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Abstract. In (IEEE Trans. Inform. Theory 48 no. 2 (2002), 535–537), Xing

and Chen show that there exist algebraic geometry codes from the Hermitian

function field over Fq2 constructed using Fq2 -rational divisors which are im-
provements over the much-studied one-point Hermitian codes. In this paper,

we construct such codes by using a place P of degree r > 1. This motivates

a study of gap numbers and pole numbers at places of higher degree. In fact,
the code parameters are estimated using the Weierstrass gap set of the place

P and relating it to the gap set of the r-tuple of places of degree one lying

over P in a constant field extension of degree r.

1. Introduction

An algebraic geometry (AG) code over Fq is defined using two divisors G and D
of a function field F/Fq. Typically, the divisor G is taken to be a multiple of a single
place of F of degree one and D := Q1 + · · ·+Qn is supported by n distinct places of
degree one different from the place in the support of G. Such a code is called a one-
point code. It has been shown that better AG codes may be obtained by allowing
the divisor G to be more general (see [6], [4], [9], [2]). In particular, Xing and Chen
have shown that there exist Fq2-rational divisors G of the Hermitian function field
over Fq2 such that CL(D,G) has better parameters than the comparable one-point
Hermitian code [9]. In this paper, we consider the special case where G = αP
and P is a place of F of degree greater than one. Such codes may be thought of
as one-point codes defined using places of higher degree. This construction differs
from that of generalized AG codes, or XNL codes, proposed by Niederreiter, Xing,
and Lam [10] in which the divisor D, rather than G, may be supported by places
of higher degree.

To study one-point codes constructed using places of higher degree, we first
consider the Weierstrass gap set of a place of higher degree. In doing so, it is
helpful to examine the Weierstrass gap set of an r-tuple of places of degree one in
a constant field extension. This allows one to use theory that has been developed
in applications of Weierstrass gap sets of r-tuples of places to codes [4], [2]. As a
result, we obtain explicit constructions for one-point codes using places of higher
degree that have better parameters than the comparable classical one-point code
from the same function field. Moreover, we define specific codes with parameters
comparable to (and, at times, better than) those found in [9].
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This paper is organized as follows. First, we review the notation used throughout
the paper. In Section 2, the Weierstrass gap set of a place of higher degree is
discussed. Constant field extensions are utilized to better understand this set. In
Section 3, applications to codes are considered. Finally, examples are given to
illustrate these methods.

Notation. Unless stated otherwise, we will use notation as in [8].
Let F/Fq be an algebraic function field of genus g > 1. The divisor (resp. pole

divisor) of a function f ∈ F will be denoted by (f)F (resp. (f)F
∞), or simply (f)

(resp. (f)∞) if the context is clear. Let Ω denote the set of rational differen-
tials of F/Fq. The divisor of a differential η ∈ Ω will be denoted by (η) and the
residue of η at a place P will be denoted by resP (η). Given a divisor A of F , let
L(A) := {f ∈ F \ {0} : (f) ≥ −A}∪{0} and Ω(A) := {η ∈ Ω \ {0} : (η) ≥ A}∪{0}.
Let `(A) denote the dimension of the vector space L(A) over Fq. The Riemann-
Roch Theorem states that

`(A) = deg A + 1− g + `(W −A)

where W is any canonical divisor of F . Moreover, if the degree of A is at least
2g− 1, then `(W −A) = 0 and so `(A) = deg A + 1− g. As usual, a code of length
n, dimension k, and minimum distance d (resp. at least d) is called an [n, k, d] (resp.
[n, k,≥ d]) code. We sometimes write d(C) to mean the minimum distance of the
code C. The set of positive integers is denoted by N and the set of nonnegative
integers is denoted by N0.

Let G be a divisor of F/Fq and let D = Q1 + · · ·+Qn be another divisor of F/Fq

where Q1, . . . , Qn are distinct places of F of degree one, each not contained in the
support of G. The algebraic geometry (AG) code CΩ(D,G) is defined by

CΩ(D,G) := {(resQ1(η), . . . , resQn(η)) : η ∈ Ω(G−D)}

and is an [n, `(G−D)− `(G) + deg D,≥ deg G− (2g − 2)]-code.

