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1 Introduction

The vector space L(A) of rational functions and the vector space Ω(A) of ra-

tional differentials associated to a divisor A have been studied for some time

now. It is natural to ask when two divisors A and A′ define the same space of

rational functions or the same space of differentials. This is motivated further

by the fact that Goppa used these vector spaces to construct algebraic geom-

etry codes [5,6]. In [14,18] the question of when two algebraic geometry codes

are equal is addressed by considering which divisors of the same degree define

the same space of rational functions. Here, we allow the degree of the divisors

to vary. It makes sense to do so since the parameters of an algebraic geometry

code are estimated using the degree of the defining divisor. Thus, by consid-

ering divisors of varying degrees that define the same vector space of rational

functions or rational differentials, improved estimates of code parameters are

obtained.

The notion of “growing” or “shrinking” a divisor in such a way that the same

space of rational functions or rational differentials is maintained has been

suggested repeatedly in the literature (for instance, see [13]). In this paper, we

provide a careful study of this by defining the floor of a divisor as well as its

counterpart, the ceiling of a divisor. The floor of a divisor, introduced in [11], is

a divisor of minimum degree that defines the same space of rational functions.

The ceiling of a divisor is a divisor of maximum degree that defines the same

space of rational differentials. We show that both the floor and the ceiling of a

divisor are unique. Moreover, we provide a method of finding both the floor and

the ceiling of a divisor. Using floors and ceilings, we obtain improved bounds

on the parameters of algebraic geometry codes. These bounds generalize many
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of those found previously using Weierstrass gap sets of places (even r-tuples

of places) of a function field (cf. [4], [12], [8], [3]). We also determine the floor

and ceiling of divisors supported by collinear places of the Hermitian function

field. In addition, we determine the exact minimum distances of a large class

of algebraic geometry codes constructed from the Hermitian function field.

This paper is organized as follows. In Section 2 we review the main results

on floors of divisors from [11]. Section 3 concerns the ceiling of a divisor.

Several new results regarding floors and ceilings of divisors are presented here.

In Section 4, applications to coding theory are considered. In Section 5 we

consider applications to the Hermitian function field: we give a formula for the

ceiling of divisors whose support consists of collinear points, and we exhibit

a large class of functional and differential codes with exact formulaes for the

parameters (length, dimension, and minimum distance).

Notation Unless stated otherwise, we will use notation as in [15]. We write

F/Fq to mean that F is a global function field with full field of constants Fq.

Let g = g(F ) denote the genus of F . If P is a rational place of F , that is, a

place of F of degree one, then vP denotes the discrete valuation corresponding

to P . Given two divisors A,A′ of F , the greatest common divisor of A and A′

is

gcd(A,A′) :=
∑

P

min{vP (A), vP (A′)}P

and the least common multiple of A and A′ is

lcm(A,A′) :=
∑

P

max{vP (A), vP (A′)}P.

The support of a divisor A will be denoted by supp A. The divisor of a function

f ∈ F \ {0} (resp. differential η ∈ Ω \ {0}, where Ω denotes the space of

differentials of F ) is denoted by (f) (resp. (η)). Given a function f ∈ F \ {0},
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the zero divisor of f is denoted by (f)0 and the pole divisor of f is denoted

by (f)∞. Given a divisor A of F , the Riemann-Roch space of A is the vector

space

L(A) := {f ∈ F : (f) ≥ −A} ∪ {0}

of rational functions associated to A, and the dimension of L(A) over Fq is

denoted by `(A). The vector space of differentials associated to A is

Ω(A) := {η ∈ Ω : (η) ≥ A} ∪ {0},

and its dimension over Fq is denoted by i(A).

Let Q1, . . . , Qm, P1, . . . , Pn be distinct rational places of F . Define the divisor

G :=
∑m

i=1 αiQi, where αi ∈ Z for all 1 ≤ i ≤ m, and set D := P1 + . . . + Pn.

We will consider the following two algebraic geometry codes defined using the

divisors G and D:

CL(D,G) := {(f(P1), . . . , f(Pn)) : f ∈ L(G)}

and

CΩ(D, G) := {(resP1(η), . . . , resPn(η)) : η ∈ Ω(G−D)} .

It is well known that CL(D, G) has length n, dimension `(G)− `(G−D), and

minimum distance at least n− deg G while CΩ(D, G) has length n, dimension

i(G−D)−i(G), and minimum distance at least deg G−(2g−2). The designed

distance of CL(D, G) is n − deg G and the designed distance of CΩ(D,G) is

deg G − (2g − 2). As usual, a code of length n, dimension k, and minimum

distance d is called an [n, k, d] code.
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2 The floor of a divisor

In this section we review of some results from [11] concerning the floor of a

divisor.

