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Abstract. This paper is concerned with two applications of bases
of Riemann-Roch spaces. In the first application, we define the
floor of a divisor and obtain improved bounds on the parameters
of algebraic geometry codes. These bounds apply to a larger class
of codes than that of Homma and Kim (Goppa codes with Weier-
strass pairs, J. Pure Appl. Algebra 162 (2001), 273-290). Then we
determine explicit bases for large classes of Riemann-Roch spaces
of the Hermitian function field. These bases give better estimates
on the parameters of a large class of m-point Hermitian codes. In
the second application, these bases are used for fast implemen-
tation of Niederretier and Xing’s method (A construction of low-
discrepancy sequences using global function fields, Acta. Arith. 72
(1995), 281-298) for the construction of low-discrepancy sequences.

1. Introduction

This study is motivated by two primary applications: the construc-
tion of algebraic geometry codes and the construction of low-discrepancy
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sequences. In both applications, it is useful to have explicit bases of
certain Riemann-Roch spaces. In this paper we find such bases as well
as a compact description of them for the Hermitian function field.

This paper is organized as follows. In Section 2, we introduce the
notion of the floor of a divisor. Given a divisor G of a function field
F/Fq with dimL(G) > 0, the floor of G is a divisor G′ of F of minimum
degree such that L(G) = L(G′). We show that the floor of a divisor
exists and is unique. We also indicate how to find the floor of a given
divisor G, denoted bGc. In this section, we also relate the notion of a
floor of a divisor supported by m places Q1, . . . , Qm to the Weierstrass
semigroup H(Q1, . . . , Qm) and the Weierstrass gap set G(Q1, . . . , Qm)
of the m-tuple of places (Q1, . . . , Qm). Our main result in Section 2
is the following improved lower bound on the minimum distance of
algebraic geometric codes:

Theorem 2.10 Let F/Fq be a function field of genus g. Let D :=
P1 + · · · + Pn where P1, . . . , Pn are distinct rational places of F , and
let G := H + bHc be a divisor of F such that H is an effective divisor
whose support does not contain any of the places P1, . . . , Pn. Set EH :=
H − bHc. Then CΩ(G,D) is an [n, k, d] code whose parameters satisfy

k ≥ n− deg G + g − 1

and

d ≥ deg G− (2g − 2) + deg EH = 2 deg H − (2g − 2).

This bound is more general than those in [9], [4], and [11] which are
obtained by using Weierstrass gap sets. We give specific examples
(Example 2.7 and Example 2.11) to illustrate this theorem.

In Section 3, we restrict our attention to the Hermitian function field.
Recall that the Hermitian function field H = Fq2(x, y) is defined by

yq + y = xq+1.

The following are some basic facts about this function field.

Proposition 1.1. [15, Lemma VI.4.4]

(a) The genus of H is g = q(q−1)
2

.
(b) H has q3 + 1 places of degree 1 over Fq2, namely

• the common pole Q∞ of x and y, and
• for each α ∈ Fq2, there are q elements β ∈ Fq2 such that βq+β =

αq+1, and for all such pairs (α, β) there is a unique place Pα,β

of H of degree one with x(Pα,β) = α and y(Pα,β) = β.

(c) For r ≥ 0, the elements xiyj with 0 ≤ i, 0 ≤ j ≤ q − 1, and
iq + j(q + 1) ≤ r form a basis for the Riemann-Roch space L(rQ∞).
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In order to describe the results of Section 3, we set up the following
notation. For α ∈ Fq2 , define

Kα := {β : βq + β = αq+1}
and

K := {(α, β) ∈ F2
q2 : βq + β = αq+1}.

For each (α, β) ∈ K, we define

τα,β := y − β − αq(x− α).

In all that follows, whenever we write τα,β, it will be understood that
(α, β) ∈ K. Note that τα,β is the tangent line to the Hermitian curve at
the point (α : β : 1). Let α ∈ Fq2 , r ∈ Z, and kβ ∈ Z for each β ∈ Kα.
In Theorem 3.6 we show that the dimension of L(rQ∞+

∑
β∈Kα

kβPα,β)
is given by

q∑
i=0

max

{⌊
r − iq

q + 1

⌋
+

∑

β∈Kα

⌊
kβ + i

q + 1

⌋
+ 1, 0

}
.

As a consequence of the proof of this dimension formula, it follows that
the set of functions

⋃
0≤i≤q

{
(x− α)i

∏

β∈Kα

τ
eβ,i

α,β : −
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤

∑

β∈Kα

eβ,i ≤ r − iq

q + 1

}

form a basis of the space L
(
rQ∞ +

∑
β∈Kα

kβPα,β

)
. In Theorem 2.10,

we use this fact to give a formula for the floor of the divisor rQ∞ +∑
β∈Kα

kβPα,β.
Finally, in Section 4 we describe how to apply the above results in the

construction of low-discrepancy sequences using the Niederreiter-Xing
method on the Hermitian curve.

Notation Unless stated otherwise, we will use notation as in [15].
We write F/Fq to mean that F is an global function field with full
field of constants Fq. Let g = g(F ) denote the genus of F . If P is a
rational place of F , that is, a place of degree one, then vP denotes the
discrete valuation corresponding to P . Given two divisors A,A′ of F ,
the greatest common divisor of A and A′ is

gcd(A,A′) :=
∑

P

min{vP (A), vP (A′)}P.

The support of a divisor A will be denoted by supp A. The divisor of
a function f ∈ F \ {0} (resp. differential η ∈ Ω \ {0}, where Ω denotes
the space of differentials of F ) is denoted by (f) (resp. (η)). Given
a divisor A of F , the Riemann-Roch space of A is the vector space
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L(A) := {f ∈ F : (f) ≥ −A} ∪ {0} and the dimension of L(A) over Fq

is denoted by `(A). The vector space of differentials associated to A is
Ω(A) := {η ∈ Ω : (η) ≥ A} ∪ {0} and its dimension over Fq is denoted
by i(A).

