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Abstract. Given a numerical semigroup S, let M(S) = S \{0} and (lM(S)−
lM(S)) = {x ∈ N0 : x + lM(S) ⊆ lM(S)}. Define associated numerical
semigroups B(S) := (M(S)−M(S)) and L(S) := ∪∞l=1(lM(S)− lM(S)). Set
B0(S) = S, and for i ≥ 1, define Bi(S) := B(Bi−1(S)). Similarly, set L0(S) =
S, and for i ≥ 1, define Li(S) := L(Li−1(S)). These constructions define
two finite ascending chains of numerical semigroups S = B0(S) ⊆ B1(S) ⊆
· · · ⊆ Bβ(S)(S) = N0 and S = L0(S) ⊆ L1(S) ⊆ · · · ⊆ Lλ(S)(S) = N0. It
has been shown that not all numerical semigroups S have the property that
Bi(S) ⊆ Li(S) for all i ≥ 0. In this paper, we prove that if S is a numerical
semigroup with a set of generators that form a generalized arithmetic sequence,
then Bi(S) ⊆ Li(S) for all i ≥ 0. Moreover, we see that this containment is
not necessarily satisfied if a set of generators of S form an almost arithmetic
sequence. In addition, we characterize numerical semigroups generated by
generalized arithmetic sequences that satisfy other semigroup properties, such
as symmetric, pseudo-symmetric, and Arf.

1. Introduction

A numerical semigroup is a submonoid of the moniod N0 = N ∪ {0} of non-
negative integers under addition. It is well known that each numerical semigroup
is finitely generated. More precisely, given a numerical semigroup S, there exist
a1, a2, . . . , aν ∈ N such that S = {∑ν

i=1 ciai : ci ∈ N0}. In this case, we say that
{a1, a2, . . . , aν} is a generating set for S and write S = 〈a1, a2, . . . , aν〉. We adopt
the conventions of [1] and [4]. In particular, we will only consider those numerical
semigroups S with the property that the set of elements of S has greatest common
divisor 1. (Note that while not every numerical semigroup satisfies this property,
every numerical semigroup is isomorphic to one that does.) Then each numerical
semigroup S has a unique generating set {a1, a2, . . . , aν} so that S = {∑ν

i=1 ciai :
ci ∈ N0}, a1 < a2 < · · · < aν , gcd{a1, a2, . . . , aν} = 1, and for 1 ≤ j ≤ ν,
aj /∈ 〈a1, a2, . . . , aj−1, aj+1, . . . , aν〉. In this case, we say that S = 〈a1, a2, . . . , aν〉
is a canonical form description of S.

One can define a partial order ≤S on a numerical semigroup S by s ≤S t for
s, t ∈ S if and only if there exists u ∈ S such that s + u = t. Then, given
S = 〈a1, a2, . . . , aν〉 in canonical form, the set of elements {a1, a2, . . . , aν} is called
the minimal set of generators for S since this set consists precisely of those elements
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of S \ {0} which are minimal with respect to the partial order ≤S . The embedding
dimension of S, denoted e(S), is the cardinality of the minimal set of generators for
S; that is, e(S) = ν. It can be shown that e(S) ≤ a1. Thus, a numerical semigroup
S is said to be of maximal embedding dimension if e(S) = a1. The assumption that
gcd{a1, a2, . . . , aν} = 1 ensures that N0 \ S is finite. Let g(S) denote the largest
integer in N0 \ S. The number g(S) is called the Frobenius number of S due to
the fact that Frobenius, following the work of Sylvester [13], proposed the study
of the largest integer not representable as a linear combination of positive integers
a1, a2, . . . , aν with non-negative integer coefficients [2].