Let A be a divisor of a function field F/Fq with `(A) > 0. In [11] it is shown

that there is a unique divisor A′ of F of minimum degree such that L(A) =

L(A′). Hence we have the following definition.

Definition 1 Given a divisor A of a function field F/Fq with `(A) > 0,

the floor of A is the unique divisor A′ of F of minimum degree such that

L(A) = L(A′). The floor of A will be denoted by bAc.

It is always the case the bAc ≤ A. The next two results aid in searching

for the floor of a divisor. The first shows that the floor of the divisor A is

obtained from A by removing the base-points of the projective linear system

of A. Hence, the floor of a divisor is base-point free by definition.

Proposition 2 Let A be a divisor of F/Fq with `(A) > 0. Define the effective

divisor E := gcd(A + (x) : x ∈ L(A) \ {0}). Then bAc = A− E.

Theorem 3 Let A be a divisor of F/Fq and let {b1, . . . , bt} ⊆ L(A) \ {0} be

a spanning set for L(A). Then

bAc = − gcd((bi) : i = 1, . . . , t).

The next result is useful, because it implies that if a divisor G is effective and

supp G ∩ supp D = ∅ for some divisor D, then supp bGc ∩ supp D = ∅.

Proposition 4 If A is an effective divisor of F/Fq, then bAc is also effective.
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In particular, if A is effective, then the support of bAc is contained in the

support of A.

3 The ceiling of a divisor

Throughout this section, F/Fq denotes a global function field. Given a divisor

A, we consider divisors A′ that define the same vector space of rational dif-

ferentials as A. In particular, we are interested in those divisors A′ satisfying

Ω(A) = Ω(A′) that have degree as large as possible.

Proposition 5 Let A be a divisor of a function field F/Fq with i(A) > 0.

Suppose A′ is a divisor of F of maximum degree such that Ω(A) = Ω(A′).

Then A ≤ A′. Consequently, A′ is the unique divisor with respect to the above

property.

Proof: Since Ω(A) = Ω(A′) ∩ Ω(A) = Ω(lcm(A′, A)), it follows from the

maximality property of the degree of A′ that

deg A′ ≥ deg lcm(A′, A).

On the other hand, lcm(A′, A) ≥ A′. It follows that A′ = lcm(A′, A), whence

A′ ≥ A.

Now suppose that A′ and A′′ are two divisors of F of maximum degree such

that Ω(A′) = Ω(A) = Ω(A′′). From the above, the fact that A′′ is a divisor of

F of maximum degree such that Ω(A′) = Ω(A′′) implies A′ ≤ A′′. Similarly,

A′′ ≤ A′ since A′ is a divisor of F of maximum degree such that Ω(A′′) = Ω(A′).

Therefore, A′ = A′′. Hence, there is a unique divisor A′ of F of maximum

degree satisfying Ω(A) = Ω(A′). 2
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Definition 6 Given a divisor A of a function field F/Fq with i(A) > 0, the

ceiling of A is the unique divisor A′ of F of maximum degree such that Ω(A) =

Ω(A′). The ceiling of A will be denoted by dAe.

Corollary 7 Let A1 and A2 be divisors of a function field F/Fq with i(A1) > 0

and i(A2) > 0. Then Ω(A1) = Ω(A2) if and only if dA1e = dA2e.

Proof: The forward implication follows from Proposition 5. Assume that

dA1e = dA2e. Then Ω(A1) = Ω(dA1e) = Ω(dA2e) = Ω(A2). 2

The next two results will aid in searching for the ceiling of a divisor.

Proposition 8 Let A be a divisor of F/Fq with i(A) > 0. Define the divisor

E := gcd((η) : η ∈ Ω(A) \ {0}). Then dAe = E.

Proof: Observe that for any place P , we have

min
η∈Ω(A)\{0}

vP (η) = vP (E).

Then for any η ∈ Ω(A) \ {0}, vP (η) ≥ vP (E), whence η ∈ Ω(E). Thus,

Ω(A) ⊆ Ω(E). Since E ≥ A, we also have Ω(E) ⊆ Ω(A). Hence, Ω(E) = Ω(A).

By Proposition 5, we have E ≤ dAe. Suppose that there is a place P such

that vP (E) < vP (dAe). Then E + P ≤ dAe, and so

Ω(A) = Ω(dAe) ⊆ Ω(E + P ) ⊆ Ω(E).