Let Q1, . . . , Qm, P1, . . . , Pn be distinct rational places of F . Set
G :=

∑m
i=1 αiQi, where αi ∈ Z for all 1 ≤ i ≤ m, and set D :=

P1 + · · · + Pn. We will consider the following two algebraic geometry
codes defined using the divisors G and D:

CL(D,G) := {(f(P1), . . . , f(Pn)) : f ∈ L(G)}
and

CΩ(D,G) := {(resP1(η), . . . , resPn(η)) : η ∈ Ω(G−D)} .

These two codes are sometimes referred to as m-point codes to indicate
that there are m places in the support of the divisor G. It is well known
that CL(D,G) (resp. CΩ(D, G)) has length n (resp. n), dimension
`(G) − `(G − D) (resp. i(G − D) − i(G)), and minimum distance at
least n− deg G (resp. at least deg G− (2g − 2)).

2. Results for arbitrary function fields

Throughout this section, F/Fq denotes a global function field.

Proposition 2.1. Let G be a divisor of a function field F/Fq with
`(G) > 0. Suppose G′ is a divisor of F of minimum degree such that
L(G) = L(G′). Then G ≥ G′. Consequently, G′ is the unique divisor
with respect to the above property.

Proof: Since L(G) = L(G′) ∩ L(G) = L(gcd(G′, G)), it follows from
the minimality of the degree of G′ that deg G′ ≤ deg gcd(G′, G). On the
other hand gcd(G′, G) ≤ G′. It follows that G′ = gcd(G′, G), whence
G′ ≤ G.

Now suppose that G′ and G′′ are two divisors of F of minimum degree
such that L(G′) = L(G) = L(G′′). From the above, the fact that G′′

is a divisor of F of minimum degree such that L(G′) = L(G′′) implies
G′ ≥ G′′. Similarly, G′′ ≥ G′ since G′ is a divisor of F of minimum
degree such that L(G′′) = L(G′). Therefore, G′ = G′′. Hence, there is
a unique divisor G′ of F of minimum degree satisfying L(G) = L(G′).
2

Definition 2.2. Given a divisor G of a function field F/Fq with `(G) >
0, the floor of G is the unique divisor G′ of F of minimum degree such
that L(G) = L(G′). The floor of G will be denoted by bGc.
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Corollary 2.3. Let G1 and G2 be divisors of a function field F/Fq

with `(G1) > 0 and `(G2) > 0. Then L(G1) = L(G2) if and only if
bG1c = bG2c.
Proof: The forward implication follows from Proposition 2.1. Assume
that bG1c = bG2c. Then L(G1) = L(bG1c) = L(bG2c) = L(G2). 2

The next three results will aid in searching for the floor of a divisor.
The second of these is especially useful, because it implies that if a
divisor G is effective and supp G ∩ supp D = ∅, then supp bGc ∩
supp D = ∅.
Proposition 2.4. Let G be a divisor of F/Fq with `(G) > 0. Define the
effective divisor E := gcd(G+(x) : x ∈ L(G)\{0}). Then bGc = G−E.

Proof: Observe that for any place P , we have

min
x∈L(G)\{0}

vP (x) = −vP (G− E).

Then for any f ∈ L(G) \ {0}, vP (f) ≥ −vP (G − E), whence f ∈
L(G − E). Thus, L(G) ⊆ L(G − E). Since G − E ≤ G, we also have
L(G − E) ⊆ L(G). Hence, L(G − E) = L(G). By Proposition 2.1,
we have G − E ≥ bGc. Suppose that there is a place P such that
vP (G− E) > vP (bGc). Then G− E > G− E − P ≥ bGc, and so

L(G) = L(bGc) ⊆ L(G− E − P ) ⊆ L(G− E).

Since L(G) = L(G − E), it follows that L(G − E) = L(G − E −
P ). By the definition of E, there exists x ∈ L(G) = L(G − E) such
that vP (x) = −vP (G − E). Clearly, x 6∈ L(G − E − P ) which is a
contradiction. Therefore, vP (G− E) = vP (bGc) for all places P of F ,
and so G− E = bGc. 2

Theorem 2.5. If G is an effective divisor of F/Fq, then bGc is also
effective. In particular, if G is effective, then the support of bGc is a
subset of the support of G.

Proof: Since G is effective, the constant functions belong to L(G). It
follows that

vP (G) ≥ vP (bGc) = − min
x∈L(G)\{0}

vP (x) ≥ 0

for any place P of F . 2

Theorem 2.6. Let G be a divisor of F/Fq and let b1, . . . , bt ∈ L(G) be
a spanning set for L(G). Then

bGc = − gcd((bi) : i = 1, . . . , t).
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Proof: Let E = gcd(G + (x) : x ∈ L(G) \ {0}). Then, since any
x ∈ L(G) \ {0} is a nontrivial linear combination of the bi, G + (x) ≥
gcd(G + (bi) : i = 1, . . . , t). This implies that

E = gcd(G + (bi) : i = 1, . . . , t).

Thus
bGc = G− E

= G− gcd(G + (bi) : i = 1, . . . , t)
= − gcd((bi) : i = 1, . . . , t).

2

Example 2.7. Consider the function field F := F8(x, y)/F8 with defin-
ing equation

y8 − y = x10 − x3.

This function field is sometimes referred to as the Suzuki function field
over F8. It is easy to check that F has 65 rational places consisting of
all places Pα,β where α, β ∈ F8 and the infinite place P∞.

We will illustrate how Theorem 2.6 may be used to find the floor of
a divisor. Let

G := 14P∞ + 11P0,0.

In order to apply Theorem 2.6, we must have a spanning set for L(G).
In most cases, determining such a set is nontrivial (hence the advantage
of Theorem 3.3 in the Hermitian case). However, one can check that
the set

B :=

{
1, x, y, v, w,

v

w
,
y

w
,
x2

w
,
xy

w
,
y2

w
,
vy

w
,
v2

w

}
,

where v := y4 − x5 and w := y4x − v4 is a basis of L(G) (see Lemma
3.5). According to Theorem 2.6 and Theorem 2.5,

bGc = − gcd(vP∞(b)P∞ + vP0,0(b)P0,0 : b ∈ B).