Given a numerical semigroup S, let M(S) := S \ {0} denote the maximal ideal
of S. For an integer l ≥ 1, define

(lM(S)− lM(S)) := {x ∈ N0 : x + lM(S) ⊆ lM(S)}.
One may consider associated numerical semigroups

B(S) := (M(S)−M(S)),

which is sometimes called the dual of M(S) with respect to S, and

L(S) := ∪∞l=1(lM(S)− lM(S)),

called the Lipman semigroup of S after [9]. Clearly, S ⊆ B(S) ⊆ L(S). Moreover,
if S 6= N0, then S ∪ {g(S)} ⊆ B(S) ⊆ L(S). As in [1], one may iterate the B and
L constructions to obtain two ascending chains of numerical semigroups

B0(S) := S ⊆ B1(S) := B(B0(S)) ⊆ · · · ⊆ Bh+1(S) := B(Bh(S)) ⊆ . . . (B(S))

and

L0(S) := S ⊆ L1(S) := L(L0(S)) ⊆ · · · ⊆ Lh+1(S) := L(Lh(S)) ⊆ . . . (L(S)).

Since N0 \S is finite, there exist smallest non-negative integers β(S) and λ(S) such
that Bβ(S)(S) = N0 = Lλ(S)(S). Thus, the B and L constructions give rise to
finite strictly increasing chains of numerical semigroups. These two chains play a
role in characterizing classes of certain local Noetherian domains (see [1] for more
on relationships between properties of semigroups and corresponding properties of
rings). For instance, a numerical semigroup is said to be Arf if the chains (B(S))
and (L(S)) coincide. Arf semigroups help to characterize Arf rings, an important
class of rings in commutative algebra and algebraic geometry. Since B0(S) = S =
L0(S), B1(S) ⊆ L1(S), and Bβ(S)(S) = N0 = Lλ(S)(S), it is natural to compare
the two chains. In particular, it is natural to ask, as in [1], if Bi(S) ⊆ Li(S) for all
i ≥ 0. In [4], we show that this containment does not hold in general and raise the
question of determining classes of numerical semigroups for which Bi(S) ⊆ Li(S)
for all i ≥ 0.

In this work, we focus on numerical semigroups of the form

S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉 ,
where a, d, h, k are positive integers such that a ≥ 2 and a and d are relatively
prime. Since the minimal set of generators of such a numerical semigroup S forms
a generalized arithmetic sequence, we say that S is generated by a generalized arith-
metic sequence. Numerical semigroups of this form were first studied by Roberts in
the case h = 1 [11]. This study was carried on by Selmer [12], and more recently,
by Ritter [10]. Lewin [8] considered numerical semigroups with minimal sets of
generators that form more general sequences, such as almost arithmetic sequences.
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An almost arithmetic sequence is a sequence in which all but one of the elements
form an arithmetic sequence. Thus, a generalized arithmetic sequence is certainly
an almost arithmetic sequence. We show that if S is generated by a generalized
arithmetic sequence, then Bi(S) ⊆ Li(S) for all i ≥ 0. However, this containment
does not necessarily hold for all i ≥ 2 if S is generated by an almost arithmetic
sequence. An example is given to illustrate this. In addition, we characterize those
numerical semigroups generated by generalized arithmetic sequences that are sym-
metric (rediscovering the main result of [5]), pseudo-symmetric, and Arf.

For more background on numerical semigroups, see [6], [1].

2. Results

It is convenient to collect here some results that will be used in this section.

Proposition 2.1. [1] Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup expressed
in canonical form. Then:
(a) g(B(S)) = g(S)− a1.
(b) S is of maximal embedding dimension if and only if B(S) = L(S).
(c) L(S) = 〈a1, a2 − a1, . . . , aν − a1〉.
Proposition 2.2. [4, Theorem 2.6] Let S be a numerical semigroup of embedding
dimension e(S) = 2; that is, S = 〈a1, a2〉, where a1 and a2 are relatively prime
positive integers greater than 1. Then Bi(S) ⊆ Li(S) for all i ≥ 0.

To simplify the exposition, we first consider those numerical semigroups gen-
erated by generalized arithmetic sequences that are either doubly-generated or of
maximal embedding dimension. As an immediate consequence, we obtain a charac-
terization of Arf semigroups that are generated by generalized arithmetic sequences.

