
Contemporary Mathematics

Some computational tools for estimating the parameters of
algebraic geometry codes
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Abstract. We survey some recent advances in computational tools for de-
termining estimates of the parameters of algebraic geometry codes. We show
how the Weierstrass semigroup and its minimal generating set may be used
to find the pure gap set as well as floors and ceilings of certain divisors. The
code parameter estimates obtained are at least as good as the bounds given
by Goppa and in many cases are an improvement.

1. Introduction

Since V. D. Goppa announced the construction of codes from algebraic geome-
try [G1], [G2], much work has been done to better understand these codes and their
parameters. This interest was piqued by the proof of the existence of a sequence of
algebraic geometry codes with parameters exceeding the Gilbert-Varshamov bound
[TVZ]. In general, it can be very difficult to determine the parameters of an
algebraic geometry code. In this paper, we survey some recent advances in compu-
tational tools that provide estimates of these parameters that are at least as good
as the bounds given by Goppa.

As first suggested by Goppa and later shown in [GKL], Weierstrass points
can be used to define good codes and Weierstrass gap sets aid in estimating the
parameters of such codes. In fact, the Weierstrass gap set of an r-tuple of points on
a curve, or its complement the Weierstrass semigroup, has been used to find better
bounds on the minimum distances of certain algebraic geometry codes (see [J],
[KP], [M2], [HK], [CT]). Here, we review a method for determining the minimal
generating set of a Weierstrass semigroup of a r-tuple of points on a curve. We
then show how this minimal generating set may be used to find the set of pure gaps
introduced in [HK] and floors and ceilings of divisors introduced in [MMP] and
[MM]. These tools have the advantage of being easy to compute using computer
algebra packages such as Magma [BCP] or Kant [DFKPRW]. Finally, we show
how this machinery can be used to estimate the parameters of algebraic geometry
codes.
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This paper is organized as follows. Section 2 discusses the computational tools
we will be using. Weierstrass semigroups and gap sets are discussed here as well as
the floor and the ceiling of a divisor. In Section 3 we demonstrate how these tools
may be used to gain information about certain algebraic geometry codes. This
section contains examples illustrating applications of the computational tools to
codes.

Notation. Let X be a smooth, projective curve of genus g > 1 over Fq.
Let DX denote the group of divisors of X over Fq and Fq(X) denote the field of
rational functions on X defined over Fq. The divisor (resp. pole divisor) of a rational
function f ∈ Fq(X) is denoted by (f) (resp. (f)∞). Given a divisor A ∈ DX , the
Riemann-Roch space of A is

L(A) := {f ∈ Fq(X) : (f) ≥ −A} ∪ {0} .

The dimension of the divisor A, denoted `(A), is the dimension of the vector space
L(A) over Fq. When comparing elements of Nr

0, we do so with respect to the
partial order ¹ defined by α ¹ α′ if and only if αi ≤ α′i for all i, 1 ≤ i ≤ r. A
code of length n, dimension k, and minimum distance d (resp. at least d) is called
an [n, k, d]-code (resp. [n, k,≥ d]-code).

Let G be a divisor of X and let D = Q1 + · · · + Qn be another divisor of X
where Q1, . . . , Qn are distinct Fq-rational points, each not belonging to the support
of G. The algebraic geometry codes CL(D, G) and CΩ(D, G) are constructed as
follows:

CL(D, G) := {(f(Q1), f(Q2), . . . , f(Qn)) : f ∈ L(G)}
CΩ(D, G) := {(resQ1(η), resQ2(η), . . . , resQn(η)) : η ∈ Ω(G−D)} ,

where Ω(G−D) denotes the set of rational differentials η of X over Fq with divisor
(η) ≥ G −D, together with the zero differential. If deg G < n, then CL(D, G) is
an [n, `(G),≥ n − deg G]-code. If 2g − 2 < deg G, then CΩ(D, G) is an [n, `(K +
D−G),≥ deg G− (2g − 2)]-code. For a general reference on background material,
see [S] which uses the language of function fields. Here, we find that of algebraic
geometry more convenient.