One can then compute that

bGc = −min {0,−8,−10,−12,−13, 1, 3,−3,−5,−7,−9,−11}P∞
−min {0, 1, 3, 5, 13,−8,−10,−11,−9,−7,−5,−3}P0,0

= 13P∞ + 11P0,0.

Remark 2.8. Let (n1, . . . , nm) ∈ N0, where N0 denotes the set of
non-negative integers. Suppose Q1, . . . , Qm are distinct rational places
of F/Fq. Recall that (n1, . . . , nm) is an element of the Weierstrass
semigroup of the m-tuple of places (Q1, . . . , Qm) if and only if

`

(
m∑

i=1

niQi

)
= `

(
(nj − 1)Qj +

m∑

i=1, i6=j

niQi

)
+ 1
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for all 1 ≤ j ≤ m. The complement of the Weierstrass semigroup of the
m-tuple above is called the Weierstrass gap set of the m-tuple, denoted
G(Q1, . . . , Qm). Hence, (n1, . . . , nm) is an element of the Weierstrass
gap set of the m-tuple of places (Q1, . . . , Qm) if and only if there exists
j, 1 ≤ j ≤ m, such that

(1) `

(
m∑

i=1

niQi

)
= `

(
(nj − 1)Qj +

m∑

i=1, i 6=j

niQi

)
.

While the Weierstrass gap set of a single place is a classically studied
object, the Weierstrass gap set of an m-tuple of places was defined in
[1] for m = 2 and in [2] for m ≥ 2.

Based on these definitions, it is not surprising that there is a connec-
tion between the Weierstrass semigroup of the m-tuple (Q1, . . . , Qm)
and floors of divisors supported by the places Q1, . . . , Qm. It is easy
to see that if G =

∑m
i=1 αiQi is an effective divisor supported by m

distinct rational places, then bGc = G if and only if (α1, . . . , αm) is an
element of the Weierstrass semigroup of the m-tuple (Q1, . . . , Qm).

The main motivation for studying the notion of the floor of a divisor
is that it leads to improved estimates of the minimum distance of al-
gebraic geometric codes. The first of these improved estimates follows
immediately from the definition of the floor of a divisor. Recall that
given a divisor G, deg G ≥ degbGc.
Theorem 2.9. Let F/Fq be a function field of genus g. Let D :=
P1 + · · · + Pn where P1, . . . , Pn are distinct rational places of F , and
let G be a divisor of F such that the support of bGc does not contain
any of the places P1, . . . , Pn. Then CL(G,D) is an [n, k, d] code whose
parameters satisfy

k ≥ deg G− g + 1

and
d ≥ n− degbGc.

Notice that Theorem 2.9 provides a generalization of [7, Theorem
3]. While the notion of the floor of a divisor is clearly inspired by the
definition of the code CL(D, G), the floor may also be used to study
codes of the form CΩ(D, G). This is detailed in the following discussion.

In [9] and [4], elements of the Weierstrass gap set satisfying (1) for
all j, 1 ≤ j ≤ m, are considered. These elements of the Weierstrass
gap set have additional “symmetry” and are known as pure gaps. In
particular, Homma and Kim define the pure gap set of a pair of points
(Q1, Q2) to consist of those elements (α1, α2) of the Weierstrass gap
set of the pair (Q1, Q2) with the following “symmetry” property: the
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pairs (α′1, α2) and (α1, α
′
2) are elements of the Weierstrass gap set of

the pair (Q1, Q2) for all 0 ≤ α′1 ≤ α1 and 0 ≤ α′2 ≤ α2 [9]. We note
that this notion of symmetry agrees with that mentioned above. They
obtain an improved lower bound on the minimum distance of certain
algebraic geometry codes of the form CΩ(D,α1Q1 +α2Q2) constructed
using pure gaps of the pair (Q1, Q2). This is generalized in [4] to codes
of the form CΩ(D,

∑m
i=1 αiQi), m ≥ 2, using the pure gap set of the

m-tuple (Q1, . . . , Qm).
The following theorem shows how the usual lower bound may be

improved in a more general situation, that is, a situation where the
“symmetry” required in [9] and [4] is not necessarily present. Both [9,
Theorem 3.3] and [4, Theorem 3.4] are special cases of the next result.
In addition, we recover a corollary of [7, Theorem 4] which is typically
applied to one-point codes.

Theorem 2.10. Let F/Fq be a function field of genus g. Let D :=
P1 + · · · + Pn where P1, . . . , Pn are distinct rational places of F , and
let G := H + bHc be a divisor of F such that H is an effective divisor
whose support does not contain any of the places P1, . . . , Pn. Set EH :=
H − bHc. Then CΩ(G,D) is an [n, k, d] code whose parameters satisfy

k ≥ n− deg G + g − 1

and

d ≥ deg G− (2g − 2) + deg EH = 2 deg H − (2g − 2).

Proof: The dimension estimate is clear. Choose η ∈ Ω(G −D) such
that the codeword c := (resP1(η), . . . , resPn(η)) is of minimum weight.
We may assume that the first d coordinates of c are nonzero and that
the remaining coordinates are zero. Then, putting D′ :=

∑d
i=1 Pi, we

have (η) ≥ G−D′ so that there is an effective divisor A whose support
does not contain P1, . . . , Pd such that (η) = G−D′+A. Taking degrees
on both sides we have 2g − 2 = deg G− d + deg A. Therefore,

d = deg G− (2g − 2) + deg A.

In order to prove the claimed minimum distance bound, it suffices to
show that deg A ≥ deg EH .

Observe that

deg A ≥ `(H+A)−`(H) = `(H+A)−`(bHc) ≥ `(H+A)−`(bHc+A).

We show that deg EH = `(H + A) − `(bHc + A). Using the fact that
W := G−D′+A is a canonical divisor, we have by the Riemann-Roch
theorem that
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`(H + A)− `(bHc+ A) = deg EH + `(W −H −A)− `(W − bHc −A)
= deg EH + `(bHc −D′)− `(H −D′).