Lemma 2.3. Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are positive
integers such that a and d are relatively prime and a ≥ 2. If k = 1 or k = a − 1,
then Bi(S) ⊆ Li(S) for all i ≥ 0.

Proof. If k = 1, then S = 〈a, ha + d〉, and the result follows immediately from
Proposition 2.2.

If k = a− 1, then e(S) = k + 1 = a, and S is of maximal embedding dimension.
By Proposition 2.1(b),(c), we have that

B1(S) = L1(S) = 〈a, (h− 1)a + d, (h− 1)a + 2d, . . . , (h− 1)a + kd〉 .
Repeated applications of Proposition 2.1(b),(c) yield

Bi(S) = Li(S) = 〈a, (h− i)a + d, (h− i)a + 2d, . . . , (h− i)a + kd〉
for 0 ≤ i ≤ h. In particular, Bh(S) = Lh(S) = 〈a, d〉. The fact that Bi(S) ⊆ Li(S)
for all i ≥ 0 now follows from Proposition 2.2. ¤
Proposition 2.4. Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are
positive integers such that a and d are relatively prime and a ≥ 2. Then S is Arf if
and only if a = 2 or S is of maximal embedding dimension and d = 2.

Proof. Suppose S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉 is an Arf semigroup. Then,
according to Proposition 2.1(b), Bi(S) is of maximal embedding dimension for all
i ≥ 0. In particular, B0(S) = S is of maximal embedding dimension, and so
k = e(S) = a− 1. By the proof of Lemma 2.3, this implies Bh(S) = Lh(S) = 〈a, d〉
is of maximal embedding dimension. Thus, a = 2 or d = 2.
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Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉. If a = 2, then S = 〈2, 2h + d〉 which
is an Arf semigroup according to [1, Theorem I.4.2]. If d = 2 and S is of maximal
embedding dimension, the fact that S is Arf is a consequence of the proof of Lemma
2.3, as Bi(S) = Li(S) for 0 ≤ i ≤ h and Bh(S) = Lh(S) = 〈2, a〉 which is Arf by
[1, Theorem I.4.2]. ¤

We fix the following notation that will be used in the remainder of this section.
Given a numerical semigroup S generated by the generalized arithmetic sequence
a, ha + d, ha + 2d, . . . , ha + kd, we will assume that 2 ≤ k ≤ a− 2. Set c := ba−2

k c
and r := a− 2− ck. Then, according to [8, Theorem 5.2], the Frobenius number of
S is

g(S) = (ch + h− 1)a + (a− 1)d.

In the following proposition, we obtain a useful description of the elements of S.
When h = 1, this gives [11, Lemma 1].

Proposition 2.5. Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are
positive integers such that a and d are relatively prime and a ≥ 2. Then S =
{la + jd : 0 ≤ l, 0 ≤ j ≤ b l

hck}.
Proof. Let s ∈ S. Then s = l0a+

∑k
i=1 li(ha+ id) = (l0 +h

∑k
i=1 li)a+(

∑k
i=1 ili)d

for some l0, . . . , lk ∈ N0. Since
∑k

i=1 ili ≤ k
∑k

i=1 li ≤ kb l0+h
∑k

i=1 li
h c, we have that

s ∈ {la + jd : 0 ≤ l, 0 ≤ j ≤ b l
hck}. Thus, S ⊆ {la + jd : 0 ≤ l, 0 ≤ j ≤ b l

hck}.
Now let x = la + jd with 0 ≤ l and 0 ≤ j ≤ b l

hck. Write l = qh + r and
j = q′k + r′ with q, q′, r, r′ ∈ N0 such that 0 ≤ r < h and 0 ≤ r′ < k. Then
x = q′(ha + kd) + ra + (q − q′)ha + r′d ∈ S since r′ > 0 only if q′ < q. Therefore,
{la + jd : 0 ≤ l, 0 ≤ j ≤ b l

hck} ⊆ S, completing the proof. ¤
Given a numerical semigroup S and a ∈ S, let S(a) = {s ∈ S : s− a /∈ S}. This

set was introduced in [3] and used in [6] to give the following description of the
numerical semigroup B(S).

