A VARIANT OF THE FROBENIUS PROBLEM AND GENERALIZED SUZUKI SEMIGROUPS

Gretchen L. Matthews ${ }^{1}$
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, USA
gmatthe@clemson.edu
Rhett S. Robinson ${ }^{2}$
Department of Economics, University of North Carolina, Chapel Hill, NC 27599, USA
rrhett@email.unc.edu
Received:, Accepted:, Published:

Abstract

Given relatively prime positive integers a_{1}, \ldots, a_{k}, let S denote the set of all linear combinations of a_{1}, \ldots, a_{k} with nonnegative integral coefficients. The Frobenius problem is to determine the largest integer $g(S)$ which is not representable as such a linear combination. A related question is to determine the set $B(S)$ of integers x that are representable as differences $x=s_{1}-a_{1}=\ldots=s_{k}-a_{k}$ for some $s_{i} \in S$. The construction $B(S)$ can be iterated to obtain a chain of numerical semigroups. We compare this chain to the one obtained by iterating the Lipman semigroup construction. In particular, we consider these chains for generalized Suzuki semigroups.

1. Introduction

Let a_{1}, \ldots, a_{k} be relatively prime positive integers. Then all sufficiently large integers are representable as linear combinations of a_{1}, \ldots, a_{k} with nonnegative integral coefficients. The Frobenius problem is to determine the largest nonrepresentable integer. Here, we are interested in a related problem. To describe this variant, we use the language of numerical semigroups. For a general reference on numerical semigroups, see [1], [3], [4], or [5].

Throughout, \mathbb{N} denotes the set of positive integers and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ denotes the set of nonnegative integers. A numerical semigroup is an additive submonoid of \mathbb{N}_{0} whose complement in \mathbb{N}_{0} is finite. Given a_{1}, \ldots, a_{k} as above, the numerical semigroup generated

[^0]by a_{1}, \ldots, a_{k} is $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ where
$$
\left\langle a_{1}, \ldots, a_{k}\right\rangle:=\left\{\sum_{i=1}^{k} x_{i} a_{i}: x_{i} \in \mathbb{N}_{0}\right\}
$$

Since there is no loss of generality in doing so, we assume that S is expressed in terms of a minimal generating set; that is,

$$
a_{1}<\cdots<a_{k} \text { and } a_{i} \notin\left\langle a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{k}\right\rangle
$$

for all $1 \leq i \leq k$. In this case, the integers a_{1}, \ldots, a_{k} are called the generators of S, and S is said to be k-generated. The Frobenius number of S, denoted $g(S)$, is the largest integer in $\mathbb{N}_{0} \backslash S$. Since this paper only concerns numerical semigroups, we often use the term semigroup for short.

In this paper, we consider two semigroups that can be constructed from a given one: the dual and the Lipman semigroup. The dual of a numerical semigroup S is

$$
B(S):=\left\{x \in \mathbb{N}_{0}: x+S \backslash\{0\} \subseteq S\right\}
$$

One can check that $B(S)$ is a numerical semigroup containing S. The Lipman semigroup of S is defined to be

$$
L(S):=\left\langle a_{2}-a_{1}, a_{3}-a_{1}, \ldots, a_{k}-a_{1}\right\rangle
$$

where the integers a_{1}, \ldots, a_{k} form a minimal generating set of S. Note that $S \subseteq L(S)$. Determining the dual of S is related to the Frobenius problem in that $g(S)$ is the largest element of $B(S) \backslash S$.

The dual and Lipman constructions can be iterated as in [1] to obtain two chains of numerical semigroups:

$$
\begin{aligned}
& B_{0}(S) \subseteq B_{1}(S) \subseteq B_{2}(S) \subseteq \ldots \subseteq B_{\beta(S)}(S):=\mathbb{N}_{0} \\
& L_{0}(S) \subseteq L_{1}(S) \subseteq L_{2}(S) \subseteq \ldots \subseteq L_{\lambda(S)}(S):=\mathbb{N}_{0}
\end{aligned}
$$

Because $B(S) \subseteq L(S)$, it is natural to ask which semigroups S satisfy

$$
\begin{equation*}
B_{i}(S) \subseteq L_{i}(S) \text { for all } i \in \mathbb{N}_{0} \tag{1}
\end{equation*}
$$

It was conjectured in [1] that (1) holds for all numerical semigroups S. While this was shown to be false in [2], it does hold for several large classes of numerical semigroups, including 2-generated semigroups [2], those generated by generalized arithmetic progressions [9], and 3 -generated telescopic semigroups [10]. Here, we show that (1) holds for generalized Suzuki semigroups. This gives an infinite family of telescopic 4-generated semigroups for which (1) holds.