2. Gaps at places of higher degree

Let F/Fq be an algebraic function field of genus g > 1, and let P be a place of
F of degree r. Define the Weierstrass semigroup of the place P by

H(P ) := {α ∈ N0 : ∃f ∈ F with (f)∞ = αP}

and the Weierstrass gap set of the place P by

G(P ) := N0 \H(P ).

Elements of the set G(P ) are often referred to as gaps at the place P . One can
easily check that the set H(P ) is an additive submonoid of N0. It is also easy to
see that given α ∈ N0, α ∈ H(P ) if and only if `(αP ) 6= `((α − 1)P ).

Recall that the Weierstrass Gap Theorem states that given a place P of F of
degree one, there are exactly g gaps at P and each element of the Weierstrass gap
set lies in the interval [1, 2g−1]. In the next two propositions, we consider analogous
results for places of degree possibly greater than one.

Proposition 2.1. Let P be a place of F/Fq of degree r. If α >
⌈

2g−1
r

⌉
, then

α ∈ H(P ). Moreover, G(P ) ⊆ [1,
⌊

2g−1
r

⌋
].
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Proof. Set s = r
⌈

2g−1
r

⌉
− (2g − 1) and suppose α >

⌈
2g−1

r

⌉
= 2g−1+s

r . Then
αr > (α − 1) r ≥ 2g − 1 + s, which implies `(αP ) > `((α − 1)P ) by the Riemann-
Roch Theorem. Hence, α ∈ H(P ).

Clearly, 0 ∈ H(P ) as (a)∞ = 0P for a ∈ Fq. Thus, G(P ) ⊆ [1,
⌈

2g−1
r

⌉
]. It

remains to show that if r - 2g − 1 then
⌈

2g−1
r

⌉
∈ H(P ). Suppose α =

⌈
2g−1

r

⌉
=

2g−1+s
r where r > 1. Note that 0 < s ≤ r − 1. Then αr > 2g − 1 which implies

`(αP ) = αr +1− g. By Clifford’s Theorem, `(W − (α− 1)P ) ≤ 1+ 1
2 (r − s− 1) <

1 + 1
2 (r − 1) for any canonical divisor W . It follows that

`(αP )− `((α − 1)P ) = αr + 1− g − (α − 1)r − 1 + g − `(W − (α − 1)P )
≥ r − `(W − (α − 1)P )
> 1

2 (r − 1) > 0

as r > 1. Therefore, α ∈ H(P ) and so G(P ) ⊆ [1,
⌈

2g−1
r

⌉
− 1] = [1,

⌊
2g−1

r

⌋
]. �

Proposition 2.2. Let P be a place of F/Fq of degree r. Then

g =

d
2g−1

r e∑
i=0

`(iP )− `((i− 1)P )

− s

where s = r
⌈

2g−1
r

⌉
− (2g − 1).

Proof. By the Riemann-Roch Theorem, `
(⌈

2g−1
r

⌉
P
)

= g + s. Then

0 = `(−1P ) ≤ `(0P ) ≤ `(P ) ≤ `(2P ) ≤ · · · ≤ `

(⌈
2g − 1

r

⌉
P

)
= g + s.

Hence, g + s = `
(⌈

2g−1
r

⌉
P
)
− `(−1P ) =

∑d 2g−1
r e

i=0 `(iP )− `((i− 1)P ). �

Notice that if one takes r = 1 in the above proposition, then this shows that the
number of gaps at P is the genus of F , as s = 0 and 0 ≤ `(iP ) − `((i − 1)P ) ≤
1. However, if P is a place of degree r > 1, then it is not necessarily the case
that `(iP ) − `((i − 1)P ) ∈ {0, r} for each i ∈ N. Lewittes [5] has shown that
g =

∑∞
i=1 r− (`(iP )− `((i− 1)P )). From the proof of Proposition 2.1, we see that

r − (`(iP ) − `((i − 1)P )) = 0 for all i >
⌈

2g−1
r

⌉
. Thus, Lewittes’ result can be

improved to give

g =
d 2g−1

r e∑
i=1

r − (`(iP )− `((i− 1)P )).

