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Abstract—The performance of message-passing iterative de-
coding and linear programming decoding depends on the Tanner
graph representation of the code. If the underlying graph contains
cycles, then such algorithms could produce a noncodeword output.
The study of pseudocodewords aims to explain this noncodeword
output. We examine the structure of the pseudocodewords and
show that there is a one-to-one correspondence between graph
cover pseudocodewords and integer points in a lifted fundamental
cone. This gives a simple proof that the generating function of the
pseudocodewords for a general parity-check code is rational (a
fact first proved by Li, Lu, and Wang (Lecture Notes in Computer
Science, vol. 5557, 2009) via other methods). Our approach yields
algorithms for producing this generating function and provides
tools for studying the irreducible pseudocodewords. Specifically,
Barvinok’s algorithm and the Barvinok-Woods projection algo-
rithm are applied, and irreducible pseudocodewords are found via
a Hilbert basis for the lifted fundamental cone.

Index Terms—Fundamental cone, irreducible pseudocodewords,
iterative decoding, linear programming (LP) decoding, low-density
parity-check (LDPC) code, pseudocodewords.

I. INTRODUCTION

C ODING theory allows messages to be transmitted and
information to be stored and retrieved without suf-

fering from loss and alteration of data. A decoding algorithm
seeks to uncover the original message when a possibly erro-
neous message is received. In this paper, we focus on linear
programming (LP) decoding. For low-density parity-check
(LDPC) codes, the performance of LP decoding is near that
of iterative message-passing algorithms. In fact, Koetter and
Vontobel [33] provide a link between LP decoding and iterative
message-passing algorithms via graph cover decoding. While
LP decoding may correct beyond half the minimum distance
of the code, it may output an illegitimate codeword. There
have been many attempts to study the behavior of iterative
decoders and their noncodeword outputs [10], [20]–[23]. In
[23], Koetter and Vontobel introduce an object called the fun-
damental cone which contains all (scaled linear programming,

Manuscript received April 14, 2010; revised August 19, 2010; accepted Oc-
tober 26, 2010. Date of current version January 19, 2011. This work was sup-
ported by NSF DMS-0901693.

This paper is part of the special issue on “Facets of Coding Theory: From
Algorithms to Networks,” dedicated to the scientific legacy of Ralf Koetter.

The authors are with the Department of Mathematical Sciences, Clemson
University, Clemson, SC 29634-0975 USA (e-mail: wkositw@clemson.edu;
gmatthe@clemson.edu).

Communicated by G. D. Forney, Jr., Associate Editor for the special issue on
“Facets of Coding Theory: From Algorithms to Networks.”

Digital Object Identifier 10.1109/TIT.2010.2095071

or, equivalently, nonscaled graph cover) pseudocodewords. In
[21] and [22], Koetter, Li, Vontobel, and Walker characterize
all the pseudocodewords within this cone and prove that the
pseudocodewords of a cycle code correspond to the monomials
appearing (with nonzero coefficient) in an expansion of a
rational function, specifically the edge zeta function of the
normal graph of the code. In addition, they suggest as a goal
determining such a rational function for a general parity-check
code.

In this paper, methods from discrete geometry are exploited
to give a rational generating function for the pseudocodewords
of a general parity-check code and to provide tools to study
pseudocodewords. We introduce a lifted fundamental cone ;
the fundamental cone mentioned above is a projection of .
The lifted cone has the advantage that its integer points are
precisely the pseudocodewords. This gives a simple proof that
the generating function of the pseudocodewords of a general
parity-check code is rational, a fact first proved by Li et al.
[27]. Our approach differs from that of [27] in that we use the
lifted fundamental cone and appeal to monomial substitution
methods of Barvinok and Woods [5] while they rely on gener-
ators of the fundamental cone with even entries. The methods
presented here yield algorithms for producing this generating
function; moreover, the input into these algorithms is the lifted
fundamental cone described in terms of inequalities rather
than by its extreme rays. In particular, Barvinok’s algorithm, a
breakthrough polynomial-time algorithm to count lattice points
in a rational polytope of a given dimension [2], is utilized
here. Because Barvinok’s algorithm (and subsequent improve-
ments) have been implemented in software such as LattE [12],
Barvinok 0.27 [31], and LattE macchiato [24], this perspective
gives rise to computational tools to study pseudocodewords.
In addition, the lifted fundamental cone provides a framework
for studying the irreducible pseudocodewords. Irreducible
pseudocodewords are found via a Hilbert basis for ; such
pseudocodewords are especially important as the pseudoweight
of any pseudocodeword is bounded below by the minimum
pseudoweight of its irreducible pseudocodeword components.

