DISTANCE k COLORINGS OF HAMMING GRAPHS

ROBERT E. JAMISON AND GRETCHEN L. MATTHEWS* DEPARTMENT OF MATHEMATICAL SCIENCES
CLEMSON UNIVERSITY
CLEMSON, SC 29634-0975 U.S.A.
REJAM@CLEMSON.EDU, GMATTHE@CLEMSON.EDU

Abstract

A coloring of the vertices of a graph G is a distance k coloring of G if and only if any two vertices lying on a path of length less than or equal to k are given different colors. Hamming graphs are Cartesian (or box) products of complete graphs. In this paper, we will consider the interaction between coding theory and distance k colorings of Hamming graphs.

1. Introduction

In this paper, we consider two types of powers of graphs. First, there is the Cartesian (or box) product of a graph with itself some number n of times. The vertices of the Cartesian power are n-tuples of vertices of G. Second, there is a notion of power arising from distance. The k th distance power of a graph G has the same vertex set as G but with all pairs of vertices at a distance k or less in G joined by an edge in the k th power. A coloring of the vertices of a graph G is a distance k coloring of G if and only if any two (distinct) vertices lying on a path of length less than or equal to k are given different colors. Notice that a distance k coloring of G is just a proper coloring of its k th distance power.

The Hamming graphs are Cartesian powers of complete graphs. Adapting the notational style of finite geometries (of which the Hamming graphs are generalizations), we will let $H(q, n)$ denote the n-fold Cartesian product of a complete graph K_{q} with itself. Note that a vertex of $H(q, n)$ is just an n-tuple whose entries come from a fixed set of q symbols - the vertices of K_{q}. In other words, $H(q, n)$ is the set of all words of length n from a q-ary alphabet. Two words are adjacent if and only if they differ in exactly one place. Two words are at distance k (the Hamming distance) if and only if they differ in exactly k places.

[^0]The k-fold distance power of $H(q, n)$ will be denoted by $H^{k}(q, n)$. Notice that the vertices of $H^{k}(q, n)$ are again words of length n from a q-ary alphabet. However, in $H^{k}(q, n)$ two words are adjacent if and only if they differ in at most k places. Distance k colorings of $H(q, n)$ correspond to proper colorings of $H^{k}(q, n)$.

The minimum number of colors required by a distance k coloring of $H(q, n)$ may thus be denoted by $\chi\left(H^{k}(q, n)\right)$. Distance k colorings in general graphs are motivated by the channel assignment problem [7] and the study of the scalability of optical networks [13, 16]. Much work has been devoted to finding or obtaining bounds on the distance k chromatic number $[2,3,4,5,6,11,12,16,17]$.
In this paper, we are interested in bounding and, whenever possible, finding $\chi\left(H^{k}(q, n)\right)$. When $q=2$, the Hamming graphs $H(2, n)$ are precisely the well-known hypercubes. We recall some earlier results on hypercubes proved in [8].
Proposition 1.1. [8]
(1) Given any integer n,

$$
n+1 \leq \chi\left(H^{2}(2, n)\right) \leq 2 n+1
$$

(2) If $n=2^{r}-1$ for some integer $r>1$, then $\chi\left(H^{2}(2, n)\right)=n+1$.
(3) The distance 2 chromatic number of the n-dimensional cube $H(2, n)$ satisfies

$$
\chi\left(H^{2}(2, n)\right) \geq\left\lceil\frac{2^{n}}{\left\lfloor\frac{2^{n}}{n+1}\right\rfloor}\right\rceil= \begin{cases}n+1 & \text { if } n+1 \text { divides } 2^{n} \\ n+2 & \text { otherwise }\end{cases}
$$

Our goal is to obtain analogues for these results for more general q and k.
This paper is organized as follows. In Section 2, we use notions from coding theory to bound $\chi\left(H^{k}(q, n)\right)$. An analysis of one of these bounds for $2 \leq$ $k \leq 5$ is given in Section 3. In Section 4, we provide some exact values for $\chi\left(H^{k}(q, n)\right)$ in the case where k is either small or large with respect to n.

2. Bounds from coding theory

In this section, we use some ideas from the theory of error-correcting codes to provide bounds on the distance k chromatic number of Hamming graphs. This approach has been employed by several authors (see, for example, $[4,5,11,12,17])$. We begin by recalling the necessary terminology.