Next, we show how the Weierstrass semigroup of an r-tuple of places of degree
one in a constant field extension may be used to study that of a place of degree r.
Let F ′ := FqrF/Fqr be a constant field extension of F/Fq of degree r. Then the
place P splits completely in F ′. Hence, there are r distinct places P1, . . . , Pr ∈ PF ′

of degree one lying over the place P :

F ′ := FqrF P1, . . . , Pr

| |
F P

By definition, the conorm of αP is ConF ′/F (αP ) = αP1 + · · ·+ αPr for all α ∈ N.
According to [8, Theorem III.6.3],

`(ConF ′/F (αP )) = `(αP )
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for all α ∈ N. Hence,

(1) `(αP )− `((α − 1)P ) = `(αP1 + · · ·+ αPr)− `((α − 1)P1 + · · ·+ (α − 1)Pr).

It is very natural to relate the Weierstrass semigroup H(P ) to that of the r-
tuple (P1, . . . , Pr). Given m distinct places Q1, . . . , Qm of degree one of F , the
Weierstrass semigroup H(Q1, . . . , Qm) of the m-tuple (Q1, . . . , Qm) is defined by

H(Q1, . . . , Qm) =

{
α ∈ Nm

0 : ∃f ∈ F with (f)∞ =
m∑

i=1

αiQi

}
,

and the Weierstrass gap set G(Q1, . . . , Qm) of the m-tuple (Q1, . . . , Qm) is defined
by

G(Q1, . . . , Qm) = Nm
0 \H(Q1, . . . Qm).

Proposition 2.3. Let P be a place of degree r of a function field F/Fq and
P1, . . . , Pr be the extensions of P in the constant field extension F ′ of F of de-
gree r. Given α ∈ N, α ∈ H(P ) if and only if (α, . . . , α) ∈ H(P1, . . . , Pr).

Proof. Suppose α ∈ H(P ). Then there is a function f ∈ F with divisor

(f)F = A− αP

where P /∈ supp A. By [8, Proposition III.1.9],

(f)F ′
= ConF ′/F (A)− αP1 − · · · − αPr

which implies (α, . . . , α) ∈ H(P1, . . . , Pr).
Suppose (α, . . . , α) ∈ H(P1, . . . , Pr). Then

`(αP1 + · · ·+ αPr) = `(αP1 + · · ·+ (α − 1)Pi + · · ·+ αPr) + 1

for all 1 ≤ i ≤ r. From (1), it follows that `(αP ) 6= `((α − 1)P ). Consequently,
α ∈ H(P ). �

From the above result, α ∈ G(P ) if and only if (α, . . . , α) ∈ G(P1, . . . , Pr).
It turns out that much more is true. Notice that α ∈ Nr is an element of the
Weierstrass gap set G(P1, . . . , Pr) if and only if there exists j, 1 ≤ j ≤ r, such that

(2) `

(
r∑

i=1

αiPi

)
= `

(αj − 1)Pj +
r∑

i=1,i 6=j

αiPi

 .

In [4] and later in [2], the authors consider those elements of the Weierstrass gap set
G(P1, . . . , Pr) with “all possible symmetry”. More precisely, they consider α ∈ Nr

satisfying (2) for all j, 1 ≤ j ≤ r. Such elements of the Weierstrass gap set are
called pure gaps. The set of pure gaps of the r-tuple (P1, . . . , Pr) is denoted by
G0(P1, . . . , Pr). In [2, Lemma 2.5], it is shown that α ∈ G0(P1, . . . , Pr) if and only
if ` (

∑r
i=1 αiPi) = ` (

∑r
i=1(αi − 1)Pi).