Since Ω(A) = Ω(E), it follows that Ω(E) = Ω(E + P ). By the definition of E,

there exists η ∈ Ω(A) = Ω(E) such that vP (η) = vP (E). Clearly, η 6∈ Ω(E+P )

which is a contradiction. Therefore, vP (E) = vP (dAe) for all places P of F ,

and so E = dAe. 2
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Theorem 9 Let A be a divisor of F/Fq and let {η1, . . . , ηt} ⊆ Ω(A) \ {0} be

a spanning set for Ω(A). Then

dAe = gcd((ηi) : i = 1, . . . , t).

Proof: Put E := gcd((ηi) : i = 1, . . . , t). For each i = 1, . . . , t, ηi ∈ Ω(A) =

Ω(dAe) so that (ηi) ≥ dAe. Thus

dAe ≤ gcd((ηi) : i = 1, . . . , t) = E.

From Proposition 8 we have that dAe = gcd((η) : η ∈ Ω(A) \ {0}). Let P

be a place of F and choose η ∈ Ω(A) such that vP (η) = vP (dAe). Choose a

uniformizing element x for P and for each i, let xi ∈ F such that ηi = xidx.

Then there exist ai ∈ Fq such that η = a1 · x1dx + a2 · x2dx + . . . + at · xtdx =

(a1x1 + a2x2 + . . . + atxt)dx. We have vP (η) = vP (a1x1 + a2x2 + . . . + atxt) ≥
minai 6=0(vP (xi)) = vP

(
gcdai 6=0(ηi)

)
≥ vP (gcd((ηi), 1 ≤ i ≤ t)). This implies

that dAe ≥ E. Thus dAe = E. 2

Given a divisor A of F/Fq and a spanning set {η1, . . . , ηt} ⊆ Ω(A) \ {0} for

Ω(A), Theorem 9 shows that the support of the ceiling of A is contained in

the union of the supports of (η1) , . . . , (ηt):

suppdAe ⊆ supp (η1) ∪ . . . ∪ supp (ηt) .

This illustrates how much one can “grow” the divisor A without changing the

space of rational differentials associated to it.

Proposition 10 Let A be a divisor of F/Fq with i(A) > 0. If W is a canonical

divisor of F with the property that W ≥ A then W ≥ dAe.
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Proof: Choose any differential η such that W = (η). Then W ≥ A implies

that (η) ≥ A, whence η ∈ Ω(A) = Ω(dAe). Thus, W = (η) ≥ dAe. 2

The following result establishes a relationship between the floor and ceiling

of a divisor. It also provides a convenient way of computing the ceiling of a

divisor.

Theorem 11 Let A be a divisor of F/Fq and let W be a canonical divisor of

F .

(a) If i(A) > 0, then

W − dAe = bW − Ac. (1)

(b) If `(A) > 0 then

W − bAc = dW − Ae. (2)

Proof: Choose a differential η such that W = (η). Then L(bW − Ac) =

L(W − A) ∼= Ω(A) = Ω(dAe) ∼= L(W − dAe). The first isomorphism is given

by x 7→ xη and the second is given by ω 7→ ω/η so that the composite of these

maps is the identity map. This implies that L(W − dAe) = L(bW − Ac) =

L(W −A) so that W − dAe ≥ bW −Ac. Suppose that W − dAe > bW −Ac.
Then there is a place P such that L(W − dAe − P ) = L(W − dAe). But this

implies that Ω(dAe+ P ) = Ω(dAe) = Ω(A) contradicting the fact that dAe is

the divisor of maximum degree such that Ω(dAe) = Ω(A). Thus W − dAe =

bW − Ac. Now (2) follows from (1) by replacing A by W − A. 2

Remark 12 Let W be a canonical divisor and A be a divisor with i(A) > 0.

As mentioned in the proof of Theorem 11, there is an isomorphism Ω(A) ∼=
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L(W − A). Hence, according to Definition 6, the ceiling of A is the unique

divisor dAe such that L(W − dAe) = L(W − A) and

degdAe = max {deg A′ : L(W − A′) = L(W − A)} .

Note that by Proposition 2

dAe = A + EW−A

where EW−A := gcd (W − A + (f) : f ∈ L(W − A) \ {0}).

Next we give a large class of divisors which equal their floors or ceilings.

Corollary 13 Let f be a nonzero function, A a divisor of F , and W a canon-

ical divisor of F .

(a) If i(A) > 0 then

dA + (f)e = dAe+ (f).