This paper is organized as follows. This section concludes
with a summary of notation. Section II provides a brief dis-
cussion of pseudocodewords of binary linear codes. The lifted
fundamental cone is introduced in Section III. In Section IV,
generating functions for the pseudocodewords and irreducible
pseudocodewords are investigated; Barvinok’s algorithm and
the Barvinok-Woods projection algorithm are applied. The
paper concludes with examples in Section V and final discus-
sion in Section VI.

0018-9448/$26.00 © 2011 IEEE
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Notation: The finite field with two elements is denoted
. The set of real numbers is denoted is the set of

integers, and is the set of rational numbers. The set of all
matrices with entries in is denoted , and

. Similarly, denotes the set of all
matrices (that is, vectors) with entries in . Given a
matrix denotes the entry of in the th
row and th column, denotes the th row of , and

denotes the transpose of . The th coordinate of a vector
is denoted . Given , the vector is defined

as .
We adopt the usual coding theory terminology and notation.

A binary linear code of length and dimension is a sub-
space of of dimension ; we use the term code to mean bi-
nary linear code as this paper only considers such codes. Ele-
ments of are called codewords. A parity-check matrix for the
code is a binary matrix such that is then the null
space of ; that is, an element is a codeword of if
and only if . A parity-check matrix of a code
is not unique. Since the performance of message-passing itera-
tive decoding depends on the choice of parity-check matrix, we
use the notation to emphasize that the code is given by
the parity-check matrix .

An algorithm is said to be polynomial time provided its run-
ning time is upperbounded by a polynomial in the input size of
the algorithm. The input size of , denoted by , is the
number of bits needed to express in binary. In keeping with
the references used throughout this paper, one may take
to be approximately . However, to also take into ac-
count the number of bits required to describe , it may be
more desirable to take to be .
All complexity estimates in this paper will be given in terms of

. Here and throughout the paper, the logarithm is taken base
2.

II. PRELIMINARIES

In this paper, we assume a memoryless binary-input sym-
metric-output channel. The maximum likelihood (ML) de-
coding problem for a code of length can be stated as
follows: Given a received word , find that maximizes

, the probability that is received given that is
the transmitted codeword. This can be rephrased as a linear
program (LP). To do so, consider the code as implicitly
embedded in and let

denote the codeword polytope of , meaning the convex hull of
the codewords of . Let

denote the log-likelihood ratio at the coordinate. Then the
ML decoding problem is equivalent to

Unfortunately, solving this linear program is not practical for
codes of reasonable block length; the description of the con-
straints determined by is (typically) exponential in the
block length. In an effort to make this problem more computa-
tionally feasible, Feldman, Wainwright, and Karger [14] replace
the codeword polytope with a relaxed polytope

which is the intersection of the codeword polytopes of the
simple parity-check codes defined by the rows of a parity-check
matrix of . Then

and has a more tractable representation than the original
codeword polytope. This yields a relaxation of the original LP
to what is called the Linear Code Linear Program

The associated decoder is called an LP decoder. It may be that

in which case the LP decoder is suboptimal. Indeed, this de-
coding rule may yield a vertex of that is not in ,
meaning a word that is not a codeword of . Hence,
the vertices of are called LP pseudocodewords.

