\mathbb{F}_{27}(x, y) / \mathbb{F}_{27}$ is 48 , and there are exactly 9 places of $\mathbb{F}_{27}(x, y) / \mathbb{F}_{27}$ of the form $P_{0 b}$:

$$
P_{00}, P_{01}, P_{02}, P_{0 \omega}, P_{0 \omega^{3}}, P_{0 \omega^{9}}, P_{0 \omega^{14}}, P_{0 \omega^{16}}, P_{0 \omega^{22}}
$$

Then

$$
G\left(P_{\infty}\right)=\left\{\begin{array}{l}
1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,19,20,21,23,24,25,28 \\
29,30,32,33,34,37,38,41,42,43,46,47,50,51,55,56,59,60,64 \\
68,69,73,77,82,86,95
\end{array}\right\}
$$

and for all $m, 2 \leq m \leq 10$,

$$
G\left(P_{0 b_{m}}\right)=\left\{\begin{array}{l}
1,2,3,4,5,6,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,27 \\
28,29,30,31,32,33,34,40,41,42,43,44,45,46,53,54,55,56,57 \\
66,67,68,69,79,80,92
\end{array}\right\}
$$

Taking $m=2$ in Theorem 3.4 yields $\Gamma\left(P_{\infty}, P_{0 b_{2}}\right)=$

$$
\left\{\begin{array}{l}
(1,23),(2,46),(3,69),(4,92),(5,11),(6,34),(7,57),(8,80),(10,22), \\
(11,45),(12,68),(14,10),(15,33),(16,56),(17,79),(19,21),(20,44), \\
(21,67),(23,9),(24,32),(25,55),(28,20),(29,43),(30,66),(32,8),(33,31), \\
(34,54),(37,19),(38,42),(41,7),(42,30),(43,53),(46,18),(47,41),(50,6), \\
(51,29),(55,17),(56,40),(59,5),(60,28),(64,16),(68,4),(69,27), \\
(73,15),(77,3),(82,14),(86,2),(95,1)
\end{array}\right\} ;
$$

this also follows from Lemma 3.3. Figure 1 illustrates how the minimal generating set $\Gamma\left(P_{\infty}, P_{0 b_{2}}\right)$ is related to the semigroup $H\left(P_{\infty}, P_{0 b_{2}}\right)$. In particular, the elements of $\Gamma\left(P_{\infty}, P_{0 b_{2}}\right)$ are shown in bold as are the elements of $\Gamma\left(P_{\infty}\right) \cap[0,2 g]$ and $\Gamma\left(P_{0 b_{2}}\right) \cap[0,2 g]$.

Taking $m=3$ in Theorem 3.4 gives $\Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}\right)=$

$$
\left\{\begin{array}{l}
(1,10,10),(2,7,33),(2,20,20),(2,33,7),(3,4,56),(3,17,43), \\
(3,30,30),(3,43,17),(3,56,4),(4,1,79),(4,14,66),(4,27,53), \\
(4,40,40),(4,53,27),(4,66,14),(4,79,1),(6,8,21),(6,21,8), \\
(7,5,44),(7,18,31),(7,31,18),(7,44,5),(8,2,67),(8,15,54), \\
(8,28,41),(8,41,28),(8,54,15),(8,67,2),(10,9,9),(11,6,32), \\
(11,19,19),(11,32,6),(12,3,55),(12,16,42),(12,29,29),(12,42,16), \\
(12,55,3),(15,7,20),(15,20,7),(16,4,43),(16,17,30),(16,30,17), \\
(16,43,4),(17,1,66),(17,14,53),(17,27,40),(17,40,27),(17,53,14), \\
(17,66,1),(19,8,8),(20,5,31),(20,18,18),(20,31,5),(21,2,54), \\
(21,15,41),(21,28,28),(21,41,15),(21,54,2),(24,6,19),(24,19,6), \\
(25,3,42),(25,16,29),(25,29,16),(25,42,3),(28,7,7),(29,4,30), \\
(29,17,17),(29,30,4),(30,1,53),(30,14,40),(30,27,27),(30,40,14), \\
(30,53,1),(33,5,18),(33,18,5),(34,2,41),(34,15,28),(34,28,15), \\
(34,41,2),(37,6,6),(38,3,29),(38,16,16),(38,29,3),(42,4,17), \\
(42,17,4),(43,1,40),(43,14,27),(43,27,14),(43,40,1),(46,5,5), \\
(47,2,28),(47,15,15),(47,28,2),(51,3,16),(51,16,3),(55,4,4), \\
(56,1,27),(56,14,14),(56,27,1),(60,2,15),(60,15,2),(64,3,3), \\
(69,1,14),(69,14,1),(73,2,2),(82,1,1)
\end{array}\right\},
$$

as shown in [M09].