(b) If `(A) > 0 then

bA + (f)c = bAc+ (f).

(c) b(f)c = (f), b(f)0c = (f)0 and b(f)∞c = (f)∞.

(d) dW−(f)0e = W−(f)0, dW−(f)∞e = W−(f)∞ and dW−(f)e = W−(f).

Proof: (a) Let x ∈ F be a separating element. Then since the divisor of a

differential is a canonical divisor, it follows from Theorem 11 that

b(dx)− ((f) + A)c = (dx)− ((f) + dAe) .
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and

b(dx)− ((f) + A)c = (dx)− d(f) + Ae.

Thus d(f) + Ae = (f) + dAe.

(b) The proof is similar to (a).

(c) The first result follows from (b) by putting A = 0. Now put A = (f)∞.

Then f ∈ L(A) so that `(A) > 0 and from (b) we have that

b(f)∞ + (f)c = b(f)∞c+ (f)

whence b(f)0c = b(f)∞c+ (f)0 − (f)∞ so that

b(f)0c − (f)0 = b(f)∞c − (f)∞. (3)

From Proposition 4 we have that the support of b(f)0c is contained in the

support of (f)0 and the support of b(f)∞c is contained in the support of

(f)∞. Since the divisors (f)0 and (f)∞ have disjoint supports, that same must

be true for the divisors on both sides of (3). This implies b(f)0c = (f)0 and

b(f)∞c = (f)∞.

(d) Observe that since W − (f)0 ≤ W , i(W − (f)0) > 0. Now, putting A =

W − (f)0 in (a), it follows that dW − (f)0 + (f)e = dW − (f)0e + (f). But

dW − (f)0 + (f)e = dW − (f)∞e = W − b(f)∞c = W − (f)∞ by Theorem 11,

(a) and (c). Thus dW−(f)0e+(f) = W−(f)∞ so that dW−(f)0e = W−(f)0.

The second result now follows by replacing W by W +(f) and the third result

is a special case of the previous results by replacing W by W + (f) (which is

also a canonical divisor) and f by any nonzero constant function. 2
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4 Bounds on parameters of codes

The main motivation for studying the floor and the ceiling of a divisor is that

it leads to improved estimates of the minimum distance of algebraic geometric

codes. The idea of changing the defining divisor of an algebraic geometry code

so that a better bound on the code parameters is obtained not a new one. In

fact, it was suggested by Goppa that special divisors might be used to define

better codes [5], [6].

Several authors have used the Weierstrass gap set to obtain estimates on the

parameters of algebraic geometry codes (see [9], [4], [10], [12], [8], [3]). Recall

that (α1, . . . , αm) ∈ Nm
0 is an element of the Weierstrass gap set of an m-tuple

(P1, . . . , Pm) of rational places of a function field F/Fq if

L
(

m∑

i=1

αiPi

)
= L




m∑

i=1, i 6=j

αiPi + (αj − 1)Pj


 (4)

for some j, 1 ≤ j ≤ m ([1], [2]). The idea is that consecutive elements of the

Weierstrass gap set give some information on how to appropriately “grow” or

“shrink” a divisor supported by the places P1, . . . , Pm while maintaining the

same set of rational functions or rational differentials. However, when m ≥ 2,

it is not so obvious what consecutive should mean. A first step around this

was made by Kirfel and Pellikaan in [10] where they use consecutive B-gaps

at a place P (considered previously in [7] and [4]) where B is a divisor. For

instance, if B =
∑m

i=1,i 6=j αiPi, then αj is a B-gap at Pj if (4) holds. In [8],

Homma and Kim define a pure gap to be an element of the Weierstrass gap

set such that (4) holds for all j, 1 ≤ j ≤ m, and use consecutive pure gaps to

derive a better bound on the minimum distance of certain algebraic geometry

codes.
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The floor and ceiling of a divisor allow one to recover many of the results

obtained using techniques described in the preceding paragraph and is much

more general. In particular, the floor and ceiling do not require the symmetry

that is necessary in many of the previous results (including those using B-gaps

and pure gaps). While Weierstrass gap sets may be used to find a divisor that

defines the same vector space, it may not necessarily give the best one in the

sense that the divisor may not be the one of largest or smallest possible degree.

The first improved estimate of the minimum distance of an AG code follows

immediately from the definition of the floor of a divisor. This estimate which

appears in [11] is a generalization of [9] and [4, Theorem 3]. Recall that given

a divisor A, deg A ≥ degbAc. Given a divisor A, let EA := A − bAc. Then

deg EA ≥ 0.