Proposition 2.4. Let P be a place of degree r of a function field F/Fq and
P1, . . . , Pr be the extensions of P in the constant field extension of F of degree
r. Suppose that α, . . . , α + t ∈ G(P ). Then [α, α + t]r ⊆ G0(P1, . . . , Pr).

Proof. Suppose there exists v ∈ [α, α + t]r such that v /∈ G0(P1, . . . , Pr). Then

`

(
r∑

i=1

viPi

)
6= `

(vj − 1)Pj +
r∑

i=1,i 6=j

viPi


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for some j, 1 ≤ j ≤ r. Then

`((α − 1)P ) = ` (
∑r

i=1(α − 1)Pi)
≤ `

(
(vj − 1)Pj +

∑r
i=1,i 6=j viPi

)
< ` (

∑r
i=1 viPi)

≤ ` (
∑r

i=1(α + t)Pi)
= `((α + t)P )

which is a contradiction as α, . . . , α + t ∈ G(P ) implies that

`((α − 1)P ) = `(αP ) = · · · = `((α + t)P ).

�

Example 2.5. Consider the function field F := Fq(x, y)/Fq where yq + y = xq+1.
Let P be a place of F of degree two. We claim that the Weierstrass semigroup of
the place P is

H(P ) = 〈q − 1, q, q + 1〉

where 〈a1, . . . , at〉 :=
{∑t

i=1 ciai : ci ∈ N0

}
.

There are exactly two places of degree one, P1 and P2, in the constant field
extension F ′ := Fq2F lying over P . Note that F ′/Fq2 = Fq2(x, y)/Fq2 is the
Hermitian function field over Fq2 . It is well known that the Weierstrass semigroup
of any place of F ′/Fq2 of degree one is 〈q, q + 1〉. In [6, Theorem 3.7], the Weierstrass
semigroup of any pair of places of F ′/Fq2 of degree one is determined. Next, we
use these two facts to find H(P ). Clearly, according to Proposition 2.3,

H(P ) = {α ∈ N0 : (α, α) ∈ H(P1, P2)}
= {α ∈ H(P1) : (α, α) ∈ H(P1, P2)} ∪ {α ∈ G(P1) : (α, α) ∈ H(P1, P2)}
= 〈q, q + 1〉 ∪ {α ∈ G(P1) : (α, α) ∈ H(P1, P2)} .

By [6, Theorem 3.7], α ∈ G(P1) and (α, α) ∈ H(P1, P2) implies α ∈ 〈q − 1〉. Thus,

H(P ) = 〈q, q + 1〉 ∪ 〈q − 1〉 ⊆ 〈q − 1, q, q + 1〉 .

Now suppose that α = a(q − 1) + bq + c(q + 1) with a, b, c ∈ N0. By [6, Theorem
3.4] and Proposition 2.3, a(q − 1) ∈ H(P ). Since H(P1) = H(P2) = 〈q, q + 1〉,
Proposition 2.3 implies that bq + c(q + 1) ∈ H(P ). It follows that α ∈ H(P ) as
H(P ) is closed under addition. Therefore, H(P ) = 〈q − 1, q, q + 1〉.

3. One point codes using places of higher degree

In this section, we consider AG codes CΩ(D,αP ) over Fq where P is a place of
F/Fq of degree greater than one. The next lemma illustrates how a code of this
form relates to the code CΩ(ConF ′/F (D), ConF ′/F (αP )).

Lemma 3.1. Let G and D := Q1 + · · ·+Qn be divisors of F/Fq where Q1, . . . , Qn

are distinct places of degree one of F , none of which are contained in the sup-
port of G. Set r := max {deg P : P ∈ supp G}. Let F ′ := FFqr/Fqr be a con-
stant field extension of F/Fq of degree r. Then the two codes CΩ(D,G) and
CΩ(ConF ′/F (D), ConF ′/F (G)) have the same length. The dimension of CΩ(D,G)
(over Fq) is equal to that of CΩ(ConF ′/F (D), ConF ′/F (G)) (over Fqr). The mini-
mum distance of CΩ(D,G) is at least that of CΩ(ConF ′/F (D), ConF ′/F (G)).