Figure 1. $H\left(P_{\infty}, P_{0 b_{2}}\right) \cap[0,2 g]^{2}$

Considering $4 \leq m \leq 10$ in Theorem 3.4 gives $\Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}, P_{0 b_{4}}\right)=$
$(69,1,1,1),(56,1,1,14),(56,1,14,1),(56,14,1,1),(60,2,2,2),(47,2,2,15)$,
$\begin{aligned} & (47,2,15,2),(47,15,2,2),(51,3,3,3),(38,3,3,16),(38,3,16,3),(38,16,3,3) \text {, } \\ & (42,4,4,4),(29,4,4,17),(29,4,17,4),(29,17,4,4),(33,5,5,5),(20,5,5,18),\end{aligned}$
$(42,4,4,4),(29,4,4,17),(29,4,17,4),(29,17,4,4),(33,5,5,5),(20,5,5,18)$,
$(20,5,18,5),(20,18,5,5),(24,6,6,6),(11,6,6,19),(11,6,19,6),(11,19,6$
$(43,1,14,14),(43,1,27,1),(43,14,1,14),(43,14,14,1),(43,27,1,1),(30,1,1,40)$,
$(30,1,14,27),(30,1,27,14),(30,1,40,1),(30,14,1,27),(30,14,14,14),(30,14,27,1)$,
$(30,27,1,14),(30,27,14,1),(30,40,1,1),(34,2,2,28),(34,2,15,15),(34,2,28,2)$,
$(34,15,2,15),(34,15,15,2),(34,28,2,2),(21,2,2,41),(21,2,15,28),(21,2,28,15)$,
$(21,2,41,2),(21,15,2,28),(21,15,15,15),(21,15,28,2),(21,28,2,15),(21,28,15,2)$,
$(21,41,2,2),(25,3,3,29),(25,3,16,16),(25,3,29,3),(25,16,3,16),(25,16,16,3)$,
$(25,29,3,3),(12,3,3,42),(12,3,16,29),(12,3,29,16),(12,3,42,3),(12,16,3,29)$,
$(12,16,16,16),(12,16,29,3),(12,29,3,16),(12,29,16,3),(12,42,3,3),(16,4,4,30)$,
$(16,4,17,17),(16,4,30,4),(16,17,4,17),(16,17,17,4),(16,30,4,4),(3,4,4,43)$
$(3,4,17,30),(3,4,30,17),(3,4,43,4),(3,17,4,30),(3,17,17,17),(3,17,30,4)$,
$(3,30,4,17),(3,30,17,4),(3,43,4,4),(7,5,5,31),(7,5,18,18),(7,5,31,5)$,
$(7,18,5,18),(7,18,18,5),(7,31,5,5),(17,1,1,53),(17,1,14,40),(17,1,27,27)$,
$(17,1,40,14),(17,1,53,1),(17,14,1,40),(17,14,14,27),(17,14,27,14),(17,14,40,1)$,
$(17,27,1,27),(17,27,14,14),(17,27,27,1),(17,40,1,14),(17,40,14,1),(17,53,1,1)$,
$(4,1,1,66),(4,1,14,53),(4,1,27,40),(4,1,40,27),(4,1,53,14),(4,1,66,1)$,
$(4,14,1,53),(4,14,14,40),(4,14,27,27),(4,14,40,14),(4,14,53,1),(4,27,1,40)$,
$(4,27,14,27),(4,27,27,14),(4,27,40,1),(4,40,1,27),(4,40,14,14),(4,40,27,1)$,
$(4,53,1,14),(4,53,14,1),(4,66,1,1),(8,2,2,54),(8,2,15,41),(8,2,28,28)$,
$(8,2,41,15),(8,2,54,2),(8,15,2,41),(8,15,15,28),(8,15,28,15),(8,15,41,2)$,
$(8,28,2,28),(8,28,15,15),(8,28,28,2),(8,41,2,15),(8,41,15,2),(8,54,2,2)$
$\Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}, P_{0 b_{4}}, P_{0 b_{5}}\right)=$