Let \mathbb{F} denote a finite alphabet with q elements. An $(n, \geq d)_{q}$-code is a subset of \mathbb{F}^{n} in which any two words differ in at least d positions. If an $(n, \geq d)_{q}$-code contains two words which differ in exactly d positions, it is called an $(n, d)_{q^{-}}$-code. Let $A_{q}(n, d)$ denote the maximum size of an $(n, d)_{q^{-}}$ code. If q is a power of a prime number we often take \mathbb{F} to be the finite field with q elements. In this case, we can consider codes which are subspaces of \mathbb{F}^{n}; such codes are said to be linear. If an $(n, d)_{q}$-code is linear, then it is called an $[n, d]_{q}$-code. Let $B_{q}(n, d)$ denote the maximum size of an $[n, d]_{q}$-code.

First, we use the maximum size of an $(n, d)_{q}$-code to obtain a lower bound on $\chi\left(H^{d-1}(q, n)\right)$. Suppose that ϕ is a distance $d-1$ coloring of $H(q, n)$ with color classes S_{1}, \ldots, S_{m}. Then each color class S_{i} is a $(n, \geq d)_{q}$-code with $\left|S_{i}\right|$ words. Moreover,

$$
q^{n}=|V(H(q, n))|=\sum_{i=1}^{m}\left|S_{i}\right| \leq \sum_{i=1}^{m} A_{q}(n, \geq d) \leq m A_{q}(n, d)
$$

As a result,

$$
m \geq \frac{q^{n}}{A_{q}(n, d)} \quad \text { and } \quad \chi\left(H^{d-1}(q, n)\right) \geq \frac{q^{n}}{A_{q}(n, d)}
$$

Next we note that any upper bound on $A_{q}(n, d)$ provides a lower bound on $\chi\left(H^{d-1}(q, n)\right)$. As an illustration, we consider the sphere packing bound which states that

$$
A_{q}(n, d) \leq\left\lfloor\frac{q^{n}}{\sum_{i=1}^{t}\binom{n}{i}(q-1)^{i}}\right\rfloor
$$

where $t:=\left\lfloor\frac{d-1}{2}\right\rfloor$. It follows that

$$
\chi\left(H^{d-1}(q, n)\right) \geq\left\lceil\frac{q^{n}}{A_{q}(n, d)}\right\rceil \geq\left\lceil\frac{q^{n}}{\left\lfloor\frac{q^{n}}{\sum_{i=1}^{t}\binom{n}{i}(q-1)^{i}}\right\rfloor}\right\rceil \geq \sum_{i=1}^{t}\binom{n}{i}(q-1)^{i}
$$

We will revisit this bound for small values of d in Section 3 .
Finally, we use the maximum size of an $[n, d]_{q}$-code to obtain an upper bound on $\chi\left(H^{d-1}(q, n)\right)$ where q is a prime power. Suppose that C is a $[n, d]_{q}$-code with q^{k} words. Then C has q^{n-k} cosets $c_{1}+C, \ldots, c_{q^{n-k}}+C$ where $c_{i} \in \mathbb{F}^{n}$. Assign color i to the coset $c_{i}+C$. This gives a distance $d-1$ coloring of $H(q, n)$ with q^{n-k} colors. Therefore,

$$
\chi\left(H^{d-1}(q, n)\right) \leq \frac{q^{n}}{B_{q}(n, d)}
$$

As a result, we see that if q is a prime power, then

$$
\begin{equation*}
\left\lceil\frac{q^{n}}{A_{q}(n, d)}\right\rceil \leq \chi\left(H^{d-1}(q, n)\right) \leq \frac{q^{n}}{B_{q}(n, d)} \tag{1}
\end{equation*}
$$

3. Analysis of the sphere packing bound for distance 2-5

CHROMATIC NUMBERS

In Section 2, we saw that the sphere packing bound gives a lower bound on the distance k chromatic number of a Hamming graph. In this section, we consider this bound for $2 \leq k \leq 5$.