Pseudocodewords may also be described in terms of graph
covers. Given a binary code , the binary matrix also
defines a bipartite graph which is the graph with biadja-
cency matrix . The graph , which is the bipartite repre-
sentation of , is called the Tanner graph due to [30]. The vertex
set of is , where is the set of
bit nodes and is the set of check nodes; one
may think of the vertex as corresponding to the th column
of and the vertex as corresponding to the th row of .
The edge set of is

Notice that is a codeword of if and
only if the binary value assignment to the bit
nodes of the Tanner graph makes the binary sum of the
values at the neighbors of every check node zero. A finite cover
of is a bipartite graph such that there exists an integer

so that for each vertex , there is a set of vertices
of with for all and

for every edge there are edges from the vertices
in to the vertices in connected in
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a 1–1 manner. A graph cover pseudocodeword of is a
vector such that there is a finite cover
of which has as a codeword and , where

are the values assigned to the copies of the bit
node in the cover of .

Given a code , each LP pseudocodeword of is
a (scaled) graph cover pseudocodeword of , and each
(scaled) graph cover pseudocodeword is a rational point in

[33]. Here, we use the term pseudocodeword to refer to a
graph cover pseudocodeword. Throughout, denotes the
set of pseudocodewords of the code . Lastly, a nonzero
pseudocodeword is said to be irreducible provided it cannot be
written as a sum of two or more nonzero pseudocodewords. We
denote by the set of all irreducible pseudocodewords
of . It is known that irreducible pseudocodewords are
the building blocks for in that any pseudocodeword
can be written as a sum of irreducible pseudocodewords.
Characterizing them immediately provides much information
about [1], [20]. Irreducible pseudocodewords are not
to be confused with minimal pseudocodewords. The minimal
pseudocodewords of a code are typically taken to be
those such that is an edge of the
fundamental cone

The set contains a multiple of each minimal pseudocode-
word of , but not every irreducible pseudocodeword arises
in this way.

In [22], the authors characterize the pseudocodewords of a
code as those integer points within the fundamental cone

which satisfy the parity-check conditions imposed by the
rows of . More formally, their result may be stated as follows.

Proposition 2.1: ([22, Theorem 4.4]) Let . Given
, the following are equivalent:

1) is a pseudocodeword of the code ;
2) and .
In this same paper, it is shown that the pseudocodewords of

a cycle code, meaning a code given by a parity-check matrix
having exactly two nonzero entries in each column, are precisely
the exponent vectors of monomials appearing with nonzero co-
efficient in the Taylor series expansion of a certain rational func-
tion. More precisely, they prove the following result.

Proposition 2.2: ([22, Theorem 5.9]) Let be a
matrix with exactly two nonzero entries in each column. Then
the following are equivalent:

1) is a pseudocodeword of the code ;
2) appears with nonzero coefficient in , the edge

zeta function of the normal graph of .
It is left open to determine a similar function for a general

parity-check code. Here, we set out to show that the generating
function for the pseudocodewords of a general parity-check
code is a rational function (a fact originally proved in [27])

which has a compact rational form, give methods to yield this
form, and provide tools for investigating the pseudocodewords.
To do this, we introduce the lifted fundamental cone in the next
section.

III. THE LIFTED FUNDAMENTAL CONE

In this section, we define the lifted fundamental cone of a
parity-check code and relate it to the fundamental cone and the
set of irreducible pseudocodewords.

Definition 3.1: Given , the lifted fundamental cone
of is

Notice that the use of the vector in Definition 3.1 is similar
to that in the reformulation of ML decoding as an integer pro-
gramming problem in [8].

To relate the lifted cone to the fundamental cone
, define the projection

(1)

We make the relationship between the lifted fundamental cone
and the pseudocodewords precise in the following proposition.

Proposition 3.2: Let . The projection is
one-to-one and

Furthermore

In other words, is a cone in whose projection is
, and its integer points correspond precisely to the pseu-

docodewords of .
Proof: Suppose that where

. Then and

We can then conclude that . Hence, is
injective.

Now

where the last equality follows from the definition of funda-
mental cone.
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Let be an integer point in . Then

and implying that . By Proposi-
tion 2.1, is a pseudocodeword of . On the
other hand, let . Then is an integer vector in

such that . Since
for some . Then im-

plies . We conclude that .

The lifted fundamental cone is certainly a rational cone; a
rational cone is the solution space of a system of finitely many
linear inequalities with integer coefficients such that
for all and . A rational cone is called pointed if it
has a vertex at the origin. The set of integer vectors in a pointed
rational cone forms an additive semigroup. The minimal set of
generators of this semigroup is finite [15] and unique [11];

is called the Hilbert basis of the cone. More precisely, given
a pointed rational cone , the Hilbert basis of is the
minimal set of vectors with the property that

We relate the Hilbert basis of and the irreducible pseu-
docodewords of in the following proposition.