To complete the proof, we show that L(bHc − D′) = L(H − D′).
Observe that L(H − D′) ⊆ L(H) = L(bHc), whence L(H − D′) =
L(H−D′)∩L(bHc) = L(gcd(H−D′, bHc)). By assumption, supp H∩
supp D = ∅, so gcd(H − D′, bHc) = bHc − D′. This implies that
L(bHc −D′) = L(gcd(H −D′, bHc)) = L(H −D′). It follows that

d = deg G− (2g − 2) + deg A ≥ deg G− (2g − 2) + deg EH .

2

Example 2.11. As in Example 2.7, let F/F8 denote the function field
with defining equation

y8 − y = x10 − x3.

Then the genus of F is g = 14. Let us consider the code CΩ(D, 27P∞+
22P0,0) where D := P1 + · · ·+ P63 is the sum of all rational places of F
other than P∞ and P0,0. Set

G := 27P∞ + 22P0,0.

In order to apply Theorem 2.10, we must find a divisor H of F such
that H + bHc = 27P∞ + 22P0,0. According to Example 2.7, we can
take

H = 14P∞ + 11P0,0

so that

H + bHc = (14P∞ + 11P0,0) + (13P∞ + 11P0,0) = G.

Then, by applying Theorem 2.10, we see that CΩ(D,G) is a code of
length 63, dimension 27, and minimum distance at least 24. This
is the best known code over F8 of length 63 and dimension 27 (cf.
[3]). We note that this code originally appeared in a preprint by the
second author. Also, codes defined using the Suzuki function field were
considered first in [8]. Such codes were studied more recently in [5] and
the above mentioned preprint where a number of codes are given with
parameters better than the best known code of the same length and
dimension (according to [3]). It is worth noting that while there exists
a [64, 28, 24] one-point code [5], the two-point code mentioned above
cannot be obtained by shortening this one-point code. One may also
notice that [9, Theorem 3.3] and [4, Theorem 3.4] cannot be applied to
this code.
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3. Applications to the Hermitian function field

In this section, we will restrict our attention to the Hermitian func-
tion field H = Fq2(x, y)/Fq2 with defining equation yq + y = xq+1. We
recall some notation from the introduction. Let

K := {(α, β) ∈ F2
q2 : βq + β = αq+1}.

For each α ∈ Fq2 , let

Kα := {β : βq + β = αq+1},
and for each (α, β) ∈ K, set

τα,β := y − β − αq(x− α).

Throughout this section, α is a fixed element of Fq2 and r and kβ (for
each β ∈ Kα) are fixed integers. If one views H as a Kummer extension
over Fq2(y), the rational places of Fq2(y) behave as follows:

• For each γ ∈ Fq2 such that γq + γ = 0, the place y− γ is totally
ramified. If γq + γ 6= 0, the place y − γ splits completely in H.

• The pole of y is totally ramified.

For our purposes, we define the Kummer extension H as follows. Ob-
serve that

(2) τ q
α,β + τα,β = (x− α)q+1.

Then H = Fq2(x, y) = Fq2(τα,β, x). Moreover, the divisor of τα,β is

(τα,β) = (q + 1)Pα,β − (q + 1)Q∞.

Following the usual convention for rational function fields, we denote
the places of Fq2(τα,β) by their corresponding monic irreducible poly-
nomials, except in the case of the place at infinity which we denote by
P∞(τα,β). For any γ ∈ Fq2 satisfying γq + γ = 0, we have τα,β − γ =
τα,β+γ. Thus, we will write “the place τα,β+γ in Fq2(τα,β)” to mean the
place τα,β − γ. Viewing H as an extension of Fq2(τα,β), we have the
following result, which we record for reference purposes.

Lemma 3.1. Let H/Fq2 denote the Hermitian function field, and let
γ ∈ Fq2.

(a) If γq + γ = 0, the place τα,β − γ = τα,β+γ in Fq2(τα,β) is totally
ramified in the extension H/Fq2(τα,β).

(b) If γq + γ 6= 0, the place τα,β − γ in Fq2(τα,β) splits completely in
the extension H/Fq2(τα,β).

(c) The pole P∞(τα,β) of τα,β is totally ramified in the extension
H/Fq2(τα,β).
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Lemma 3.2. The functions 1, x − α, (x − α)2, ..., (x − α)q form an
integral basis of the Hermitian function field H/Fq2(τα,β) at any place
P of Fq2(τα,β) different from P∞(τα,β).

Proof: Let P be any place of H/Fq2(τα,β) such that P 6= P∞(τα,β).
The minimum polynomial of x − α over Fq2(τα,β) is φ(T ) = T q+1 −
(τ q

α,β +τα,β). Let R be any place of H which lies above P . According to
[15, Theorem III.5.10(b)], we must show that vR(φ′(x− α)) = d(R|P ).
Now vR(φ′(x − α)) = qvR(x − α). If R = Pα,γ for some γ ∈ Kα, then
d(R|P ) = e(R|P )− 1 = q and vR(x− α) = 1, so that vR(φ′(x− α)) =
d(R|P ). If R 6= Pα,γ for any γ ∈ Kα, then vR(x − α) = 0 = d(R|P )
since R is unramified over P . Therefore {1, x−α, (x−α)2, . . . , (x−α)q}
is an integral basis of H/Fq2(τα,β) at P . 2

Theorem 3.3. Consider the Hermitian function field H/Fq2 and the
divisor rQ∞ +

∑
β∈Kα

kβPα,β of H where α ∈ Fq2, r ∈ Z, and kβ ∈ Z
for each β ∈ Kα. Set

S :=



(x− α)i

∏

β∈Kα

τ
eβ,i

α,β :
eβ,i ∈ Z,−kβ ≤ eβ,i(q + 1) + i, and
(q + 1)

∑
β∈Kα

eβ,i + iq ≤ r ∀i, 0 ≤ i ≤ q



 .

Then L(rQ∞ +
∑

β∈Kα
kβPα,β) is the Fq2-linear span of S.