For convenience, we define the sphere packing bound on the distance k chromatic numbers of $H(q, n)$ to be

$$
S P B_{k}(q, n):=\left\lceil\frac{q^{n}}{\left.\left\lvert\, \frac{q^{n}}{\sum_{i=1}^{t}\binom{n}{i}(q-1)^{i}}\right.\right\rfloor}\right\rceil \geq \sum_{i=1}^{t}\binom{n}{i}(q-1)^{i}
$$

where $t:=\left\lfloor\frac{k}{2}\right\rfloor$. So we have

$$
S P B_{2}(q, n)=S P B_{3}(q, n)=\left\lceil\frac{q^{n}}{\left\lfloor\frac{q^{n}}{n(q-1)+1}\right\rfloor}\right\rceil
$$

and

$$
S P B_{4}(q, n)=S P B_{5}(q, n)=\left\lceil\frac{q^{n}}{\left\lfloor\frac{q^{n}}{\binom{n}{2}(q-1)^{2}+n(q-1)+1}\right\rfloor}\right\rfloor .
$$

We first look at the sphere packing bound on the distance 2 chromatic number (equivalently, on the distance 3 chromatic number). Though the next result follows from the material in Section 2, we provide an alternate proof here.

Lemma 3.1. The distance 2 chromatic number of the Hamming graph $H(q, n)$ satisfies $\chi\left(H^{2}(q, n)\right) \geq S P B_{2}(q, n)$.

Proof. Clearly,

$$
\chi\left(H^{2}(q, n)\right) \geq \frac{q^{n}}{\alpha\left(H^{2}(q, n)\right)}
$$

where $\alpha\left(H^{2}(q, n)\right)$ denotes the independence number of $H^{2}(q, n)$. Any point in $H(q, n)$ has a closed neighborhood with $n(q-1)+1$ points. Thus
$\alpha\left(H^{2}(q, n)\right) \leq \frac{q^{n}}{n(q-1)+1}$. Since $\alpha\left(H^{2}(q, n)\right)$ is an integer, this gives

$$
\alpha\left(H^{2}(q, n)\right) \leq\left\lfloor\frac{q^{n}}{n(q-1)+1}\right\rfloor
$$

It follows that

$$
\chi\left(H^{2}(q, n)\right) \geq \frac{q^{n}}{\left\lfloor\frac{q^{n}}{n(q-1)+1}\right\rfloor}
$$

Since $\chi\left(H^{2}(q, n)\right)$ is an integer, the desired bound is obtained.

We wish to obtain a nicer expression for $S P B_{2}(q, n)$ in terms of n and q. To do this, let \Re be the set of integral lattice points (q, n) of the following forms: $q \geq 2$ and $n \geq 8$; and, $q \geq 9$ and $n \geq 3$.

Lemma 3.2. For all pairs of integers $(q, n) \in \Re$, the bound

$$
(n(q-1)+1)(n(q-1)+2) \leq q^{n}
$$

holds.

Proof. We have

$$
\begin{aligned}
(n(q-1)+1)(n(q-1)+2)= & n^{2}(q-1)^{2}+3 n(q-1)+2 \\
= & n^{2} q^{2}-2 n^{2} q+n^{2}+3 n(q-1)+2 \\
= & n^{2} q^{2}+(1-2 q) n^{2}+3 n q-3 n+2 \\
= & n^{2} q^{2}+(1-q) n^{2}+(3-n) n q \\
& +(2-3 n) \\
< & n^{2} q^{2} .
\end{aligned}
$$

The final inequality holds since $q>1$ and $n \geq 3$. Thus the next goal is to show that $n^{2} q^{2} \leq q^{n}$ for $(q, n) \in \Re$. Dividing by q^{2} and taking the square root, one sees that this is equivalent to $n \leq q^{n / 2-1}$.

Consider the function

$$
f(x):=q^{x / 2-1}-x
$$

where q is a fixed integer. Its derivative is

$$
f^{\prime}(x)=\frac{q^{\frac{x}{2}-1} \ln (q)}{2}-1
$$

which is obviously increasing. There are two cases to consider.