Proposition 3.3: Let . The set of irreducible pseu-
docodewords of is

where is the Hilbert basis of ; that is, the set of irre-
ducible pseudocodewords of is a projection of the Hilbert
basis of the lifted fundamental cone of .

Proof: Let be the Hilbert basis of
.

Let be an irreducible pseudocodeword of
. It follows from Proposition 3.2 that for

some . Since is a Hilbert basis for
for some with . Clearly

According to Proposition 3.2, each is a pseudocode-
word. Being irreducible, cannot be written as a sum of two
or more nonzero pseudocodewords. Thus, for some

and for all . Therefore,
and .

Now consider where . Then .
Hence, is a pseudocodeword by Proposition 3.2. Suppose

for some nonzero pseudocodewords and of . By
Proposition 3.2, and where

. It then follows that

contradicting the minimality of . Therefore, is irre-
ducible, and .

IV. ENUMERATING PSEUDOCODEWORDS

The lifted fundamental cone was introduced in the previous
section. In this section, we use the lifted fundamental cone
to study , the generating function for the pseu-
docodewords of the code , as well as , the
generating function for the irreducible pseudocodewords of

.

A. The Generating Function for Pseudocodewords

We begin this subsection by addressing a question from [22].
Our approach relies on the lifted fundamental cone; for an alter-
nate proof, see [27, Theorem 13].

Theorem 4.1: Let . The generating function of the
pseudocodewords of is a rational function.

Proof: It is well-known that the generating function of a
pointed rational cone is rational ([29, Theorem 4.6.11]). Thus,
the generating function for the integer points in the lifted fun-
damental cone

is rational. Here, .
Since is not a pole of any fraction ap-

pearing in the rational expression of (see [29, Proposition
4.6.10, Theorem 4.6.11]), it follows that:

is rational where .

The proof of Theorem 4.1 employs the rational form of the
generating function of the integer points in the lifted funda-
mental cone. Alternatively, one may appeal to the method of
monomial substitution (or, specialization of rational functions)
due to Barvinok and Woods detailed below. The significance of
this approach is that such a substitution may be carried out effi-
ciently.
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Lemma 4.2: ([5, Theorem 2.6]) Given a rational function

(2)

where is a finite set, , and for
all and a monomial map

(3)

where such that the image of does not lie
entirely in the set of poles of , there is a polynomial time
algorithm which computes in the form

where is a finite set, , and
for all .

As in the proof of Theorem 4.1, let

be the generating function of the integer points in the lifted fun-
damental cone where . Then one may apply
Lemma 4.2 to obtain . Take

where is the vector with 1 in the th
coordinate and 0’s elsewhere. Then

may be found according to Lemma 4.2.

Remark 4.3: The algorithm in Lemma 4.2 takes as input the
rational function expressed as in (2) and the monomial map
as in (3). The input size of is approximately

and the input size of is approximately

(4)

where with .
Notice that Theorem 4.1 gives no information concerning the

rational form of the generating function of the pseudocodewords
other than its existence. To gain more insight into the rational
form of this generating function, we may apply standard tools
from discrete geometry. We recall these here for easy reference;
for more background, see [4], [6], and [29].

Let be linearly independent integer vectors.
The simple rational cone generated by is the set

If , then is said to be full-dimensional; if , then is
called lower-dimensional. The vectors are called the
generators of . The fundamental parallelepiped of
is the set

We sometimes write to mean the fundamental paral-
lelepiped of the given generators of . The index of a simple
rational cone , denoted , is the number of integer
points in . It can be easily proved that the index of is
the same as the volume of (see, for instance, [3, Theorem
2]). The following lemma describes the generating function for
the integer points in a simple rational cone.

Lemma 4.4: ([29, Corollary 4.6.8]) For a simple rational cone
with generators , we have

The notion of a triangulation is especially useful in investi-
gating the rational form of the generating function of the pseu-
docodewords. A triangulation of a pointed rational cone is a
finite set of simple rational cones satisfying:

1) ;
2) if , then every face of is an element of ; and
3) for all is a common face of and

.