Proof: Let L := L(rQ∞ +
∑

β∈Kα
kβPα,β). It is readily checked that

S ⊆ L as
(x− α)i

∏

β∈Kα

τ
eβ,i

α,β


 =

∑

β∈Kα

(eβ,i(q+1)+i)Pα,β−((q+1)
∑

β∈Kα

eβ,i+iq)Q∞.

Fix β ∈ Kα. Let z ∈ L. Then Q∞ and the places Pα,δ (δ ∈ Kα)
are the only possible poles of z. Thus, by Lemma 3.2, there exist
zi ∈ Fq2(τα,β) such that

z = z0 + z1(x− α) + · · ·+ zq(x− α)q

and the only possible poles in Fq2(τα,β) of the zi are P∞(τα,β) and the
places τα,δ where δ ∈ Kα. It follows that the zi are of the form

(3) zi = gi(τα,β)
∏

δ∈Kα

τ
eδ,i

α,δ

where the eβ,i are integers, gi(τα,β) is polynomial in τα,β, and τα,δ does
not divide gi(τα,β) for any δ ∈ Kα. Thus, zi is an Fq2-linear combination
of the functions

(4) Ai,j := τ j
α,β

∏

δ∈Kα

τ
eδ,i

α,δ
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for j = 0, 1, . . . , deg gi. In order to prove the theorem, we show that
for 0 ≤ i ≤ q and j = 0, . . . , deg gi, the functions (x−α)iAi,j belong to
S. Note that

(x− α)iAi,j = (x− α)iτ
eβ,i+j

α,β

∏

δ∈Kα\{β}
τ

eδ,i

α,β .

Hence, for 0 ≤ i ≤ q and 0 ≤ j ≤ deg gi,we must show that

(5) (q + 1)(eβ,i + j) + i ≥ −kβ,

(6) (q + 1)eδ,i + i ≥ −kδ,

for δ ∈ Kα \ {β}, and

(7) (q + 1)

(
j +

∑

δ∈Kα

eδ,i

)
+ iq ≤ r.

Let δ0 ∈ Kα and put P := Pα,δ0 and τ := τα,δ0 . By Lemma 3.1, we
have

vP (zi(x− α)i) = (q + 1)vτ (zi) + i

as zi ∈ Fq2(ταδ0) = Fq2(ταβ) and x− α ∈ H. From this, it follows that
vP (zi(x− α)i) are distinct modulo q + 1 for 0 ≤ i ≤ q. Hence, we have

vP (z) = min{(q + 1)vτ (zi) + i : 0 ≤ i ≤ q} ≥ −kδ0

since z ∈ L. Thus for 0 ≤ i ≤ q,

(8) (q + 1)vτ (zi) + i ≥ −kδ0 .

From (3) we have that

vτ (zi) = eδ0,i + vτ (gi(τα,β)) = eδ0,i,

so (8) becomes

(9) (q + 1)eδ0,i + i ≥ −kδ0

for 0 ≤ i ≤ q. Now, observe that for j = 0, 1, . . . , deg gi,

(10) (q + 1)(eβ,i + j) + i ≥ (q + 1)eβ,i + i ≥ −kβ.

We have proved (5) and (6). It remains for us to prove (7).
Put Q := Q∞ and ∞ := P∞(τα,β). Then we have

vQ(zi(x− α)i) = (q + 1)v∞(zi)− iq = (q + 1)(v∞(zi))− i) + i

which are distinct modulo q + 1 for 0 ≤ i ≤ q. Hence

(11) vQ(z) = min{(q + 1)v∞(zi)− iq : 0 ≤ i ≤ q} ≥ −r.

Thus, we have for 0 ≤ i ≤ q,

(12) (q + 1)v∞(zi)− iq ≥ −r.
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From (3) we have that

(13) v∞(zi) = −
(

deg gi +
∑

δ∈Kα

eδ,i

)

so that for 0 ≤ i ≤ q, (12) becomes

(14) (q + 1)

(
deg gi +

∑

δ∈Kα

eδ,i

)
+ iq ≤ r.

Now, observe that for j = 0, 1, . . . , deg gi,

(15) (q+1)

(
j +

∑

δ∈Kα

eδ,i

)
+iq ≤ (q+1)

(
deg gi +

∑

δ∈Kα

eδ,i

)
+iq ≤ r.

This proves (7) and completes the proof of the theorem. 2

Corollary 3.4. Consider the divisor rQ∞ + kPα,β of the Hermitian
function field H/Fq2 where β ∈ Kα and r, k ∈ Z. Let

S :=

{
(x− α)iτ ei

α,β :
ei ∈ Z,−k ≤ ei(q + 1) + i, and
(q + 1)ei + iq ≤ r ∀i, 0 ≤ i ≤ q

}
.

Then S is an Fq2-basis for L(rQ∞ + kPα,β).

Proof: This follows from Theorem 3.3 since the elements of S have
distinct valuations at the place Q∞ and so are Fq2-linearly independent.
2

The next lemma will be helpful in extracting bases for the space
L(rQ∞+

∑
β∈Kα

kβPα,β) from the spanning set S given in Theorem 3.3.

Lemma 3.5. Let F/Fq be a function field. Let G be a divisor of F
and let P be a rational place of F . Let V = {vP (z) : z ∈ L(G) \ {0}}.
For each i ∈ V , choose ui ∈ L(G) such that vP (ui) = i. Then the set
B = {ui : i ∈ V } is a basis for L(G).