- For $q \geq 2$ and $x \geq 8$, we get $f^{\prime}(8)=\frac{q^{3} \ln (2)}{2}-1 \geq 2^{3}(0.3657)-1>0$, so f is increasing for $x \geq 8$. Also, $f(8)=q^{3}-8 \geq 2^{3}-8=0$. Since f is increasing when $x \geq 8, f$ is positive for all $x \geq 8$. Hence when $n \geq 8$ and $q \geq 2$, we have $q^{\frac{n}{2}-1}>n$ as desired.
- For $q \geq 9$ and $x \geq 3$, we have

$$
f^{\prime}(3)=\frac{q^{\frac{1}{2}} \ln (q)}{2}-1 \geq \frac{\sqrt{9} \ln (9)}{2}-1>3.2958-1>0
$$

Thus, f is increasing for $n \geq 3$. Moreover,

$$
f(3)=q^{\frac{1}{2}}-n \geq \sqrt{9}-3=0
$$

when $q \geq 9$. Thus, $q^{\frac{1}{2}-1}>n$ when $n \geq 3$ and $q \geq 9$.

Using Lemma 3.2, we obtain a neater expression for $S P B_{2}(q, n)$ for those pairs $(q, n) \in \Re$.

Proposition 3.3. For $(q, n) \in \Re$,

$$
S P B_{2}(q, n)= \begin{cases}n(q-1)+1 & \text { if } n(q-1)+1 \text { divides } q^{n} \\ n(q-1)+2 & \text { otherwise }\end{cases}
$$

Proof. Set $l:=n(q-1)+1$. Then there are integers r and s such that $q^{n}=l s+r$ and $0 \leq r<l$. It follows that

$$
S P B_{2}(q, n)=n(q-1)+1+\left\lceil\frac{r}{s}\right\rceil .
$$

We must show that $r \leq s$. To see this, note that $l \leq s$. Otherwise, Lemma 3.2 gives $q^{n}=l s+r<l^{2}+l=l(l+1) \leq q^{n}$.

Proposition 3.3 yields a bound on the distance 2 chromatic number of the Hamming graph $H(q, n)$.

Theorem 3.4. If $n(q-1)+1$ divides q^{n}, then

$$
\chi\left(H^{2}(q, n)\right) \geq n(q-1)+1
$$

Otherwise,

$$
\chi\left(H^{2}(q, n)\right) \geq n(q-1)+2
$$

Moreover, $\chi\left(H^{2}(3,3)\right) \geq 9$.
Proof. For $(q, n) \in \Re$, the result follows from Proposition 3.3. The remaining pairs were checked using Magma [1].

We conclude our discussion of the sphere packing bound on the distance 2 chromatic number by noting that by taking $q=2$ in Theorem 3.4, we recover Proposition 1.1 (2), (3).

Next, we provide a similar analysis for the sphere packing bound on the distance 4 chromatic number (equivalently, on the distance 5 chromatic
number). Let \mathcal{L} denote the set of integral lattice points (q, n) of the following forms: $q \geq 2$ and $n \geq 13 ; q \geq 3$ and $n \geq 10 ; q \geq 4$ and $n \geq 8 ; q \geq 7$ and $n \geq 7$; and, $q \geq 29$ and $n \geq 6$.

Proposition 3.5. For $(q, n) \in \mathcal{L}$,

$$
S P B_{4}(q, n)=\left\{\begin{array}{lc}
\binom{n}{2}(q-1)^{2}+n(q-1)+1 & \text { if }\binom{n}{2}(q-1)^{2}+n(q-1)+1 \\
& \text { divides } q^{n} \\
\binom{n}{2}(q-1)^{2}+n(q-1)+2 & \text { otherwise }
\end{array}\right.
$$

Proof. Set $l:=\binom{n}{2}(q-1)^{2}+n(q-1)+1$. Then there are integers r and s such that $q^{n}=l s+r$ and $0 \leq r \leq l-1$. It follows that

$$
S P B_{4}(q, n)=l+\left\lceil\frac{r}{s}\right\rceil \text {. }
$$

We must show that $r \leq s$. To do this, we will prove that $l-1 \leq s$.
Suppose that $l-2 \geq s$. Then $q^{n} \leq l(l-1)-1$. Notice that

$$
\begin{aligned}
l(l-1) & =n(q-1)+\left(n^{2}+\binom{n}{2}\right)(q-1)+2 n\binom{n}{2}(q-1)^{3}+\binom{n}{2}^{2}(q-1)^{4} \\
& \leq n q+\frac{3}{2} n^{2} q^{2}+n^{3} q^{3}+\frac{1}{4} n^{4} q^{4} \\
& \leq\left(\frac{1}{64}+\frac{3}{32}+\frac{1}{4}+\frac{1}{4}\right) n^{4} q^{4} \\
& =\frac{39}{64} n^{4} q^{4}
\end{aligned}
$$