2. Computational tools

In this section, we first review some results on the Weierstrass semigroup of an
r-tuple of points on a curve. We then show how the minimal generating set of this
semigroup may be used to determine the pure gap set as well as floors and ceilings
of certain divisors.

Throughout this section, X will denote a smooth, projective curve of genus
g > 1 over Fq, and P1, . . . , Pr will denote r distinct Fq-rational points on X.

2.1. The Weierstrass gap set. The Weierstrass gap sequence of the point
P1 consists of those nonnegative integers α such that there is no rational function
f ∈ Fq(X) with pole divisor exactly αP1. This classically studied object has been
generalized to the Weierstrass gap set of a pair of points [ACGH] and later to that
of an r-tuple of points [BK], [I]. The Weierstrass semigroup H(P1, . . . , Pr) of the
r-tuple (P1, . . . , Pr) is defined by

H(P1, . . . , Pr) =

{
α ∈ Nr

0 : ∃f ∈ Fq(X) with (f)∞ =
r∑

i=1

αiPi

}
,
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and the Weierstrass gap set G(P1, . . . , Pr) of the r-tuple (P1, . . . , Pr) is defined by

G(P1, . . . , Pr) = Nr
0 \H(P1, . . . Pr).

The Weierstrass gap set of an r-tuple of points, r ≥ 2, differs from the Weier-
strass gap sequence of a point in that its cardinality depends on the points P1, . . . , Pr

[ACGH], [K]. Moreover, facts about numerical semigroups often used to gain in-
formation about H(P1) do not necessarily generalize to results on semigroups of
Nr

0, making H(P1, . . . , Pr) more difficult to determine. However, as with the Weier-
strass gap sequence of a point, one can describe elements of the gap set of an r-tuple
of points in terms of dimensions of divisors. This is an immediate generalization of
[K, Lemma 2.1].

Lemma 2.1. For α ∈ Nr, the following are equivalent:
(i) α ∈ H(P1, . . . , Pr).
(ii) ` (

∑r
i=1 αiPi) 6= `

(
(αj − 1) Pj +

∑r
i=1,i6=j αiPi

)
for all j, 1 ≤ j ≤ r.

While the above result allows one to compute the Weierstrass semigroup (or,
equivalently, the Weierstrass gap set), it is not so convenient if one wants to un-
derstand the structure of the semigroup or compare two Weierstrass semigroups.
At times, it is more suitable to have a smaller generating set to consider. In [M4,
Theorem 7] it is shown that if 1 ≤ r ≤ |Fq|, then there exists a minimal subset
Γ(P1, . . . , Pr) ⊆ H(P1, . . . , Pr) such that

(2.1) H(P1, . . . , Pr) = {lub {u1, . . . ,ur} ∈ Nr
0 : u1, . . . ,ur ∈ Γ(P1, . . . , Pr)}

where lub{u1, . . . ,ur} = (max{u11 , . . . , ur1}, . . . , max{u1r , . . . , urr}) ∈ Nr
0 is least

upper bound of the vectors u1, . . . ,ur ∈ Nr
0. The set Γ(P1, . . . , Pr) is called the

minimal generating set of the Weierstrass semigroup H(P1, . . . , Pr). Hence, to
determine the entire Weierstrass semigroup H(P1, . . . , Pr), one only needs to de-
termine the set Γ(P1, . . . , Pr). This can be done with the help of the next result.

Proposition 2.2. [M4, Proposition 9] For 1 ≤ r ≤ |Fq| and α ∈ Nr, the
following are equivalent:

(1) α ∈ Γ(P1, . . . , Pr).
(2) ` (

∑r
i=1(αi − 1)Pi) = `

(
(αj − 1)Pj +

∑r
i=1,i 6=j αiPi

)
for all j, 1 ≤ j ≤ r,

and α ∈ H(P1, . . . , Pr).