Proof: It is clear that the functions in B are Fq-linearly independent.
Let z ∈ L(G). We will show that z is in the linear span of the set B. If
z = 0, then we are done. Assume that z 6= 0. Then there exists i0 such
that vP (z) = vP (ui0). Choose a0 ∈ Fq such that vP (z− a0ui0) > vP (z).
If z − a0ui0 = 0, we are done. Otherwise, we can choose a1 ∈ Fq and
i1 such that vP (z− a0ui0 − a1ui1) > vP (z− a0ui0). We continue in this
way. Since B is a finite set, this process will stop, in which case we
obtain the desired result. 2
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Theorem 3.6. Consider the Hermitian function field H/Fq2 and the
divisor G := rQ∞ +

∑
β∈Kα

kβPα,β of H where α ∈ Fq2, r ∈ Z, and

kβ ∈ Z for each β ∈ Kα. The dimension of the space L(G) is given by

`(G) =
∑q

i=0 max
{⌊

r−iq
q+1

⌋
+

∑
β∈Kα

⌊
kβ+i
q+1

⌋
+ 1, 0

}

≤ r +
∑

β∈Kα
kβ + 1.

Proof: Set L := L(rQ∞ +
∑

β∈Kα
kβPα,β). For each 0 ≤ i ≤ q, let

Vi :=



−(q + 1)

∑

β∈Kα

eβ − iq :
eβ ∈ Z,−kβ ≤ eβ(q + 1) + i, and
(q + 1)

∑
β∈Kα

eβ + iq ≤ r ∀β ∈ Kα





and let V := ∪q
i=0Vi. The proof relies on two claims which are outlined

below.
Claim 1: V = {vQ∞(z) : z ∈ L \ {0}}.
Proof of Claim 1: If z ∈ L \ {0}, then it follows (from (11), (13),

(14) and (9)) that vQ∞(z) ∈ Vi for some 0 ≤ i ≤ q. Thus, {vQ∞(z) :
z ∈ L \ {0}} ⊆ V . To complete the proof of Claim 1, it remains to
verify that V ⊆ {vQ∞(z) : z ∈ L \ {0}}. Now let m ∈ V . Then m ∈ Vj

for some 0 ≤ j ≤ q. Hence, there are integers eβ, where β ∈ Kα, such
that

m = −(q + 1)
∑

β∈Kα

eβ − jq,

(q + 1)
∑

β∈Kα
eβ + jq ≤ r, and −kβ ≤ eβ(q + 1) + j for all β ∈ Kα.

Observe that vQ∞(z) = m where

z = (x− α)j
∏

β∈Kα

τ
eβ

α,β

and that z ∈ L. This concludes the proof of Claim 1.
According to Lemma 3.5, it follows that dimL = |V |. Therefore, we

proceed to count the number of elements of V . To do so, we establish
the following claim.

Claim 2: Fix i, 0 ≤ i ≤ q. Then −iq − c(q + 1) ∈ V if and only if

−
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤ c ≤ r − iq

q + 1
.

Proof of Claim 2: Observe that for any integer N , there are unique
integers a and b, with 0 ≤ a ≤ q such that N = aq + (q + 1)b. This
follows from the fact that the q + 1 numbers N , N − q, N − 2q, . . .,
N−q2 are distinct modulo q+1 so there is a unique a (0 ≤ a ≤ q) such
that N − aq ≡ 0 mod q + 1. Hence, the sets Vi are mutually disjoint.
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Thus, −iq− c(q + 1) ∈ V if and only if −iq− c(q + 1) ∈ Vi. This holds
if and only if there exist integers eβ (β ∈ Kα) such that

−c(q + 1)− iq = −(q + 1)
∑

β∈Kα

eβ − iq,

(q + 1)
∑

β∈Kα
eβ + iq ≤ r, and −kβ ≤ (q + 1)eβ + i for all β ∈ Kα.

Thus −iq− c(q + 1) ∈ V if and only if there exist integers eβ (β ∈ Kα)
such that

c =
∑

β∈Kα

eβ,

(q + 1)
∑

β∈Kα
eβ + iq ≤ r, and (q + 1)eβ + i ≥ −kβ for all β ∈ Kα (∗).

Clearly, the inequalities (∗) are equivalent to

−
∑

β∈Kα

kβ + i

q + 1
≤

∑

β∈Kα

eβ ≤ r − iq

q + 1

and

eβ ≥
⌈
−kβ + i

q + 1

⌉
= −

⌊
kβ + i

q + 1

⌋

for all β ∈ Kα. Thus the desired integers eβ exist if and only if

−
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤ c ≤ r − iq

q + 1
,

completing the proof of Claim 2.
Now it follows that |Vi| is the number of integers in the interval[
−∑

β∈Kα

⌊
kβ+i

q+1

⌋
, b r−iq

q+1
c
]
; that is,

|Vi| = max

{⌊
r − iq

q + 1

⌋
+

∑

β∈Kα

⌊
kβ + i

q + 1

⌋
+ 1, 0

}
.

Since the Vi’s are mutually disjoint, this completes the proof. 2

Corollary 3.7. Consider the Hermitian function field H/Fq2 and the
divisor rQ∞ +

∑
β∈Kα

kβPα,β of H where α ∈ Fq2, r ∈ Z, and kβ ∈ Z
for each β ∈ Kα. Then

⋃
0≤i≤q

{
(x− α)i

∏

β∈Kα

τ
eβ,i

α,β : −
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤

∑

β∈Kα

eβ,i ≤ r − iq

q + 1

}

is a basis of the space L
(
rQ∞ +

∑
β∈Kα

kβPα,β

)
.

Proof: This follows immediately from Theorem 3.3 and the proof of
Theorem 3.6. 2
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Remark 3.8. We note that Theorem 3.6 may be used to derive the
Weierstrass gap set of any m-tuple of consisting of distinct places of
the form P∞ and Pα,β of a Hermitian function field where α ∈ Fq2 is
fixed. For another approach to determining this Weierstrass gap set,
see [11] and [10]. It would also be possible to derive the set of pure
gaps of m-tuples of the form (P∞, Pα,β2 , . . . , Pα,βm) from Theorem 3.6
for a fixed α ∈ Fq2 .