Theorem 14 Let F/Fq be a function field of genus g. Let D := P1 + . . . + Pn

where P1, . . . , Pn are distinct rational places of F , and let G be a divisor of

F such that the support of bGc does not contain any of the places P1, . . . , Pn.

Then CL(D,G) is an [n, k, d] code whose parameters satisfy

k ≥ deg G− g + 1

and

d ≥ n− degbGc = n− deg G + deg EG.

Next, we state a bound on the minimum distance of CΩ(D, G).

Theorem 15 Let F/Fq be a function field of genus g. Let D := P1 + . . . + Pn

where P1, . . . , Pn are distinct rational places of F , and let G be a divisor of
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F such that the support of dG − De + D does not contain any of the places

P1, . . . , Pn. Then CΩ(D,G) is an [n, k, d] code whose parameters satisfy

k ≥ n− deg G + g − 1

and

d ≥ degdG−De+ n + g − 1 = deg G− (2g − 2) + deg EW−G+D

where W is any canonical divisor.

Proof: The result follows immediately from the fact that

Ω(G−D) = Ω(dG−De) = Ω(dG−De+ D −D) = Ω(G−D + EW−G+D).

2

Typically, an algebraic geometry code is defined by taking G to be a divisor

supported by a few rational places of F/Fq and setting D to be the sum of

all rational places of F/Fq other than those in the support of G. In order to

construct a long code, there must be many rational places in the support of

D. For this reason, the task of finding the ceiling of G−D might seem rather

daunting as the support of G − D is quite large. However, recall that there

exists a differential η with divisor (η) = A−D where suppA∩ suppD = ∅ [15,

Lemma II.2.9]. Then to compute the ceiling of G−D, we can use that

dG−De = W − bW −G + Dc = W − bA−Gc

where W = (η) is a canonical divisor.

In order for Theorem 15 to give an improvement over the designed distance

of CΩ(D,G), we need W + D − G > bW + D − Gc, which means we need
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n − 2 ≤ deg G. Such codes will have small dimension but large minimum

distance. Next, we include a result from [11] that yields an improvement over

the designed distance for certain codes CΩ(D,G) with larger dimensions.

Theorem 16 Let F/Fq be a function field of genus g. Let D := P1 + . . . + Pn

where P1, . . . , Pn are distinct rational places of F , and let G := H + bHc be a

divisor of F where H is an effective divisor whose support does not contain any

of the places P1, . . . , Pn. Then CΩ(D, G) is an [n, k, d] code whose parameters

satisfy

k ≥ n− deg G + g − 1

and

d ≥ deg G− (2g − 2) + deg EH = 2 deg H − (2g − 2).

The next corollary shows how one may apply Theorem 16 to an even larger

class of codes. We remark that this result yields a generalization of [8, Theorem

3.3], [3, Theorem 3.4], and [10, Proposition 3.10].

Corollary 17 Let F/Fq be a function field of genus g. Let D := P1 + . . .+Pn

where P1, . . . , Pn are distinct rational places of F , and let G := H+A where H

and A are effective divisors of F such that the support of H does not contain

any of the places P1, . . . , Pn and bHc ≤ A ≤ H. Then CΩ(D, G) is an [n, k, d]

code whose parameters satisfy

k ≥ n− deg G + g − 1
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and

d ≥ deg G− (2g − 2) + deg(H − A).

Proof: This follows immediately from Theorem 16 as H + bHc − D ≤
H + A−D implies CΩ(D, H + A) ⊆ CΩ(D,H + bHc). 2

Proposition 18 Let F/Fq be a function field of genus g. Let D := P1+. . .+Pn

where P1, . . . , Pn are distinct rational places of F , and let G be a divisor of

F such that the support of dGe does not contain any of the places P1, . . . , Pn.

Then CΩ(D, dGe) is an [n, k, d] code whose parameters satisfy

k ≥ n− degdGe+ g − 1

and

d ≥ degdGe − (2g − 2) = deg G− (2g − 2) + deg(dGe −G).

The floor and ceiling of a divisor can also be used to improve the bounds on

the generalized Hamming weights of algebraic geometry codes. If C is a code

of length n and dimension k and 1 ≤ r ≤ k, the rth generalized Hamming

weight of C is defined to be

dr(C) := min {|supp V | : V is a linear subcode of C, dim V = r}

where supp V := {i : 1 ≤ i ≤ n, ci 6= 0 for some c ∈ V } is the support of the

subcode V [17]. Clearly, d1(C) = d(C), the minimum distance of C. In [19,

Theorem 12] it is shown that if CL(D, G) is a code over Fq of length n and

dimension k and 1 ≤ r ≤ k, then

dr(CL(D,G)) ≥ n− deg G + γr

16



where {γr : r ≥ 1} denotes the gonality sequence of F/Fq. The next two results

follow immediately from Definition 1 and Definition 6. The first generalizes

[16, Theorem 4.3].