It remains an open question to characterize those S for which $B_{i}(S) \subseteq L_{i}(S)$ for all $i \in \mathbb{N}_{0}$; in particular, we do not know if (1) holds in the following cases: S is 3 -generated; S is symmetric; and S is telescopic. The smallest known counterexample to (1) is 4 -generated but is not symmetric.

2. Generalized Suzuki semigroups

Given positive integers p and n, let

$$
S(p, n)=\langle a, b, c, d\rangle
$$

where

$$
\begin{aligned}
& a=p^{2 n+1}, \\
& b=p^{2 n+1}+p^{n}, \\
& c=p^{2 n+1}+p^{n+1}, \text { and } \\
& d=p^{2 n+1}+p^{n+1}+1
\end{aligned}
$$

If $p=2$, then $S(p, n)$ is the Weierstrass semigroup of the point at infinity on the curve X defined by

$$
y^{p^{2 n+1}}-y=x^{p^{n}}\left(x^{p^{2 n+1}}-x\right)
$$

over $\mathbb{F}_{p^{2 n+1}}[6]$. Because the automorphism group of X is a Suzuki group (see [7], [11], [12]), $S(p, n)$ is sometimes called a generalized Suzuki semigroup.

We now consider some basic properties of generalized Suzuki semigroups.

Definition 1 Given a numerical semigroup S with generators a_{1}, \ldots, a_{k} (not necessarily in increasing order $)$, let $d_{i}=\operatorname{gcd}\left(a_{1}, \ldots, a_{i}\right)$ and $S_{i}=\left\langle\frac{a_{1}}{d_{i}}, \ldots, \frac{a_{i}}{d_{i}}\right\rangle$ for $1 \leq i \leq k$. Then S is said to be telescopic if and only if $\frac{a_{i}}{d_{i}} \in S_{i-1}$ for all $i, 2 \leq i \leq k$.

Proposition 2 For all positive integers p and $n, S(p, n)$ is telescopic.
Proof. To see that a generalized Suzuki semigroup is telescopic, we must rearrange the generators. In particular, we express $S(p, n)$ as

$$
S(p, n)=\left\langle p^{2 n+1}, p^{2 n+1}+p^{n+1}, p^{2 n+1}+p^{n}, p^{2 n+1}+p^{n+1}+1\right\rangle .
$$

Then

$$
d_{1}=p^{2 n+1}, \quad d_{2}=p^{n+1}, \quad d_{3}=p^{n}, \quad \text { and } \quad d_{4}=1
$$

It follows immediately that

$$
\begin{aligned}
& \frac{a_{2}}{d_{2}} \in \mathbb{N}_{0}=\langle 1\rangle=S_{1}, \\
& \frac{a_{3}}{d_{3}}=p^{n+1}+1=(p-1) p^{n}+\left(p^{n}+1\right) \in\left\langle p^{n}, p^{n}+1\right\rangle=S_{2}, \text { and } \\
& \frac{a_{4}}{d_{4}}=p^{2 n+1}+p^{n+1}+1=p^{n}\left(p^{n+1}\right)+\left(p^{n+1}+1\right) \in\left\langle p^{n+1}, p^{n+1}+1, p^{n+1}+p\right\rangle=S_{3} .
\end{aligned}
$$

Therefore $S(p, n)$ is telescopic.
Recall that a semigroup S is symmetric if and only if there is a bijection

$$
\begin{array}{cc}
\phi: S \cap\{0, \ldots, g\} & \rightarrow \mathbb{N}_{0} \backslash S \\
s & \mapsto g-s
\end{array}
$$

where $g:=g(S)$ denotes the Frobenius number of S.