Theorem 3.9. Let G := rQ∞ +
∑

β∈Kα
kβPα,β be a divisor of the

Hermitian function field H/Fq2 where r ∈ Z, α ∈ Fq2, and kβ ∈ Z for
each β ∈ Kα. The floor of G is given by

bGc = bQ∞ +
∑

β∈Kα

aβPα,β

where

aβ = −min

{
i− (q + 1)

⌊
kβ + i

q + 1

⌋
: 0 ≤ i ≤ q and Vi 6= ∅

}
,

b := max

{
(q + 1)

⌊
r − iq

q + 1

⌋
+ qi : 0 ≤ i ≤ q and Vi 6= ∅

}
,

and

Vi :=



−(q + 1)

∑

β∈Kα

eβ − iq :
eβ ∈ Z,−kβ ≤ eβ(q + 1) + i, and
(q + 1)

∑
β∈Kα

eβ,i + iq ≤ r ∀β ∈ Kα





is as defined in the proof of Theorem 3.6 for 0 ≤ i ≤ q.

Proof: We use Theorem 2.6 and Theorem 3.3. Suppose Vi 6= ∅. Then
from the proof of Theorem 3.6, we have that

−
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤

⌊
r − iq

q + 1

⌋
,

and all elements of Vi are of the form −(q + 1)
∑

β∈Kα
eβ − iq, where

eβ ≥ −
⌊

kβ+i

q+1

⌋
and

∑
β∈Kα

eβ ≤
⌊

r−iq
q+1

⌋
. Put

z = (x− α)i
∏

β∈Kα

τ
eβ

α,β.

Now, we have that the divisor of z is

(z) =
∑

β∈Kα

(i + eβ(q + 1))Pα,β −

(q + 1)

∑

β∈Kα

eβ + iq


Q∞

≥
∑

β∈Kα

(
i− (q + 1)

⌊
kβ + i

q + 1

⌋)
Pα,β −

(
(q + 1)

⌊
r − iq

q + 1

⌋
+ iq

)
Q∞.
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For each i, 0 ≤ i ≤ q, let

Si :=

{
(x− α)i

∏

β∈Kα

τ
eβ,i

α,β : −
∑

β∈Kα

⌊
kβ + i

q + 1

⌋
≤

∑

β∈Kα

eβ,i ≤ r − iq

q + 1

}
.

By Theorem 3.3 and the proof of Theorem 3.6, S := ∪q
i=1Si is a span-

ning set of L(G). By Theorem 2.6,

bGc = − gcd((z) : z ∈ S)
= −∑

β∈Kα

(
i− (q + 1)

⌊
kβ+i
q+1

⌋)
Pα,β +

(
(q + 1)

⌊
r−iq
q+1

⌋
+ iq

)
Q∞

and the desired result follows. 2

Example 3.10. Consider the Hermitian function field F := F64(x, y)
where

y8 + y = x9

and ω is a primitive element of F64. Then the genus of F is g = 28.
According to Theorem 3.9, the floor of

H := 12P∞ + 9P0,0 + 10P0,1 + 10P0,ω9

is

bHc = 9P∞ + 9P0,0 + 9P0,1 + 9P0,ω9 .

Set

G := H + bHc = 21P∞ + 18P0,0 + 19P0,1 + 19P0,ω9

and take D to be the sum of all rational places of F other than those in
the support of G. Then CΩ(D,G) is a code of length 513−4 = 509 and
dimension 459. By Theorem 2.10, the minimum distance of CΩ(D, G)
is at least 28. There is exactly one one-point code on F (that is, a code
of the form CΩ(D + P0,0 + P0,1 + P0,ω9 , αP∞)) that has dimension 459.
It has length 512, and its minimum distance is exactly 26.

Corollary 3.11. Let G := rQ∞ − ∑
β∈Kα

kβPα,β be a divisor of the

Hermitian function field H/Fq2 where r ∈ Z, α ∈ Fq2, and kβ ∈ Z for
each β ∈ Kα. Let Vi, 0 ≤ i ≤ q, be as defined in Theorem 3.9. For
each β ∈ Kα, write kβ = sβ(q + 1) + mβ with 0 ≤ mβ ≤ q, and write
r = (q + 1)r1 + r0 with 0 ≤ r0 ≤ q. For each β ∈ Kα, put iβ := 0 if
mβ = 0, otherwise put iβ := q + 1 −mβ. Also, if r0 = 0, put ir := 0,
otherwise put ir = q + 1− r0.

Then the following are equivalent:

(1) G = bGc.
(2) Vi 6= ∅ for all i ∈ {iβ : β ∈ Kα} ∪ {ir}.

Thus, if Vi = ∅ for i = iβ (resp. i = ir), then L(G) = L(G− P ) where
P = Pα,β (resp. P = Q∞).
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Proof: Put

a(i) := i− (q + 1)

⌊
kβ + i

q + 1

⌋
.

Observe that for 0 ≤ i ≤ q, the quantity

a(i) = i + mβ − kβ − (q + 1)

⌊
i + mβ

q + 1

⌋

=

{
i + mβ − kβ if i < q + 1−mβ

i + mβ − kβ − (q + 1) if i ≥ q + 1−mβ

is strictly increasing for 0 ≤ i < q+1−mβ and also for q+1−mβ ≤ i ≤ q
and so achieves a minimum for i = 0 or for i = q + 1 − mβ. Since
a(0) = mβ − kβ and a(q + 1 −mβ) = −kβ, it follows that a(i) ≥ −kβ

with equality if and only if i = q + 1 − mβ (if mβ > 0) or i = 0 (if

mβ = 0). Thus −kβ ≤ i − (q + 1)
⌊

kβ+i

q+1

⌋
with equality if and only if

i = iβ. Similarly,

−(q + 1)

⌊
r − iq

q + 1

⌋
− qi = i + r0 − r − (q + 1)

⌊
i + r0

q + 1

⌋
≥ −r

with equality if and only if i = ir. 2

Remark 3.12. Suppose G := rQ∞ −
∑m

i=2 kiPα,βi
is an effective di-

visor of the Hermitian function field H/Fq2 where βi 6= βj for i 6= j.
Then G = bGc if and only if (r,−k2, . . . ,−km) is an element of the
Weierstrass semigroup of the m-tuple (Q∞, Pα,β2 , . . . , Pα,βm). Accord-
ing to Corollary 3.11, this is the case if and only if Vi 6= ∅ for all
i ∈ {iβ : β ∈ Kα} ∪ {ir}. Therefore,

(r,−k2, . . . ,−km) ∈ H(Q∞, Pα,β2 , . . . , Pα,βm)

if and only if

Vi 6= ∅ for all i ∈ {iβ : β ∈ Kα} ∪ {ir}.
Moreover, Corollary 3.11 implies that (r,−k2, . . . ,−km) is a pure gap
of the m-tuple (Q∞, Pα,β2 , . . . , Pα,βm) if and only if Vi = ∅ for all i ∈
{iβ : β ∈ Kα} ∪ {ir}.