for $(q, n) \in \mathcal{L}$ since $n \geq 2$ and $q \geq 2$.
We claim that $\frac{39}{64} n^{4} q^{4} \leq q^{n}$; that is, we claim that $q^{n}-\frac{39}{64} n^{4} q^{4} \geq 0$. To see this, we use the same ideas as in the proof of Lemma 3.2. Consider the function

$$
f(n):=q^{n}-\frac{39}{64} n^{4} q^{4}
$$

where q is a fixed integer. Note that

$$
f^{\prime}(n)=\frac{\ln (q) \cdot q^{\frac{n}{4}-1}}{4}-\sqrt[4]{\frac{39}{64}}
$$

which is increasing (in n). If $q=2$, then $f(21)>0$ and $f^{\prime}(21)>0$. Hence, the claim holds for pairs $(2, n)$ with $n \geq 21$. Calculations using Magma [1] show that $r \leq s$ for the pairs $(2, n) \in \mathcal{L}$ with $n<21$. For $q=3$, we can see that $f(13)>0$ and $f^{\prime}(13)>0$. This, together with [1], proves the claim for $(3, n) \in \mathcal{L}$. Similarly, it can be checked the claim holds for all remaining $(q, n) \in \mathcal{L}$.

Now we have that

$$
q^{n} \leq l(l-1)-1<\frac{39}{64} n^{4} q^{4} \leq q^{n}
$$

for all pairs $(q, n) \in \mathcal{L}$ which is a contradiction. Therefore, for $(q, n) \in \mathcal{L}$,

$$
S P B_{4}(q, n)=l+\left\lceil\frac{r}{s}\right\rceil \leq l+1
$$

Proposition 3.5 gives a lower bound on the distance 4 chromatic number of the Hamming graph $H(q, n)$.

Theorem 3.6. Suppose that $n \geq 13$. If $\binom{n}{2}(q-1)^{2}+n(q-1)+1$ divides q^{n}, then

$$
\chi\left(H^{4}(q, n)\right) \geq\binom{ n}{2}(q-1)^{2}+n(q-1)+1
$$

Otherwise,

$$
\chi\left(H^{4}(q, n)\right) \geq\binom{ n}{2}(q-1)^{2}+n(q-1)+2
$$

Moreover, this result holds in the following cases: $q \geq 3$ and $n \geq 10 ; q \geq 4$ and $n \geq 8 ; q \geq 7$ and $n \geq 7 ; q \geq 29$ and $n \geq 6$.

4. Some exact values for the distance k Chromatic number

In this section, we use the ideas in Sections 2 and 3 to find the exact value of $\chi\left(H^{k}(q, n)\right)$ for certain pairs (q, n). We focus on large and small values of k.

We begin with the trivial observation that $\chi\left(H^{n}(q, n)\right)=q^{n}$. Next we consider $\chi\left(H^{n-1}(q, n)\right)$. By the same argument as in the proof of Lemma 3.1,

$$
\chi\left(H^{n-1}(q, n)\right) \geq \frac{q^{n}}{\alpha\left(H^{n-1}(q, n)\right)}
$$

where $\alpha(G)$ denotes the independence number of G. We claim that

$$
\alpha\left(H^{n-1}(q, n)\right)=q
$$

Suppose S is an independent set in $H^{n-1}(q, n)$ containing (a, \ldots, a) where $a \in \mathbb{F}$. Since any other vertex in S must differ from (a, \ldots, a) in all n positions, we may assume that (b, \ldots, b) in S for some $b \in \mathbb{F} \backslash\{a\}$. It follows that $S=\{(a, \ldots, a): a \in \mathbb{F}\}$. As a result