Lemma 3 [8, Lemma 6.5] If $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ is telescopic (where a_{1}, \ldots, a_{k} may not be in increasing order), then

1. the Frobenius number of S is $g(S)=\sum_{i=1}^{k}\left(\frac{d_{i-1}}{d_{i}}-1\right) a_{i}$ where $d_{0}=0$; and
2. S is symmetric.

Applying Proposition 3, one can see that the Frobenius number of $S(p, n)$ is

$$
g(S(p, n))=p^{2 n+1}\left(2 p^{n}+p-2\right)-p^{n+1}-1
$$

3. Chains of semigroups

We begin this section with a discussion of two chains of semigroups that can be formed from a numerical semigroup S. To obtain the chain of duals, set $B_{0}(S):=S$ and define $B_{i}(S):=$ $B\left(B_{i-1}(S)\right)$ for all $i \in \mathbb{N}$. To obtain the chain of Lipman semigroups, set $L_{0}(S):=S$ and define $L_{i}(S):=L\left(L_{i-1}(S)\right)$ for all $i \in \mathbb{N}$. Each chain is finite since $\mathbb{N}_{0} \backslash S$ is finite. It is also easy to verify that $B_{1}(S) \subseteq L_{1}(S)$ since $x \in B_{1}(S)$ implies $x+a_{1} \in S$, where a_{1} is the smallest nonzero element of S. This gives

$$
\begin{gathered}
B_{0}(S) \subseteq B_{1}(S) \subseteq B_{2}(S) \subseteq \ldots \subseteq B_{\beta(S)}(S) \\
\| \\
L_{0}(S) \subseteq L_{1}(S) \subseteq L_{2}(S) \subseteq \ldots \subseteq L_{\lambda(S)}(S)
\end{gathered}
$$

for any numerical semigroup S. In this section we will show that $B_{i}(S(p, n)) \subseteq L_{i}(S(p, n))$ for all $i \in \mathbb{N}_{0}$. To do this, we first determine the chain of Lipman semigroups.

Lemma 4 If $S=S(p, n)$, then

$$
L_{i}(S)=\left\langle p^{n}, p^{n}(p-i+1)+1\right\rangle
$$

for $1 \leq i \leq p$, and

$$
L_{p+1}(S)=\mathbb{N}_{0}
$$

Proof. By definition, $L_{1}(S)=\left\langle p^{2 n+1}, p^{n}, p^{n+1}, p^{n+1}+1\right\rangle=\left\langle p^{n}, p^{n+1}+1\right\rangle$. Viewing $L_{1}(S)$ as $L_{1}(S)=\left\langle p^{n}, p^{n}(p-1+1)+1\right\rangle$, it is easy to see that $L_{i}(S)=\left\langle p^{n}, p^{n}(p-i+1)+1\right\rangle$ for $1 \leq i \leq p$. Taking $i=p+1$ gives $L_{p+1}=\left\langle p^{n}, 1\right\rangle=\mathbb{N}$.

In light of Lemma 4, to prove that $B_{i}(S(p, n)) \subseteq L_{i}(S(p, n))$ for all $i \in \mathbb{N}_{0}$, it suffices to show that $B_{i}(S(p, n)) \subseteq L_{i}(S(p, n))$ for $2 \leq i \leq p$. The following result describes $B_{i}(S(p, n))$ for i in this range.

Lemma 5 If $S=S(p, n)$ and $g=g(S)$, then

$$
B_{i+1}(S) \backslash B_{i}(S)=\left\{g-\sum_{j=1}^{i} \alpha_{j}: \alpha_{j} \in\{a, b, c, d\}\right\} .
$$

for all $i, 0 \leq i<p$.

Proof. Set $B_{i}:=B_{i}(S)$ for all $i \in \mathbb{N}_{0}$. According to Lemma $3, S$ is symmetric. This implies $B_{1}=S \cup\{g\}$ [1, Lemma I.1.8]. Thus, $B_{1} \backslash S=\{g\}$, and the result holds for $i=1$. We now proceed by induction on i.