Theorem 4.5: Given a binary matrix , the gen-
erating function of the pseudocodewords of may be ex-
pressed as

where are integer vectors and is a polynomial.
Proof: The lifted fundamental cone is clearly a

pointed rational cone. According to [29, Lemma 4.6.1] (or [6,
Theorem 3.2]), the lifted fundamental cone can be triangulated
into a finite union of simple rational cones using no new gener-
ators, meaning that the generators of each simple rational cone
are among the generators of . Hence, there exist simple
rational cones such that

and the generators for each are among the generators
of . Given , let
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Then is a simple rational cone, because the intersection of
simple rational cones resulting from a triangulation is a simple
rational cone (according to the definition of trianglation; see also
[6, Exercise 3.2]). Hence, the generating function for the integer
points of each follows from Lemma 4.4. Applying inclusion-
exclusion and Lemma 4.4, we obtain the generating function for
the integer points of the lifted fundamental cone

where are generators of . Since for each subset
, it follows that

where is a polynomial.
Now, as in the proof of Theorem 4.1, set

Then use Lemma 4.2 to obtain

where is a polynomial and for all
.

Remark 4.6:
1) The discussion in the proof of Theorem 4.5 is similar in

spirit to that of [27, Theorem 13]. However, we apply this
analysis to the lifted fundamental cone whereas they ma-
nipulate generators of the fundamental cone so that the en-
tries are all even. Both approaches involve inclusion-ex-
clusion; we exhibit the application of inclusion-exclusion
explicitly above.

2) Consider the argument in the proof of Theorem 4.5
without the application of inclusion-exclusion. The result
is a rational function whose expansion contains a mono-
mial with nonzero coefficient if and only if is a
pseudocodeword. This is demonstrated below.
Let . Let be a triangulation of
as in the proof of Theorem 4.5. Let

Applying Lemma 4.4 gives

Clearly, is a rational function, and inclusion-ex-
clusion is not required to produce this form. Moreover,
a monomial with exponent vector appears with
nonzero coefficient in a Taylor expansion of if and
only if is a pseudocodeword of . Strictly speaking,

is not a generating function for the pseudocodewords
of , because the expansion of may contain
nonzero coefficients that are integers other than 1. How-
ever, it is reminiscent of the edge zeta function related
to a cycle code in Proposition 2.2. Allowing coefficients
other than 0 and 1 has also proven useful in contexts such
as [32]; there, a connection is established between the
coefficients of the edge zeta function of a cycle code and
the Bethe entropy. In the general case discussed here,
no mathematical significance has been established. A
function similar to is mentioned in [27, Remark 1],
though without the use of the lifted fundamental cone.

While Theorem 4.5 gives a specific form of the rational func-
tion guaranteed by Theorem 4.1, this approach is still lacking
in some sense. Namely, it involves enumerating all the integer
points in the fundamental parallelepipeds ; according to
the discussion following [3, Theorem 1], the sums resulting
from Lemma 4.4 while finite may be large. Moreover, direct ap-
plication of inclusion-exclusion can be quite costly. In an effort
to circumvent these difficulties (or deal with them more effi-
ciently), we apply Barvinok’s algorithm and its improvements.
Introduced in 1994, Barvinok’s algorithm is a polynomial time
algorithm for counting the number of lattice points in a convex
polyhedron in a fixed dimension [2]. It has seen applications in
optimization, statistics, and algebra; here, we apply it to the enu-
meration of pseudocodewords of a general parity-check code.

Barvinok’s algorithm was inspired by the fact that a long
polynomial or infinite series can sometimes be written as a much
shorter rational function. Consider, for instance

While involves an infinite number of monomials, it
can be written as which involves only three monomials. Be-
cause there are a number of excellent surveys of Barvinok’s al-
gorithm, its applications, and subsequent improvements [3]–[5],
[7], [12], [25], [26], [31], we only mention those elements that
seem relevant to the study of pseudocodewords.