Proposition 2.6. [6, Proposition 7] Let S be a numerical semigroup and a ∈
S \ {0}. For a positive integer t, the following are equivalent:
(a) t− a ∈ B(S) \ S.
(b) t is maximal in S(a) with respect to the partial ordering ≤S.

Using Proposition 2.6, we obtain a description of the elements of B(S) when the
generators of S form an generalized arithmetic sequence. Taking h = 1 gives [7,
Corollary 5].

Lemma 2.7. If S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are positive
integers such that a and d are relatively prime, a ≥ 2, and 2 ≤ k ≤ a − 2, then
B(S) = S ∪ {(ch + h− 1)a + jd : ck < j ≤ a− 1}.
Proof. Given S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉 where 2 ≤ k ≤ a − 2, we claim
that

S(a) = {lha + jd : 0 ≤ l ≤ c + 1, (l − 1)k < j ≤ min{lk, a− 1}}.
Let x := lha+ jd with 0 ≤ l ≤ c+1 and (l− 1)k < j ≤ min{lk, a− 1}. Then x ∈ S
and x− a = (lh− 1)a + jd /∈ S by Proposition 2.5. Thus, x ∈ S(a).

Now let s ∈ S(a). Since s ∈ S, we may write s = (lh + m)a + jd with 0 ≤ l,
0 ≤ m < h, and 0 ≤ j ≤ lk. Notice that s − a /∈ S implies m = 0 and (l − 1)k <
j ≤ lk. If l ≥ c + 2, then s − a = (lh − 1)a + jd ≥ ((c + 2)h − 1)a + jd ≥
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(ch + 2h − 1)a + (a − 1)d > g(S) and so s − a ∈ S. Thus, l ≤ c + 1. If l = c + 1,
then ck < j ≤ a − 1. Otherwise, s − a = (ch + h − 1)a + jd > g(S) which implies
s− a ∈ S. Thus, s = lha + jd with 0 ≤ l ≤ c + 1 and (l− 1)k < j ≤ min{lk, a− 1}.
Therefore, S(a) ⊆ {lha + jd : 0 ≤ l ≤ c + 1, (l − 1)k < j ≤ min{lk, a− 1}} and the
claim holds.

Using this description of S(a), it is clear that the elements of S(a) which are
maximal with respect to ≤S are {(c + 1)ha + jd : ck < j ≤ a − 1}. Applying
Proposition 2.6 yields B(S) \ S = {(ch + h− 1)a + jd : ck < j ≤ a− 1}. ¤

Recall that a numerical semigroup S is said to be symmetric (respectively,
pseudo-symmetric) if the Frobenius number g(S) is odd (respectively, even) and
the map

S ∩ {0, 1, . . . , g(S)} → (N0 \ S) ∩ {0, 1, . . . , g(S)} : s 7→ g(S)− s

(respectively,

S ∩ {0, 1, . . . , g(S)} → (N0 \ S) ∩ {0, 1, . . . , g(S)} \ {g(S)
2
} : s 7→ g(S)− s)

is a bijection. As a consequence of Lemma 2.7, we obtain a characterization of those
symmetric and pseudo-symmetric semigroups that are generated by generalized
arithmetic sequences. In the symmetric case, this is a restatement of the main
result of [5].

Proposition 2.8. Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are
positive integers such that a and d are relatively prime and a ≥ 2. Then:
(a) S is symmetric if and only if a = 2 or k ∈ {1, a− 2}.
(b) S is pseudo-symmetric if and only if a = 3, k = 2, h = 1, and d = g

2 , where
g ≥ 2 is an even integer and g ≡ 1, 2 (mod 3); that is, S is pseudo-symmetric if and
only if S =

〈
3, 3 + g

2 , 3 + g
〉

where g ≥ 2 is an even integer and g ≡ 1, 2 (mod 3).