Assume $B_{i} \backslash B_{i-1}=\left\{g-\left(\alpha_{1}+\cdots+\alpha_{i-1}\right): \alpha_{j} \in\{a, b, c, d\}\right.$ for $\left.1 \leq j \leq i-1\right\}$. Define $C:=\left\{g-\left(\alpha_{1}+\cdots+\alpha_{i}\right): \alpha_{j} \in\{a, b, c, d\}\right.$ for $\left.1 \leq j \leq i\right\}$. We will show that $B_{i+1} \backslash B_{i}=C$.

First, we will prove that $B_{i+1} \backslash B_{i} \subseteq C$. Suppose $x \in B_{i+1} \backslash B_{i}$. This implies $x+B_{i} \subseteq B_{i}$ but $x+B_{i-1} \nsubseteq B_{i-1}$. Hence, there exists $y \in B_{i-1}$ such that $x+y \in B_{i} \backslash B_{i-1}$. By the induction hypothesis, $x+y=g-\left(\alpha_{1}+\ldots+\alpha_{i-1}\right)$ with $\alpha_{j} \in\{a, b, c, d\}$ for $1 \leq j \leq i-1$.

We claim that $y \in\{a, b, c, d\}$. Suppose not; that is, suppose $y=s+t$ where $s, t \in$ $B_{i-1} \backslash\{0\}$. Then $x+s=g-\left(\alpha_{1}+\cdots+\alpha_{i-1}\right)-t \in B_{i}$. Then, since $t \in B_{i-1} \backslash\{0\}$, $x+y=x+s+t \in B_{i-1}$, which is a contradiction. Thus, y is a generator of B_{i-1} and so

$$
y \in\{a, b, c, d\} \cup\left\{g-\left(\alpha_{1}+\cdots+\alpha_{i-2}\right): \alpha_{j} \in\{a, b, c, d\} \text { for } 1 \leq j \leq i-2\right\} .
$$

Suppose $y=g-\left(\beta_{1}+\cdots+\beta_{i-2}\right)$ where $\beta_{j} \in\{a, b, c, d\}$ for all $1 \leq j \leq i-2$. Then $x=g-\left(\alpha_{1}+\cdots+\alpha_{i-1}\right)-g+\left(\beta_{1}+\cdots+\beta_{i-2}\right)$ and so $x \leq(i-2) d-(i-1) a=(i-2)(d-a)-a$. Since $i \leq p$, we have that $x \leq(p-2)(d-a)-a=-p^{2 n+1}+p^{n+2}-2 p^{n+1}-2<0$ which is a contradiction. This proves the claim that $y \in\{a, b, c, d\}$. Therefore, we have that $x=g-\left(\alpha_{1}+\ldots+\alpha_{i-1}\right)-y \in C$, and so $B_{i+1} \backslash B_{i} \subseteq C$.

Next we will show that $C \subseteq B_{i+1} \backslash B_{i}$. By the induction hypothesis, $C \cap B_{i}=\emptyset$. Hence, it suffices to show that $C \subseteq B_{i+1}$. To do this, we will see that $x+y \in B_{i}$ for all $x \in C$ and $y \in B_{i} \backslash\{0\}$ by taking the sum of the smallest elements in C and $B_{i} \backslash\{0\}$ and showing that this is greater than the Frobenius number of B_{i}. Note that the smallest element of C is $g-i d$. We claim that the smallest nonzero element of B_{i} is a.

Suppose there exists $z \in B_{i} \backslash\{0\}$ such that $z<a$. By the induction hypothesis, this yields

$$
a>z \geq g-(i-1) d \geq g-(p-1) d \geq p^{2 n+1}+p^{2 n+1}\left(2 p^{n}-2\right)-p^{n+2}-p \geq a
$$

and so a is the smallest nonzero element of B_{i}.
Now, we must determine the Frobenius number of B_{i}. To do this, we will use the fact that for any numerical semigroup $T, g(B(T))=g(T)-\mu(T)$, where $\mu(T)$ denotes the least nonzero element of T [1, Proposition I.1.11]. It follows that