Proposition 19 Let F/Fq be a function field. Let D := P1 + . . . + Pn where

P1, . . . , Pn are distinct rational places of F , and let G be a divisor of F

such that the support of bGc does not contain any of the places P1, . . . , Pn.

If CL(G,D) is nontrivial, then

dr(CL(D, G)) ≥ n− degbGc+ γr

= n− deg G + γr + deg(G− bGc).

Proposition 20 Let F/Fq be a function field of genus g. Let D := P1+. . .+Pn

where P1, . . . , Pn are distinct rational places of F , and let G be a divisor of

F such that the support of dG − De + D does not contain any of the places

P1, . . . , Pn. If CΩ(G,D) is nontrivial, then

dr(CΩ(D, G)) ≥ deg(G + EW−G+D)− (2g − 2) + γr

= deg G− (2g − 2) + γr + deg EW−G+D.

5 Applications to the Hermitian function field

In this section, we restrict our attention to the Hermitian function field H =

Fq2(x, y) with defining equation yq +y = xq+1. We determine the floor and the

ceiling of divisors of H with collinear support. First, we set up some notation.

Let

K := {(α, β) ∈ F2
q2 : βq + β = αq+1}.
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For each α ∈ Fq2 , set

Kα := {β : βq + β = αq+1},

and for each (α, β) ∈ K, let Pα,β denote the common zero of x− α and y− β.

For (α, β) ∈ K, we define the function τα,β := y − β − αq(x− α). Throughout

the next two subsections, α is a fixed element of Fq2 and r and kβ (for each

β ∈ Kα) are fixed integers.

5.1 The floor and ceiling of divisors with collinear support

In [11], the floor of a divisor with collinear support is found. We include this

result and determine the ceiling of such a divisor as a corollary.

Theorem 21 [11] Let A := rQ∞+
∑

β∈Kα
kβPα,β be a divisor of the Hermitian

function field H/Fq2 where r ∈ Z, α ∈ Fq2, and kβ ∈ Z for each β ∈ Kα. Then

the floor of A is given by

bAc = bQ∞ +
∑

β∈Kα

aβPα,β

where

aβ = −min

{
i− (q + 1)

⌊
kβ + i

q + 1

⌋
: 0 ≤ i ≤ q and a(i) > 0

}
,

b := max

{
(q + 1)

⌊
r − iq

q + 1

⌋
+ qi : 0 ≤ i ≤ q and a(i) > 0

}

and

a(i) :=

⌊
r − iq

q + 1

⌋
+

∑

β∈Kα

⌊
kβ + i

q + 1

⌋
+ 1

18



for 1 ≤ i ≤ q.

Recall that even though bAc ≤ A, it is not necessarily the case that suppbAc ⊆
suppA if A is not effective. However, Theorem 21 shows that if A is supported

by collinear places of the Hermitian function field, then suppbAc ⊆ suppA

even if A is not an effective divisor.

As an immediate corollary of Theorem 21, we obtain a formula for the ceiling

of a divisor supported by collinear rational places of the Hermitian function

field. Note that the support of the ceiling of such a divisor is contained in the

support of the divisor.

Corollary 22 Let A := rQ∞ +
∑

β∈Kα
kβPα,β be a divisor of the Hermitian

function field H/Fq2 where r ∈ Z, α ∈ Fq2, and kβ ∈ Z for each β ∈ Kα. The

ceiling of A is given by

dAe = (2g − 2− b)Q∞ −
∑

β∈Kα

aβPα,β

where

aβ = −min

{
i− (q + 1)

⌊−kβ + i

q + 1

⌋
: 0 ≤ i ≤ q and a(i) > 0

}
,

b := max

{
(q + 1)

⌊
2g − 2− r − iq

q + 1

⌋
+ qi : 0 ≤ i ≤ q and a(i) > 0

}

and

a(i) :=

⌊
2g − 2− r − iq

q + 1

⌋
+

∑

β∈Kα

⌊−kβ + i

q + 1

⌋
+ 1

for 1 ≤ i ≤ q.
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Proof: Let W := (2g − 2)Q∞. Then W is a canonical divisor ([15, Lemma

VI.4.4]). According to Remark 12,

dAe = (2g − 2)Q∞ − bW − Ac

= (2g − 2)Q∞ − b(2g − 2− r)Q∞ −∑
β∈Kα

kβPα,βc.