6 GRETCHEN L. MATTHEWS AND TODD W. MICHEL

Proof. Clearly, ConF ′/F (D) = Q1 + · · · + Qn as each Qi has degree one, and the
dimension of CΩ(D,G) is `(G−D)−`(G)+deg D = `(ConF ′/F (G)−ConF ′/F (D))−
`(ConF ′/F (G))+deg ConF ′/F (D), the dimension of CΩ(ConF ′/F (D), ConF ′/F (G)).
Let d denote the minimum distance of CΩ(D,G). Suppose that η ∈ Ω(G−D) and
that the weight of (resQ1(η), . . . , resQn

(η)) is equal to d. Without loss of generality,
we may assume that (η) ≥ G− (Q1 + · · ·+ Qd). Then ConF ′/F ((η)) is a canonical
divisor of F ′/Fqr and ConF ′/F ((η)) ≥ ConF ′/F (G)−ConF ′/F (Q1+ · · ·+Qd) which
implies that CΩ(ConF ′/F (D), ConF ′/F (G)) has a codeword of weight d. �

The pure gap set of a pair of places of degree one is used to define codes with
minimum distance greater than the usual lower bound in [4]. This is generalized to
r-tuples of places of degree one in [2]. These results together with those in Section 2
will be applied to obtain better bounds on the minimum distance of codes defined
using elements of the gap set of a place of higher degree. For convenience, we
include here the two results from [2] that we will use.

Lemma 3.2. [2, Theorem 3.3] Let Q1, . . . , Qn, P1, . . . , Pm be distinct places of
F/Fq such that deg Qi = 1 for each i, 1 ≤ i ≤ n. Set D′ := Q1 + · · ·+Qn. Suppose
G′ :=

∑m
i=1(ai + bi − 1)Pi where a,b ∈ G0(P1, . . . , Pm). If the code CΩ(D′, G′) is

nontrivial, then it has minimum distance at least deg G′ − (2g − 2) + m.

Lemma 3.3. [2, Theorem 3.4] Let Q1, . . . , Qn, P1, . . . , Pm be distinct places of
F/Fq such that deg Qi = 1 for each i, 1 ≤ i ≤ n. Set D′ := Q1 + · · ·+Qn. Suppose
G′ :=

∑m
i=1(ai + bi − 1)Pi where v ∈ G0(P1, . . . , Pm) for all v ∈ Nm

0 such that
a � v � b. If the code CΩ(D′, G′) is nontrivial, then it has minimum distance at
least deg G′ − (2g − 2) +

∑m
i=1(bi − ai + 1).

We can modify Lemma 3.2 to get an analog of [3, Theorem 1] for codes defined
using places of higher degree.

Theorem 3.4. Let P be a place of degree r and Q1, . . . , Qn be distinct places of
F/Fq of degree one such that Qi 6= P for each i, 1 ≤ i ≤ n. Set D := Q1 + · · ·+Qn.
Suppose G := (α + β − 1)P where α, β ∈ G(P ). Then CΩ(D,G) has minimum
distance at least deg G− (2g − 2) + r.

Proof. Let P1, . . . , Pr be the extensions of P in the degree r constant field extension
F ′ of F . By Proposition 2.4, (α, . . . , α), (β, . . . , β) ∈ G0(P1, . . . , Pr) as α, β ∈ G(P ).
Take G′ = ConF ′/F (G) =

∑r
i=1(α + β − 1)Pi and D′ = ConF ′/F (D) in Lemma

3.2. Then the minimum distance of CΩ(D′, G′) satisfies

d (CΩ(D′, G′)) ≥ deg G′ − (2g − 2) + r
= deg G− (2g − 2) + r.

From Lemma 3.1 it follows that the minimum distance of CΩ(D,G) is at least
deg G− (2g − 2) + r. �

Next, we modify [2, Theorem 3.4] to obtain a result similar to [3, Theorem 4]
for codes defined using places of higher degree.