$$
\chi\left(H^{n-1}(q, n)\right) \geq \frac{q^{n}}{q}=q^{n-1}
$$

Noting that S is the $[n, n]_{q}$-repetition code, we see that

$$
\chi\left(H^{n-1}(q, n)\right)=q^{n-1}
$$

A similar argument shows that

$$
\chi\left(H^{n-2}(q, n)\right)=q^{n-1}
$$

Next, we consider small values of k. In $[14,15]$, it is shown that there are two families of codes with parameters meeting the sphere packing bound: the Hamming codes and the Golay codes. Both are families of linear codes and so can be used to provide distance k coloring. For more details on these codes as well as others mentioned here, see [10].
Theorem 4.1. If $n=\frac{q^{r}-1}{q-1}$, then

$$
\chi\left(H^{2}(q, n)\right)=n(q-1)+1
$$

Proof. Set $n=\frac{q^{r}-1}{q-1}$. Then there is a $[n, 3]_{q}$ Hamming code with q^{n-r} words. The result now follows from Equation (1).

Using the $[23,7]_{2}$ and $[11,5]_{3}$ Golay codes with 2^{12} and 3^{6} words respectively we see that

$$
\chi\left(H^{2}(2,23)\right)=2^{11} \text { and } \chi\left(H^{4}(3,11)\right)=3^{5}
$$

As a final application, we consider the Nordstrom-Robinson code. The Nordstrom-Robinson code is a $(16,6)_{2}$-code with 2^{8} words. By the bound in Equation (1),

$$
2^{8}=\left\lceil\frac{2^{16}}{A_{2}(16,6)}\right\rceil \leq \chi\left(H^{5}(2,16)\right) \leq \frac{2^{16}}{B_{2}(16,6)}=2^{9}
$$

References

[1] W. Bosma, J. Cannon, and C. Playoust, The MAGMA algebra system, I: The user language, J. Symb. Comp. 24 (1997), 235-265.
[2] H. Enomoto, P. Frankl, N. Ito, K. Nomura, Codes with given distances, Graphs Combin. 3 (1987), no. 1, 25-38.
[3] G. Fertin, E. Godard, and A. Raspaud, Acyclic and k-distance coloring of the grid, Inform. Process. Lett. 87 (2003), no. 1, 51-58.
[4] P. Frankl, Orthogonal vectors in the n-dimensional cube and codes with missing distances, Combinatoria 6 (1986), 279-285.
[5] F.-W. Fu, S. Ling, and C.-P. Xing, New results on two hypercube coloring problems, preprint.
[6] J. P. Georges, D. M. Mauro, and M. I. Stein, Labeling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2000), no. 1, 28-35.
[7] W. K. Hale, Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-1514.
[8] R. E. Jamison, G. L. Matthews, and J. Villalpando, Acyclic colorings of products of trees, Inform. Process. Lett., to appear.
[9] D. S. Kim, D.-Z. Du, and P. M. Pardalos, A coloring problem on the n-cube, Discrete Appl. Math. 103 (2000), 307-311.
[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North-Holland, Amsterdam, Netherlands, 1981 (Third Printing).
[11] H. Q. Ngo, D.-Z. Du, and R. L. Graham, New bounds on a hypercube coloring problem, Inform. Process. Lett. 84 (2002), 265-269.
[12] H. Q. Ngo, D.-Z. Du, and R. L. Graham, New bounds on a hypercube coloring problem and linear codes, Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC '01), pp. 542-546, IEEE, Apr. 2001.
[13] A. Pavan, P.-J. Wan, S.-R. Tong, and D. H. C. Du, A new multihop lightwave network based on the generalized deBruijn graph, in 21st IEEE Conference on Local Computer Networks: October 13-16, 1996, Minneapolis, Minnesota, vol. 21, IEEE Computer Society Press (1996), 498-507.
[14] A. Tietäväinen, On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math. 24 (1973), 88-96.
[15] J. H. van Lint, Nonexistence theorems for perfect error-correcting codes, in Computers in Algebra and Number Theory IV, SIAM-AMS Proceedings, 1971.
[16] P.-J. Wan, Near-optimal conflict-free channel set assignments for an optical clusterbased hypercube network, J. Combin. Optimization 1 (1997), 179-186.
[17] G. M. Ziegler, Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions, in H. Alt (Ed.): Computational Discrete Mathematics, Lecture Notes in Computer Science 2122, Springer-Verlag, Berlin, 2001, 159-171.

[^0]: * The second author gratefully acknowledges the support of NSF DMS 0201286.