A simple rational cone is said to be unimodular if and only
if . Notice that if is unimodular, then is the
unique integer point in . According to Lemma 4.4, if is
unimodular, then

(5)
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where are generators of . The dual of a rational
cone is

Hence, the dual of a rational cone is a rational cone, and

according to the Bipolar Theorem. Given a set , the
indicator function of is

Generating functions of integer points in rational cones respect
linear identities of their indicator functions [4, Theorem 3.1]
as do the indicator functions of their duals [4, Corollary 2.8];
more precisely, given rational cones and

(6)

(7)

If a cone contains a straight line, then we make the
standard convention that .

Barvinok’s algorithm provides an efficient method for de-
composing a simple rational cone into simple rational cones
with smaller indices, as detailed in the following lemma.

Lemma 4.7: ([2, Theorem 5.4]) Fix . Given a simple rational
cone described in terms of rational inequalities, there
exists a polynomial time algorithm which computes a signed
decomposition

where is a simple rational cone, and

for all . Moreover, in this decomposition, the cones
, are full-dimensional whereas the cones ,

are lower-dimensional.

Theorem 4.8: Fix . Given , there ex-
ists a polynomial time algorithm which computes the generating
function of the pseudocodewords of as a finite sum

where and the are integer vectors for all .

Proof: The proof is a straightforward application of
Barvinok’s algorithm with Brion’s polarization trick (noted in
the seminal paper [9]) to the lifted fundamental cone.

First, triangulate the dual of the lifted fundamental cone
to obtain simple rational cones . Next, apply

the signed decomposition of Lemma 4.7 to each . For each
, this gives

(8)

Note that the index of is less than that of for each index
.

We claim that the lower-dimensional simple rational cones
, may be safely discarded with no effect on the gen-

erating function of the integer points in . To see this, polarize
Equation (8) back. Applying (7) gives

Now, according to (6)

as the dual of a lower-dimensional simple rational cone contains
a straight line and so

for each . Hence, the claim holds and there is no need to
keep track of the cones with (or their duals).

Iterate this procedure, applying Lemma 4.7 next to the
with . Each time, the indices of the simple rational cones
obtained decrease (doubly exponentially [4]). Continue until a
decomposition

–

is obtained with all unimodular. Then

(9)

and all are unimodular being duals of unimodular cones [4].
It follows that



KOSITWATTANARERK AND MATTHEWS: LIFTING THE FUNDAMENTAL CONE AND ENUMERATING THE PSEUDOCODEWORDS OF A PARITY-CHECK CODE 905

where each cone , is unimodular. Then Equations (6)
and (5) imply that

where are generators of .
Finally, to extract the generating function for the pseudocode-

words of , set

and use Lemma 4.2 to obtain

where for all and .

Remark 4.9:
1) Barvinok’s algorithm takes as input a pointed rational cone

described in terms of rational inequalities. Hence, one does
not have to determine the extreme rays of the cone which
are not typically available a priori.

2) The complexity of Barvinok’s algorithm applied as de-
scribed in the proof of Theorem 4.8 is , where is
the input size of . The input size is approximately

where denotes the maximum number of nonzero entries
in each row of the parity check matrix . The number of
cones associated with each set is at most . The
monomial substitution may also be done in polynomial
time according to Lemma 4.2. Note that Barvinok’s algo-
rithm is polynomial with respect to the input size assuming
the dimension is fixed. However, as the dimension of the
lifted fundamental cone grows with the length of the code
and the size of the parity check matrix, the algorithm is not
polynomial with respect to the length of the code. While
these complexity results (in particular, the dependence on

) may be disheartening, several improvements to the al-
gorithm make it a practical tool in certain situations; we
mention these below. Efficient methods for performing the
tasks mentioned in the proof of Theorem 4.8 are detailed in
[13]. Barvinok’s algorithm has been implemented in com-
puter software by at least two groups, resulting in LattE
[12] and Barvinok 0.27 [31].

3) Recently, Köppe’s primal irrational Barvinok algorithm
has been implemented in LattE macchiato [24], providing
speedups of “large factors” [25]. Irrational decomposi-
tions, introduced by Beck and Sottile [7], employ a shift
vector so that the shift of a simple rational cone has the
same integer points but contains no integer points on its

proper faces. This strategy avoids inclusion-exclusion
entirely.