$\Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}, P_{0 b_{4}}, P_{0 b_{5}}, P_{0 b_{6}}\right)=$
$(43,1,1,1,1,1),(30,1,1,1,1,14),(30,1,1,1,14,1),(30,1,1,14,1,1)$, $(30,1,14,1,1,1),(30,14,1,1,1,1),(34,2,2,2,2,2),(21,2,2,2,2,15)$, $(21,2,2,2,15,2),(21,2,2,15,2,2),(21,2,15,2,2,2),(21,15,2,2,2,2)$, $(25,3,3,3,3,3),(12,3,3,3,3,16),(12,3,3,3,16,3),(12,3,3,16,3,3)$, $(12,3,16,3,3,3),(12,16,3,3,3,3),(16,4,4,4,4,4),(3,4,4,4,4,17)$, $(3,4,4,4,17,4),(3,4,4,17,4,4),(3,4,17,4,4,4),(3,17,4,4,4,4)$, $(7,5,5,5,5,5),(17,1,1,1,1,27),(17,1,1,1,14,14),(17,1,1,1,27,1)$, $(17,1,1,14,1,14),(17,1,1,14,14,1),(17,1,1,27,1,1),(17,1,14,1,1,14)$, $(17,1,14,1,14,1),(17,1,14,14,1,1),(17,1,27,1,1,1),(17,14,1,1,1,14)$, $(17,14,1,1,14,1),(17,14,1,14,1,1),(17,14,14,1,1,1),(17,27,1,1,1,1)$, $(4,1,1,1,1,40),(4,1,1,1,14,27),(4,1,1,1,27,14),(4,1,1,1,40,1)$, $(4,1,1,14,1,27),(4,1,1,14,14,14),(4,1,1,14,27,1),(4,1,1,27,1,14)$, $(4,1,1,27,14,1),(4,1,1,40,1,1),(4,1,14,1,1,27),(4,1,14,1,14,14)$, $(4,1,14,1,27,1),(4,1,14,14,1,14),(4,1,14,14,14,1),(4,1,14,27,1,1)$, $(4,1,27,1,1,14),(4,1,27,1,14,1),(4,1,27,14,1,1),(4,1,40,1,1,1)$, $(4,14,1,1,1,27),(4,14,1,1,14,14),(4,14,1,1,27,1),(4,14,1,14,1,14)$, $(4,14,1,14,14,1),(4,14,1,27,1,1),(4,14,14,1,1,14),(4,14,14,1,14,1)$, $(4,14,14,14,1,1),(4,14,27,1,1,1),(4,27,1,1,1,14),(4,27,1,1,14,1)$, $(4,27,1,14,1,1),(4,27,14,1,1,1),(4,40,1,1,1,1),(8,2,2,2,2,28)$, $(8,2,2,2,15,15),(8,2,2,2,28,2),(8,2,2,15,2,15),(8,2,2,15,15,2)$, $(8,2,2,28,2,2),(8,2,15,2,2,15),(8,2,15,2,15,2),(8,2,15,15,2,2)$, $(8,2,28,2,2,2),(8,15,2,2,2,15),(8,15,2,2,15,2),(8,15,2,15,2,2)$, $(8,15,15,2,2,2),(8,28,2,2,2,2)$