4. Applications to construction of low-discrepancy
sequences

The results of Section 3 can be applied in a fast implementation
of a special method to produce low-discrepancy (that is, very well-
distributed) sequences of points in high-dimensional unit cubes. Such
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points can then be used in quasi-Monte Carlo methods, e.g. for high-
dimensional numerical integration or optimization. Specifically, we pro-
duce Niederreiter-Xing sequences ([13], [12], [14] and [16]), which are
a subvariety of so-called digital (t, s)-sequences and fulfill the optimal
asymptotic order of discrepancy. In the following we give a brief indi-
cation of the background of digital (t, s)-sequences.

The general approach to produce such points is the following: to
obtain points in the s-dimensional unit cube, choose s infinite ma-
trices over some finite field Fb and some bijection between Fb and
digb := {0, . . . , b−1}. Lexicographically order the infinite digit vectors
digNb . Then for each digit vector we get a point in the unit cube by
first taking the bijection to FNb , performing the matrix transformation
with the resulting vector for each of the s infinite matrices. The s
infinite vectors in Fb are then transformed back into digit vectors by
the chosen bijection and interpreted as floating point digits of a real
number in [0, 1) for each coordinate, thus giving a point in [0, 1)s. In
praxi, we will only require - and in fact can only use - a finite por-
tion of the sequence, say, the first bm points. This means we can clip
the matrices and the vectors to size m × m and length m. The dis-
tribution quality of the resulting point set is closely related to how
large sets of linearly independent vectors can be, that consist of inital
row vectors from each of these s matrices. (This distribution quality
is expressed by a nonnegative integer parameter t, which is the same
as in the name “(t, s)-sequence”. Basically, the lower t is, the more
row vectors can be taken into such a set of independent vectors and
the better the resulting point set will be distributed according to the
measure of equidistribution called “discrepancy”.) The advantage of
the Niederreiter-Xing method originates from the fact that it employs
as such row vectors the series expansion coefficients of basis vectors of
spaces L(D) of some global function field. Briefly, the requirements are
as follows. Let F be a global function field with genus g(F ) and Fb as
the full field of constants. Suppose that F has s+1 rational places P∞,
P1, P2, . . ., Ps and let D be a divisor of F of degree 2g(F ) such that
P∞ is not in the support of D. In order for fast implementation of the
method for the construction of low-discrepancy sequences as presented
in [14], one requires fast algorithms for the following steps:

1. Compute an explicit basis for the space L(D).
2. Find explicit bases for each of the spaces L(D + jPi) for 1 ≤

i ≤ s and j = 0, 1, 2, . . ..
3. Find expansions of the basis elements above with respect to the

place P∞.
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In praxi, again, we will have an assigned m such that we need to
perform step 2 only up to j = m − 1. Also the expansions in step 3
are only relevant up to m terms. The s × m × m coefficients of the
expansions are then the entries of the matrices that are used in the
setting described above.

Now the connection to Section 3 is given by choosing a Hermitian
function field H over Fb with b = q2 and the following spaces. Using
again the notation of Section 1, let D := 2g(H)Q∞ = (q2−q)Q∞ where
the Q∞ is the the common pole of x and y. We also distinguish the
place P∞ = P0,0, the common zero of x and y. For the places P1, . . .,
Ps, we use any s of the remaining rational places of H. Of course,
s ≤ q3 − 1. For L(D), from Proposition 1.1, we can use the basis

(16) {xiyj : 0 ≤ i, 0 ≤ j ≤ q − 1, and (iq + j(q + 1)) ≤ q2 − q}.

For the space L(D+nPα,β) we use the basis from Corollary 3.4, namely

(17) {τ ei
α,β(x− α)i : ei(q + 1) + i ≥ −n and (q + 1)ei + iq ≤ q2 − q}.

Having these bases, it remains to find fast expansions with respect to
the place P0,0. We use the uniformizer x as the local parameter of P0,0.
Then one easily shows that

(18) y = xq+1 + x(q+1)q + x(q+1)q2

+ . . . .

Next we need to find expansions of the elements of the set in (17). In
particular, one also has to compute the expansion of

τ−1
α,β = (y − β − αq(x− α))−1

for different α and β. But, while α and β vary, the form of τ−1
α,β

remains the same. So, one need only expand the formal expression
(y − ν − aq(x− µ))−1 once and the expansions of all remaining τ−1

α,β

are obtained by mere substitution of µ and ν by α and β respectively.
Now the remaining expansions of the set in (17) of the bases elements
reduce to polynomial multiplication. We did an implementation of the
above procedure using KASH [6]. Below we indicate the different times
it took to obtain the points. All computations were done on a 500GHz
PC.
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q = 4: t is at most g(H)=6, base b = q2 = 16,
number of dimensions s ≤ 63

For s = 63:

m = 100: time = 4 minutes 20 seconds
m = 50: time = 1 minute 30 seconds
m = 30: time = 44 seconds
m = 10: time = 14 seconds

q = 8: t is at most g(H) = 28, base b = q2 = 64,
number of dimensions s ≤ 510

For s = 365:

m = 30: time = 16 minutes
(here there are about 6430 = 2180 > 1045 points)

m = 50: time = 28 minutes

In general for a fixed m the time per dimension was found to be a
constant (i.e. time/s). So for q = 8 and m = 30, it takes about 100 · 16

365
minutes, i.e. about 4 minutes 20 seconds.
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