$$
g\left(B_{i}\right)=g-i a
$$

since a is the smallest element of B_{j} other than 0 for all $1 \leq j \leq i$.
Suppose now that $x \in C$ and $y \in B_{i} \backslash\{0\}$. Then
$x+y \geq g-i d+a=g-i a-i\left(p^{n+1}+1\right)+p^{2 n+1} \geq g-i a+p^{2 n+1}-p^{n+2}+p^{n+1}-p+1>g-i a$ since $p^{2 n+1}-p^{n+2}+p^{n+1}-p=p\left(p^{n}\left(p^{n}-p+1\right)-1\right)>0$; that is, $x+y>g\left(B_{i}\right)$. Thus, $x \in B_{i+1}$ and so $C \subseteq B_{i+1} \backslash B_{i}$. Therefore,

$$
B_{i+1} \backslash B_{i}=\left\{g-\sum_{j=1}^{i} \alpha_{j}: \alpha_{j} \in\{a, b, c, d\}\right\} .
$$

for all $i, 0 \leq i<p$.

Theorem 6 If $S=S(p, n)$, then

$$
B_{i}(S) \subseteq L_{i}(S)
$$

for all $i \geq 0$.

Proof. Since $B_{0}(S)=S=L_{0}(S), B_{1}(S) \subseteq L_{1}(S)$, and $L_{p+1}(S)=\mathbb{N}_{0}$, it suffices to show that

$$
B_{i}(S) \subseteq L_{i}(S)
$$

for all $2 \leq i \leq p$. To do this, we will prove that

$$
B_{p}(S) \subseteq L_{1}(S)
$$

According to Lemma $4, L_{1}(S)=\left\langle p^{n}, p^{n+1}+1\right\rangle$. Since $L_{1}(S)$ is telescopic (2-generated in fact), the Frobenius number of $L_{1}(S)$ is

$$
g\left(L_{1}(S)\right)=p^{2 n+1}-p^{n+1}-1
$$

Let $x \in B_{p}(S) \backslash\{0\}$. By Lemma 5 ,

$$
x \geq g-(p-1) d \geq g\left(L_{1}(S)\right)+p^{2 n+1}\left(2 p^{n}-2\right)-p^{n+2}+p^{n+1}-p+1>g\left(L_{1}(S)\right) .
$$

Therefore, $x \in L_{1}(S)$. It follows that for all $0 \leq i \leq p$,

$$
B_{i}(S) \subseteq B_{p}(S) \subseteq L_{1}(S) \subseteq L_{i}(S)
$$

References

[1] V. Barucci, D. E. Dobbs and M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Memoirs Amer. Math. Soc. 125/598 (1997).
[2] D. E. Dobbs and G. L. Matthews, On comparing two chains of numerical semigroups and detecting Arf semigroups, Semigroup Forum 63 (2001), 237-246.
[3] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum 35 (1987), no. 1, 63-83.
[4] R. Fröberg, C. Gottlieb and R. Häggkvist, Semigroups, semigroup rings and analytically irreducible rings, Reports Dept. Math. Univ. Stockholm no. 1 (1986).
[5] R. Gilmer, Commutative semigroup rings. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1984.
[6] J. P. Hansen and H. Stichtenoth, Group codes on certain algebraic curves with many rational points, Appl. Algebra Engrg. Comm. Comput. 1 no. 1 (1990), 67-77.
[7] H. W. Henn, Funktionenkörper mit grosser automorphismengruppe, J. Reine Angew. Math. 302 (1978), 96-115.
[8] C. Kirfel and R. Pellikaan, The minimum distance of codes in an array coming from telescopic semigroups, IEEE Trans. Inform. Theory 41 no. 6 (1995), 1720-1732.
[9] G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences, Comm. Alg. 32 no. 9 (2004), 3459-3469.
[10] G. L. Matthews, On triply-generated telescopic semigroups and chains of semigroups, Congressus Numerantium 154 (2001), 117-123.
[11] H. Stichtenoth, ber die Automorphismengruppe eines algebraischen Funktionenkrpers von Primzahlcharakteristik. I. Eine Abschtzung der Ordnung der Automorphismengruppe. Arch. Math. (Basel) 24 (1973) 527-544.
[12] H. Stichtenoth, ber die Automorphismengruppe eines algebraischen Funktionenkrpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkrpern. Arch. Math. (Basel) 24 (1973), 615-631.

[^0]: ${ }^{1}$ G. L. Matthews' work was supported in part by NSF DMS-0201286.
 ${ }^{2}$ This work was performed while R. S. Robinson was a student at Clemson University