$$
\begin{aligned}
& \Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}, P_{0 b_{4}}, P_{0 b_{5}}, P_{0 b_{6}}, P_{0 b_{7}}\right)= \\
& \left\{\begin{array}{l}
(30,1,1,1,1,1,1),(21,2,2,2,2,2,2),(12,3,3,3,3,3,3), \\
(3,4,4,4,4,4,4),(17,1,1,1,1,1,14),(17,1,1,1,1,14,1), \\
(17,1,1,1,14,1,1),(17,1,1,14,1,1,1),(17,1,14,1,1,1,1), \\
(17,14,1,1,1,1,1),(4,1,1,1,1,1,27),(4,1,1,1,1,14,14), \\
(4,1,1,1,1,27,1),(4,1,1,1,14,1,14),(4,1,1,1,14,14,1), \\
(4,1,1,1,27,1,1),(4,1,1,14,1,1,14),(4,1,1,14,1,14,1), \\
(4,1,1,14,14,1,1),(4,1,1,27,1,1,1),(4,1,14,1,1,1,14), \\
(4,1,14,1,1,14,1),(4,1,14,1,14,1,1),(4,1,14,14,1,1,1), \\
(4,1,27,1,1,1,1),(4,14,1,1,1,1,14),(4,14,1,1,1,14,1), \\
(4,14,1,1,14,1,1),(4,14,1,14,1,1,1),(4,14,14,1,1,1,1), \\
(4,27,1,1,1,1,1),(8,2,2,2,2,2,15),(8,2,2,2,2,15,2), \\
(8,2,2,2,15,2,2),(8,2,2,15,2,2,2),(8,2,15,2,2,2,2), \\
(8,15,2,2,2,2,2)
\end{array}\right. \\
& \Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{\left.0 b_{3}, P_{0 b_{4}}, P_{0 b_{5}}, P_{0 b_{6}}, P_{0 b_{7}}, P_{\left.0 b_{8}\right)}\right)=}\left\{\begin{array}{l}
(17,1,1,1,1,1,1,1),(4,1,1,1,1,1,1,14),(4,1,1,1,1,1,14,1), \\
(4,1,1,1,1,14,1,1),(4,1,1,1,14,1,1,1),(4,1,1,14,1,1,1,1), \\
(4,1,14,1,1,1,1,1),(4,14,1,1,1,1,1,1),(8,2,2,2,2,2,2,2)
\end{array}\right\},\right. \\
& \Gamma\left(P_{\infty}, P_{0 b_{2},}, P_{0 b_{3},}, P_{0 b_{4},}, P_{0 b_{5}}, P_{0 b_{6},}, P_{\left.0 b_{7}, P_{0 b_{8}}, P_{0 b_{9}}\right)=}^{\{(4,1,1,1,1,1,1,1,1)\},}\right.
\end{aligned}
$$

and

$$
\Gamma\left(P_{\infty}, P_{0 b_{2}}, P_{0 b_{3}}, P_{0 b_{4}}, P_{0 b_{5}}, P_{0 b_{6}}, P_{0 b_{7}}, P_{0 b_{8}}, P_{0 b_{9}}, P_{0 b_{10}}\right)=\emptyset
$$

References

[G] O. Geil, On codes from norm-trace curves. Finite Fields Appl. 9 (2003), no. 3, 351-371.
[HK] M. Homma and S. J. Kim, Goppa codes with Weierstrass pairs. J. Pure Appl. Algebra 162 (2001), no. 2-3, 273-290.
[K] S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. 62 (1994), 73-82.
[MMP] H. Maharaj, G. L. Matthews, and G. Pirsic, Riemann-Roch spaces of the Hermitian function field with applications to algebraic geometry codes and low-discrepancy sequences, J. Pure Appl. Algebra. 195 (2005), 261-280.
[M01] G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes and Cryptog. 22 (2001), 107-121.
[M04] G. L. Matthews, The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian curve. Finite fields and applications, 12-24, Lecture Notes in Comput. Sci., 2948, Springer, Berlin, 2004.
[M09] G. L. Matthews, On Weierstrass semigroups of some triples on norm-trace curves, Lecture Notes in Comput. Sci. 5557 (2009), 146-156.
[MTT] C. Munuera, G. C. Tizziotti, and F. Torres, Two-point codes on norm-trace curves, Coding Theory and Applications, Second International Castle Meeting, ICMCTA 2008 (A. Barbero Ed.), 128-136, Lecture Notes in Comput. Sci. 5228, Springer-Verlag Berlin Heidelberg 2008.
[S93] H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, 1993.
[S73] H. Stichtenoth, Ober die automorphismengruppe eines algebraischen funktionenkorpers von primzahlcharackteristik, teil 2, Arch. Math. 24 (1973), 615-631.
[S88] H. Stichtenoth, A note on Hermitian codes over $G F\left(q^{2}\right)$, IEEE Trans. Inform. Theory 34 (1998), no. 5, 1345-1348.

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
E-mail address: gmatthe@clemson.edu
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975
E-mail address: jpeache@clemson.edu

[^0]: Key words and phrases. Weierstrass semigroup, norm-trace function field, Hermitian function field.

 The first author was supported in part by NSF DMS-0901693 and NSA H-98230-06-1-0008.