According to Theorem 21, this gives

dAe = (2g − 2)Q∞ − bQ∞ −∑
β∈Kα

aβPα,β

= (2g − 2− b)Q∞ −∑
β∈Kα

aβPα,β

where b, a(i), 1 ≤ i ≤ q, and aβ are as described in Corollary 22. 2

5.2 The exact dimension and minimum distance of a class of codes.

In Theorem 14 we give improved lower bounds for the minimum distance and

dimension of codes from divisors G which are not equal to their floors. How-

ever, if one can compute the dimension of the Riemann-Roch spaces L(G)

exactly, then in order to get the best possible lower bound on the minimum

distance, it makes sense to work only with those divisors which equal their

floors. In [11] the exact dimension of Riemann-Roch spaces of a class of di-

visors with collinear support is computed: it is shown that the dimension of

L
(
rQ∞ +

∑
β∈Kα

kβPα,β

)
is given by

q∑

i=0

max





⌊
r − iq

q + 1

⌋
+

∑

β∈Kα

⌊
kβ + i

q + 1

⌋
+ 1, 0



 . (5)

In Corollary 13 we exhibit large classes of divisors which equal their floors.

For divisors G of the form (f)∞, the pole divisor of f , there is a large class
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of AG codes for which we can give the exact minimum distance [15, Remark

II.2.5]:

Theorem 23 Let F/Fq be a function field and let f ∈ F . Put G = (f)∞ and

let D be the divisor D := P1 + . . . + Pn whose support consists of rational

places disjoint from the support G. Suppose that all of the zeroes of f are

simple and contained in the support of D. Then the minimum distance of the

code CL(G,D) is exactly n− deg(G).

Proof: The function f belongs to L(G) and the corresponding codeword

(f(P1), f(P2), . . . , f(Pn)) has weight exactly n−deg(f)0 so that the minimum

distance of the code CL(G, D) is at most n − deg(f)0 = n − deg G. But the

minimum distance of the code CL(G,D) is at least n − deg G [15, Theorem

II.2.2]. Thus the minimum distance is exactly n− deg G. 2

For divisors G of the form W + (f)0, where W is a canonical divisor, there

is a large class of differential codes for which we can give the exact minimum

distance:

Theorem 24 Let F/Fq be a function field of genus g and let f ∈ F . Suppose

that P1, . . ., Pn are rational places of F and put D := P1 + . . . + Pn. Suppose

that f has only simple zeroes contained in the support of D and that η is a

differential such that G := (η)+(f)0 has support disjoint from the support of D.

Then the minimum distance of the code CΩ(G, D) is exactly deg G−(2g−2) =

deg(f)0.

Proof: It is clear that η ∈ Ω(G − D). Observe that since G has support

disjoint from the support of D and since f has only simple zeroes, it fol-

lows that for each place P in the support D, P belongs to the support of
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(f)0 if and only if vP (η) = −1. But at any place P in the support of D, we

have that resP (η) 6= 0 if and only if vP (η) = −1. Thus resP (η) 6= 0 iff P

belongs to the support of (f)0 and consequently the corresponding codeword

(resP1(η), resP2(η), . . . , resPn(η)) has weight exactly deg(f)0 so that the min-

imum distance of the code CΩ(G,D) is at most deg(f)0 = deg G − (2g − 2).

But the minimum distance of the code CΩ(G,D) is at least deg G− (2g − 2)

[15, Theorem II.2.7]. Thus the minimum distance is exactly deg G− (2g− 2).

2

Corollary 25 Suppose that the numbers kβ, β ∈ Kα, are non-negative and

belong to the same congruence class modulo q + 1. Furthermore, assume that

b ≤ q2 − 1 where b :=
∑

β∈Kα
kβ and let t be a non-negative integer such that

db/qe ≤ t < q2−1. Let G =
∑

β∈Kα
kβPα,β +rQ∞ where r = qt−b. Let α ∈ Fq2

and let D be the sum of all rational places of the Hermitian function field H,

none of which are zeroes of the function x−α or the place Q∞. Then the code

CL(D, G) is an [n, k, d] code where

(i) n = q3 − q,

(ii) k =
∑q

j=0 max
{⌊

r−jq
q+1

⌋
+

∑
β∈Kα

⌊
kβ+j

q+1

⌋
+ 1, 0

}
and

(iii) d = q3 − q − b− r = q3 − q(t + 1).