Theorem 3.5. Let P be a place of degree r and Q1, . . . , Qn be distinct places of
F/Fq of degree one such that Qi 6= P for each i, 1 ≤ i ≤ n. Set D := Q1 + · · ·+Qn.
Suppose G := (α + (α + t) − 1)P where α, . . . , α + t ∈ G(P ) with t ≥ 0. Then
CΩ(D,G) has minimum distance at least deg G− (2g − 2) + r(t + 1).
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Proof. Let P1, . . . , Pr be the extensions of P in the degree r constant field extension
F ′ of F . By Proposition 2.4, [α, α + t]r ⊆ G0(P1, . . . , Pr) as α, . . . , α + t ∈ G(P ).
Thus, v ∈ G0(P1, . . . , Pr) for all v such that (α, . . . , α) � v � (α + t, . . . , α + t).
Take G′ = ConF ′/F (G) =

∑r
i=1(α+(α+t)−1)Pi and D′ = ConF ′/F (D) in Lemma

3.3. Then the minimum distance of CΩ(D′, G′) satisfies

d (CΩ(D′, G′)) ≥ deg G′ − (2g − 2) + r + rt
= deg G− (2g − 2) + r + rt.

From Lemma 3.1 it follows that the minimum distance of CΩ(D,G) is at least
deg G− (2g − 2) + r(t + 1). �

Example 3.6. Consider the Hermitian function field F := F81(x, y)/F81 defined
by y9 + y = x10. Note that F has genus 36 and 730 places of degree one. Using
Magma [1], we find that F has a place P of degree 3 with Weierstrass gap set

G(P ) = {1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 20}.
Take α = 14 and β = 20 in the Theorem 3.4. Then

G := (14 + 20− 1)P = 33P.

Let D be the sum of all places of F of degree one other than P∞. Then CΩ(D,G) is
a [729, 665,≥ 32] code. The one-point code on F of dimension 665 is a [729, 665, 29]-
code. The gap set G(P ) may be used to construct several other codes which have
greater minimum distance than the comparable one-point Hermitian code.

Example 3.7. Consider the Hermitian function field F := F49(x, y)/F49 defined
by y7 + y = x8. Note that F has genus 21 and 344 places of degree one. Using
Magma [1], we find that F has a place P of degree 3 with Weierstrass gap set

G(P ) = {1, 2, 3, 4, 5, 9, 10}.
Take α = 9 and t = 1 in the Theorem 3.5. Then

G := (9 + 10− 1)P = 18P.

Let D be the sum of all places of F of degree one other than P∞. Then CΩ(D,G) is
a [343, 309,≥ 20] code. The one-point code on F of dimension 309 is a [343, 309, 14]-
code. Note that the existence of an AG code on F with parameters [343, 309,≥ 18]
is shown in [9].

Example 3.8. Consider the Hermitian function field F := F64(x, y)/F64 defined
by y8 + y = x9. Note that F has genus 28 and 513 places of degree one. Using
Magma [1], we find that F has a place P of degree 3 with Weierstrass gap set

G(P ) = {1, 2, 3, 4, 5, 6, 10, 11, 12}.
Take α = 10 and t = 2 in the Theorem 3.5. Then

G := (10 + 12− 1)P = 21P.

Let D be the sum of all places of F of degree one other than P∞. Then CΩ(D,G) is
a [512, 476,≥ 18] code. The one-point code on F of dimension 309 is a [512, 476, 9]-
code. Hence, the code constructed using a place of higher degree corrects at least
twice as many errors as the comparable one-point code from the same function
field. It is worth pointing out that while there exists a F64-rational divisor G′ of F
such that CΩ(D′, G′) is a [512, 476,≥ 19]-code [9], it is not clear how to determine
G′.
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Remark 3.9. While Theorem 3.4 and Theorem 3.5 may be thought of as prescrib-
ing a method for constructing one-point codes from places of higher degree, these
results can also be viewed as specifying a method for defining r-point codes so that
the results of [4], [2] apply.
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