4) Köppe’s work also gives the option of stopped decomposi-
tions. This allows one to specify an integer and terminate
the decomposition procedure in the proof of Theorem 4.8
when all simple rational cones in (9) are of index at
most (rather than being of index 1, i.e., unimodular). The
integer points in the associated fundamental parallepipeds
of simple rational cones are then enumerated via Smith
normal forms [25]. This may avoid what is often consid-
ered the bottleneck of Barvinok’s algorithm.

Presently, the computational limitations of this approach arise
from the size of the triangluations, specifically the number of
cones in the triangluation and the indices of those cones. Avail-
able software can handle general cones in dimensions up to say
35, meaning . However, one may analyze partic-
ular codes in say dimension 50 or higher more easily than some
codes of lower dimension due to their structure. More relevant
than dimension (or code length) is the size of the triangulation
involved. We hope that by providing this framework, we can
identify codes which are easier to analyze and use this to shed
light on more general situations.

As Barvinok’s algorithm and integer point enumeration are
relevant to a wide range of applications, it is reasonable to ex-
pect further refinements to available computational tools (and
perhaps new ones). Problems currently out of reach may be rea-
sonable in the near future. Thus, it is relevant to provide this
framework for the study of pseudocodewords.

B. Irreducible Pseudocodewords

Recall that a nonzero pseudocodeword is irreducible if and
only if it cannot be written as a sum of two or more nonzero
pseudocodewords. Proposition 3.3 relates irreducible pseu-
docodewords to the Hilbert basis of the lifted fundamental
cone via the projection . In this subsection, we apply an
element of the Barvinok-Woods projection algorithm to find
the generating function for the irreducible pseudocodewords of
a general parity-check code.

Definition 4.10: Given , the -value of the Tanner
graph of , denoted , is the maximum value that a coordinate
of an irreducible pseudocodeword of can have; that is

According to Proposition 3.3, the set of irreducible pseu-
docodewords of is finite as the Hilbert basis of is finite
[15]. It follows that the generating function of the irreducible
pseudocodewords is always a rational function; in fact, it is a
polynomial. Even so, producing such a polynomial directly is
tantamount to listing all irreducible pseudocodewords. The fol-
lowing two results from Barvinok and Woods [5] yield a rational
form for this polynomial without explicitly enumerating all the
irreducible pseudocodewords. The first result concerns the pro-
jection of integer points of a rational polytope. The second result
enables one to obtain the generating function for a set
from the generating functions of finite sets and of integer
vectors; of course, this is only of interest when .
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Lemma 4.11: ([5, Theorem 1.7]) Fix . There exists a number
and a polynomial time algorithm which, given a ra-

tional polytope and a linear transformation

such that , expresses the generating function for
as

where and are integer vectors for all .

Lemma 4.12: ([5, Corollary 3.7]) Fix . Let
be finite sets. There exists a polynomial time algorithm which,
given the generating functions for and in the form

where and are integer vectors for all
, expresses the generating function for as

where , and are integer vectors for all
.

Theorem 4.13: Fix . Given , there ex-
ists a polynomial time algorithm which computes the generating
function of the irreducible pseudocodewords, , as
a rational function.

Proof: We apply a technique similar to [5, Theorem 7.1].
Let

where is the -value of the Tanner graph of . Note that the
set contains all the irreducible pseudocodewords
of where is the projection defined in (1). Consider the
map

Let

We claim that the set of irreducible pseudocodewords of
is given by

To prove the claim, first note that by Propo-
sition 3.2. Let be an irreducible pseudocodeword of

. Then by the construction of . However,
since cannot be written as a sum of two or more nonzero pseu-
docodewords. Therefore, . Hence

Now consider . According to Proposition 3.2,
is a pseudocodeword of . Suppose

where and are nonzero pseudocodewords. It follows that
. By Proposition 3.2,

for some . Since
. This implies . It follows that

contradicting the assumption that . Therefore, is
irreducible. This proves the claim.