Proof. According to [1, Lemma I.1.8], a numerical semigroup S with Frobenius
number g(S) odd (respectively, even) is symmetric (respectively, pseudo-symmetric)
if and only if B(S) = S∪{g(S)} (respectively, B(S) = S∪{ g(S)

2 , g(S)}). By Lemma
2.7, if 2 ≤ k ≤ a−2, then S is symmetric if and only if |{(ch+h−1)a+jd : ck < j ≤
a−1}|=1 if and only if r = 0 if and only if k = a−2. If k = 1, then S = 〈a, ha + d〉
is symmetric being of embedding dimension 2 [2], [13]. If k = a − 1, then S is of
maximal embedding dimension and so by [1, Theorem I.4.2] is symmetric if and
only if a = 2.

By Lemma 2.7, if 2 ≤ k ≤ a− 2, then S is pseudo-symmetric if and only if r = 1
and (ch + h − 1)a + (ck + 1)d = (ch+h−1)a+(ck+2)d

2 if and only if h = 1 and c = 0,
which cannot be the case since k ≤ a − 2. If k = 1, then S = 〈a, ha + d〉 which
has odd Frobenius number g(S) = (a− 1)(ha + d)− a by [2] (or [13]) and so is not
pseudo-symmetric. If k = a − 1, then S is of maximal embedding dimension. By
[1, Theorem I.4.4], S is pseudo-symmetric of maximal embedding dimension if and
only if S =

〈
3, 3 + g

2 , 3 + g
〉

for some even integer g ≥ 2 such that g ≡ 1, 2 (mod 3).
Notice that this implies a = 3, h = 1, d = g

2 , k = 2, and g = g(S). ¤

Theorem 2.9. If S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k are positive
integers such that a and d are relatively prime and a ≥ 2 , then Bi(S) ⊆ Li(S) for
all i ≥ 0.
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Proof. Let S = 〈a, ha + d, ha + 2d, . . . , ha + kd〉, where a, d, h, k ∈ N with a ≥ 2
and gcd(a, d) = 1. According to Lemma 2.3, Bi(S) ⊆ Li(S) for all i ≥ 0 in the
cases k = 1 and k = a− 1. Thus, in the following, we assume that 2 ≤ k ≤ a− 2.
As before, set c = ba−2

k c and r = a− 2− ck. Then 0 ≤ r < k. For convenience, we
will write Bi and Li for Bi(S) and Li(S) respectively. Much of the proof is devoted
to establishing the claim that if 1 ≤ i ≤ c + 1, then Bi =

Bi−1 ∪
{

(ch− lh− i + l + 1)a + jd : −1 ≤ l ≤ i− 2,
(c− l − 1)k < j ≤ min{(c− l)k, a− 1}

}
.

The claim holds in the case i = 1 by Lemma 2.7. We now proceed by induction on
i ≥ 1.

Let 1 ≤ i ≤ c + 1 and suppose the claim holds for all 1 ≤ t ≤ i− 1. Then Bt =

Bt−1 ∪
{

(ch− lh− t + l + 1)a + jd : −1 ≤ l ≤ t− 2,
(c− l − 1)k < j ≤ min{(c− l)k, a− 1}

}

for 1 ≤ t ≤ i− 1; that is, Bt =

S ∪
{

(ch− lh−m + l + 1)a + jd : 1 ≤ m ≤ t, −1 ≤ l ≤ m− 2,
(c− l − 1)k < j ≤ min{(c− l)k, a− 1}

}

for 1 ≤ t ≤ i − 1. In addition, g(Bi−1) = (ch + h − i)a + (a − 1)d, according to
Proposition 2.1(a). Recall that Bi−1(a) = {s ∈ Bi−1 : s − a /∈ Bi−1}. By the
induction hypothesis, Bi−1(a) = {s ∈ S : s− a /∈ Bi−1}∪{

(ch− lh− (i− 1) + l + 1)a + jd : −1 ≤ l ≤ i− 3,
(c− l − 1)k < j ≤ min{(c− l)k, a− 1}

}
.