Proof: There are q3 + 1 rational places in H and q of them are zeroes of

x − α. Thus n = q3 + 1 − (q + 1) = q3 − q. The dimension follows from (5).

Choose a set S of t elements of Fq2 \ {α}. Let i be the integer in the interval

0 ≤ i ≤ q such that −kβ ≡ i mod q + 1 for all β ∈ Kα. For each β ∈ Kα let eβ
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be the integer such that −kβ − i = (q + 1)eβ. Let f be the function

f :=


(x− α)i

∏

β∈Kα

τ
eβ,i

α,β


 · ∏

γ∈S

(x− γ).

In [11] it is shown that


(x− α)i

∏

β∈Kα

τ
eβ,i

α,β




=
∑

β∈Kα

(eβ,i(q + 1) + i)Pα,β − ((q + 1)
∑

β∈Kα

eβ,i + iq)Q∞

=
∑

β∈Kα

−kβPα,β + bQ∞

and
(∏

γ∈S(x− γ)
)

= D′ − qtQ∞ where D′ is a sum of qt rational places in

the support of D. Thus

(f) =
∑

β∈Kα

−kβPα,β + (b− qt)Q∞ + D′

so that

(f)∞ =
∑

β∈Kα

kβPα,β + rQ∞ = G.

and (f)0 = D′. Observe that the zeroes of f are all simple and are contained

in the support of D. Thus by Theorem 23 it follows tht d = n − deg(f)∞ =

q3 − q − (b + r) = q3 − q(t + 1) as required. 2

Corollary 26 Suppose that the numbers kβ, β ∈ Kα, are non-negative and

belong to the same congruence class modulo q + 1. Furthermore, assume that

b ≤ q2 − 1 where b :=
∑

β∈Kα
kβ and let t be a non-negative integer such that

db/qe ≤ t ≤ q2−1. Let G =
∑

β∈Kα
kβPα,β +rQ∞. where r = qt−b+q2−q−2.

Let α ∈ Fq2 and let D be the sum of all rational places of the Hermitian

function field H none of which are zeroes of the function x − α or the place
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Q∞.

Then the code CΩ(D, G) is an [n, k, d] code where

(i) n = q3 − q,

(ii) k =
∑q

i=0 max
{⌊

q3−q−r−iq
q+1

⌋
+

∑
β∈Kα

⌊−kβ+i

q+1

⌋
+ 1, 0

}
and

(iii) d = qt.

Proof: There are q3+1 rational places in H and q of them are zeroes of x−α.

Thus n = q3+1−(q+1) = q3−q. Choose a set S of t elements of Fq2 \{α}. Let

i be the integer in the interval 0 ≤ i ≤ q such that −kβ ≡ i mod q + 1 for all

β ∈ Kα. For each β ∈ Kα let eβ be the integer such that −kβ − i = (q + 1)eβ.

Let f be the function

f :=


(x− α)i

∏

β∈Kα

τ
eβ,i

α,β


 · ∏

γ∈S

(x− γ).

As in the proof of Corollary 25 it follows that

(f) =
∑

β∈Kα

−kβPα,β + (b− qt)Q∞ + D′

where D′ is a sum of qt rational places in the support of D. Consequently

(f)∞ =
∑

β∈Kα

kβPα,β + (qt− b)Q∞.

and (f)0 = D′.

Put η = dx/f . Observe that

(dx) + (f)∞
= (q2 − q − 2)Q∞ + (f)∞
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=
∑

β∈Kα

kβPα,β + (qt− b + q2 − q − 2)Q∞

equals G and has disjoint support from D. Hence (η)+(f)0 = (dx)+(f)∞ = G.

Note also that the zeroes of f are all simple and are contained in the support

of D. Thus by Theorem 24 it follows that d = deg(f)0 = deg D′ = qt as

required.

Put W = dx/
∏

γ 6=α(x − γ). Since Ω(G −D) ∼= L(W − G + D), it suffices to

compute the dimension of L(W −G + D). Observe that

W − G + D = (dx) − (D − q(q2 − 1)Q∞) − G + D = (dx) + (q3 − q)Q∞ −
((dx) + (f)∞) = (q3 − q)Q∞ − (f)∞ = (q3 − q − (qt− b))Q∞ −∑

β∈Kα
kβPα,β

so that by (5) the code has dimension

q∑

i=0

max





⌊
q3 − q − (qt− b)− iq

q + 1

⌋
+

∑

β∈Kα

⌊−kβ + i

q + 1

⌋
+ 1, 0





as required. 2
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