Applying Lemma 4.11 to and gives rational forms
for the generating functions of and . If necessary, these
expressions may be manipulated, multiplying terms by expres-
sions of the form as needed, so that as in Lemma 4.12
is obtained. Finally, an application of Lemma 4.12 to determine

completes the proof as

Remark 4.14: Similar to Lemma 4.7, the complexity of
Lemmas 4.11 and 4.12 is polynomial with respect to number
of bits needed to describe the input assuming the dimension is
fixed. In Lemma 4.11, the input size of the linear transformation

is ; the input size of the polytope defined by
rational inequalities , is

The input size in Lemma 4.12 is the input size of the rational
forms of the generating functions of and , each of which
is found as in (4).

While the Barvinok-Woods algorithm may be a promising
tool for studying the set of irreducible pseudocodewords, the al-
gorithm involves complicated routines such as algorithmic flat-
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ness theory and iterated Boolean combinations of rational gen-
erating functions; we do not know of any implementation of the
algorithm in the literature. Enumerating the irreducible pseu-
docodewords (and the Hilbert basis in general) remains a gener-
ally hard task. Nevertheless, the Hilbert basis can be efficiently
computed in some circumstances. A project-and-lift algorithm
by Hemmecke [16] has been implemented in the software 4ti2
[17].

V. EXAMPLES

This section contains examples illustrating the ideas in
Section IV.

Example 5.1: Let . Then the
simple rational cone and the fundamental parallelepiped
generated by and are as shown below.

Then

Barvinok 0.27 computes the generating function of the integer
points in to be

The above rational form results from noting that the integer
points in are the same as those in

where is the first quadrant, is the rational cone generated
by (1, 0) and (3, 1) with a vertex at (1, 0), and is the rational
cone generated by (0, 1) and (1, 2) with a vertex at (0, 1) as
shown below.

Here, one may note that , and are all shifts of unimod-
ular cones.

Example 5.2: Consider the code given by parity-check
matrix

Barvinok 0.27 computes

It is interesting to see that the above rational form for
implies that

are the only irreducible pseudocodewords of .
The code is also studied in [21], [22] where the edge

zeta function of the normal graph of is found. While the
rational form of the generating function above is simpler than
that of [21], [22], it lacks the combinatorial connection of the
edge zeta function.

Example 5.3: In this example, we consider the sim-
plex code with two different choices for parity-check matrix.
Let

Note that and differ only in the last row. The last row of
is the binary sum of the last two rows of .

The irreducible pseudocodewords of and are
found using 4ti2 [17]. The irreducible pseudocodewords of

which are not codewords of are the following:
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Since the parity-check matrices and are nearly iden-
tical, one may expect the pseudocodewords of and the
pseudocodewords of to be mostly the same. On the con-
trary, while there are only 20 irreducible pseudocodewords for

, 4ti2 finds 39 irreducible pseudocodewords for .
Moreover

This implies

One may infer that the simplex code represented by
is more prone to error than the same code represented by .

It is interesting to note that the irreducible pseudocodewords
of coincide with the minimal pseudocodewords of

found in [28].
The choice of the parity-check matrix is important to mes-

sage-passing iterative and LP decoders, and to better understand
this we need information on the pseudocodewords. While sev-
eral of the algorithms mentioned have been implemented in soft-
ware, there are still limitations to the size of the problem the
software can handle. Even so, new approaches are resulting in
great speed-ups. For now, it may be the case that some of the
ideas described here provide theoretical tools for the study of
pseudocodewords and code representation. Perhaps these will
be helpful in making a more combinatorial connection between
the generating function of the pseudocodewords and a graphical
representation of the code, as in the cycle code case.

VI. CONCLUSION

In this paper, we introduce the lifted fundamental cone as
a tool for studying the pseudocodewords of a binary linear
code. The approach taken here yields a rational function that
enumerates the pseudocodewords of a general parity-check
code and provides new tools to aid in the study of pseu-
docodewords (and irreducible pseudocodewords). Applying
Barvinok’s algorithm to the lifted fundamental cone yields a
polynomial time algorithm for producing the generating func-
tion for the pseudocodewords. Moreover, the set of irreducible
pseudocodewords is simply a projection of the Hilbert basis for
the cone. This makes it possible to use computational tools and
their software implementations to study the pseudocodewords
of a parity-check code.
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