Then Proposition 2.6 implies Bi \Bi−1 ⊆ {s− a : s ∈ S, s− a /∈ Bi−1}∪{
(ch− lh− i + l + 1)a + jd : −1 ≤ l ≤ i− 3,

(c− l − 1)k < j ≤ min{(c− l)k, a− 1}
}

.

Let x := (ch − lh − i + l + 1)a + jd, where −1 ≤ l ≤ i − 3 and (c − l − 1)k <
j ≤ min{(c− l)k, a− 1}. To show that x ∈ Bi, we will prove that x + a is maximal
in Bi−1(a) with respect to the partial order ≤Bi−1 . According to [6, Lemma 6], it
suffices to show that (x + a) + b /∈ Bi−1(a) for any b ∈ Bi−1(a) \ {0}; that is, it
suffices to show that x+b = ((x+a)+b)−a ∈ Bi−1 for all b ∈ Bi−1(a)\{0}. Clearly,
x + a = (ch− lh− (i− 1) + l + 1)a + jd ∈ Bi−1. For 1 ≤ n ≤ k, x + ha + nd ∈ Bi−1

since (c − l − 1)k + 1 < j + n ≤ min{(c − l)k, a − 1} + k and x + ha + nd can be
expressed as

x + ha + nd = (ch− lh− (i− 1) + l + 1)a + (j + n)d + (h− 1)a ∈ Bi−1

if (c− l − 1)k + 1 < j + n ≤ (c− l)k and as

x + ha + nd = (ch− (l − 1)h− (i− 1) + (l − 1) + 1)a + (j + n)d ∈ Bi−1

if (c− l)k < j + n ≤ (c− (l− 1))k. This leads to x + (S \ {0}) ⊆ Bi−1. To see that
x + (Bi−1(a) \ S) ⊆ Bi−1, let

y := (ch− ph− (i− 1) + p + 1)a + wd,

where −1 ≤ p ≤ i− 3 and (c− p− 1)k < w ≤ min{(c− p)k, a− 1}. If c ≥ l + p + 3,
then Proposition 2.1(a) gives

x+y ≥ g(Bi−1)+((h−1)a+kd)(c−(l+p+1))+(c+2−i)a−(k+r+1)d > g(Bi−1).
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Hence, x + y ∈ Bi−1. Thus, we may assume that c − 2 ≤ l + p. Write l + p =
c − 2 + v = i − 3 + u + v for some 0 ≤ v ≤ i − 3 and u ≥ 0. Notice that
(c− v)k < j + w ≤ (c− v + 2)k. Then

x + y = (ch− (v − 1)h− (i− 1) + (v − 1) + 1)a + (j + w)d + (h + u− 1)a ∈ Bi−1

if (c− v)k < j + w ≤ (c− v + 1)k = min{(c− v + 1)k, a− 1}, and

x + y = (ch− (v − 2)h− (i− 1) + (v − 2) + 1)a + (j + w)d + ua ∈ Bi−1

if (c−v+1)k < j+w ≤ (c−v+2))k and v 6= 0. If (c−v+1)k < j+w ≤ (c−(v+1))k
and v = 0, then x + y > g(Bi−1) as j + w ≥ a− 1. This shows that x + y ∈ Bi−1.
It follows that x + b ∈ Bi−1 for all b ∈ Bi−1(a) \ {0}, which implies that x + a is
maximal in Bi−1(a). Therefore, x ∈ Bi \Bi−1.

Next, suppose s− a ∈ Bi \ Bi−1 where s ∈ S. Since s− a /∈ Bi−1, we certainly
have s − a /∈ B1. Thus, there exists ha + nd ∈ S, with 1 ≤ n ≤ k, such that
s− a + ha + nd ∈ Bi−1 \ S. By the induction hypothesis,

s− a + ha + nd = (ch− lh−m + l + 1)a + jd

where 1 ≤ m ≤ i− 1, −1 ≤ l ≤ m− 2, and (c− l− 1)k < j ≤ min{(c− l)k, a− 1}.
Thus,

s− a = (ch− (l + 1)h− (m + 1) + (l + 1) + 1)a + (j − n)d
with (c − l − 2)k < j − n < min{(c − l)k, a − 1}. If −1 ≤ l + 1 ≤ i − 3 and
(c− l− 2)k = (c− (l +1)− 1)k < j−n ≤ min{(c− (l +1))k, a− 1}, then s−a ∈ Bi

by the argument above. Similar calculations lead to s−a ∈ Bi in the case l+1 = i−2
and (c− l − 2)k = (c− (l + 1)− 1)k < j − n ≤ min{(c− (l + 1))k, a− 1}.

To complete the proof of the claim, it remains to show that if (c − l − 1)k <
j − n ≤ min{(c− l)k, a− 1} then s− a /∈ Bi \Bi−1. By definition,

s = s− a + a = (ch− lh− h−m + l + 2)a + (j − n)d ∈ S.

By Proposition 2.5, 0 < j − n < a implies 0 ≤ j − n ≤ b ch−lh−h−m+l+2
h ck =

((c− l−1)−bm−l+2
h c)k. Since l ≤ m+2, this contradicts the fact that (c− l−1)k <

j − n ≤ min{(c − l)k, a − 1} . Therefore, s − a /∈ Bi \ Bi−1. This completes the
proof of the claim.

Since the claim holds, we have that Bc+1 = Bc∪{
(ch− lh− (c + 1) + l + 1)a + jd : −1 ≤ l ≤ c− 1,

(c− l − 1)k < j ≤ min{(c− l)k, a− 1}
}

.

Taking l = c−1 above gives {a, (h−1)a+d, (h−1)a+2d, . . . , (h−1)a+kd} ⊆ Bc+1.
Then Proposition 2.1(c) implies

L1 = 〈a, (h− 1)a + d, (h− 1)a + 2d, . . . , (h− 1)a + kd〉 ⊆ Bc+1.

Consider z := (ch− lh−m + l + 1)a + jd, where 1 ≤ m ≤ c + 1, −1 ≤ l ≤ m− 2,
and (c− l− 1)k < j ≤ min{(c− l)k, a− 1}. Write m = c + 1− t so that 0 ≤ t ≤ c.
Then z = ((h− 1)(c− l) + t)a + jd ∈ L1 by Proposition 2.5. Therefore,

Bc+1 = L1 = 〈a, (h− 1)a + d, (h− 1)a + 2d, . . . , (h− 1)a + kd〉 .
As a result, Bi ⊆ Li for all 0 ≤ i ≤ c + 1.

Since Bc+1 = L1 is generated by a generalized arithmetic sequence, it now follows
by induction that

Bj(c+1) = 〈a, (h− j)a + d, (h− j)a + 2d, . . . , (h− j)a + kd〉 = Lj
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for 0 ≤ j ≤ h, and Bi ⊆ Li for 0 ≤ i ≤ h(c + 1). In particular, we have that

Bh(c+1) = Lh = 〈a, d〉 .
Then, since Bh(c+1) is doubly-generated, Proposition 2.2 implies that Bi ⊆ Li for
all i ≥ 0. ¤

While we have shown that if S is a numerical semigroup generated by a gener-
alized arithmetic sequence then Bi(S) ⊆ Li(S) for all i ≥ 0, this is not the case
for all semigroups generated by almost arithmetic sequences. We conclude with an
example to illustrate this.

Example 2.10. Consider the numerical semigroup S := 〈5, 7, 11, 13〉. Notice that
S is generated by an almost arithmetic sequence since 5, 7, 9, 11, 13 is an arithmetic
sequence. We have that S = {0, 5, 7, 10 →} where the symbol “→” indicates
that all integers greater than 10 are elements of S. Then B1(S) = {0, 5 →} and
B2(S) = N0. However, L1(S) = 〈5, 2, 6, 8〉 = 〈2, 5〉 and L2(S) = 〈2, 3〉. Therefore,
B2(S) = N0 * 〈2, 3〉 = L2(S).
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