In the following two subsections, we will see how the Weierstrass semigroup
H(P1, . . . , Pr) and its minimal generating set Γ(P1, . . . , Pr) can be used to deter-
mine the pure gap set of the r-tuple (P1, . . . , Pr) as well as floors and ceilings of
divisors supported by the points P1, . . . , Pr.

2.2. The pure gap set. According to Lemma 2.1, α ∈ Nr is an element of
the Weierstrass gap set G(P1, . . . , Pr) if and only if there exists j, 1 ≤ j ≤ r, such
that

(2.2) `

(
r∑

i=1

αiPi

)
= `


(αj − 1)Pj +

r∑

i=1,i6=j

αiPi


 .

In [HK] and later in [CT], the authors consider those elements of the Weierstrass
gap set G(P1, . . . , Pr) with “all possible symmetry”. More precisely, they consider
α ∈ Nr such that (2.2) holds for all j, 1 ≤ j ≤ r. Such elements of the Weierstrass
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gap set are called pure gaps. The set of pure gaps of the r-tuple (P1, . . . , Pr) is
denoted by G0(P1, . . . , Pr).

The minimal generating set of the Weierstrass semigroup H(P1, . . . , Pr) may
be used to determine the pure gap set G0(P1, . . . , Pr). Given i, 1 ≤ i ≤ r, and
α ∈ G(P1)× · · · ×G(Pr), set

Γ(α, i) := {γ ∈ Γ(P1, . . . , Pr) : γ ¹ α, γi = αi} .

Proposition 2.3. Let α ∈ Nr. Then α ∈ G0(P1, . . . , Pr) if and only if
Γ(α, i) = ∅ for all i, 1 ≤ i ≤ r.

Proof. First, note that α ∈ Nr is a pure gap of the r-tuple (P1, . . . , Pr) if and
only if α′ ∈ G(P1, . . . , Pr) for all α′ ¹ α such that α′i = αi for some i, 1 ≤ i ≤ r.
Hence, α ∈ G0(P1, . . . , Pr) implies that Γ(α, i) = ∅, for all i, 1 ≤ i ≤ r.

Next, assume that Γ(α, i) = ∅ for all i, 1 ≤ i ≤ r. Suppose α′ ∈ H(P1, . . . , Pr)
satisfies α′ ¹ α and α′i = αi for some i, 1 ≤ i ≤ r. According to (2.1), there exist
u1, . . . ,ur ∈ Γ(P1, . . . , Pr) such that α′ = lub{u1, . . . ,ur}. Then αi = α′i = uji for
some j, 1 ≤ j ≤ r. Since uj ¹ lub{u1, . . . ,ur} = α′ ¹ α, uj ∈ Γ(α, i) which yields
a contradiction. ¤

Example 2.4. Let X denote a nonsingular model of the projective curve de-
fined by yq−y = xq0(xq−x) over Fq where q0 = 2n and q = 22n+1 for some positive
integer n. The genus of X is q0(q − 1) [HS]. Note that X has q2 + 1 Fq-rational
points: q2 points of the form Pab := (a : b : 1) where a, b ∈ Fq and a single point at
infinity, P∞. This curve is known as the Suzuki curve because the automorphism
group of X is the Suzuki group of order q2(q2 + 1)(q − 1).

Let P1 and P2 be distinct Fq-rational points on X. Then G(P1) = G(P2) =

N0 \
〈
q, q + q0, q + q

q0
, q + q

q0
+ 1

〉
[HS]. Given α ∈ G(P1), write

α =

⌊
α

q + q
q0

+ 1

⌋
(q +

q

q0
+ 1) + mq0 + s

where 0 ≤ s ≤ q0 − 1. Set jα := α−
⌊

α
q+ q

q0
+1

⌋
(q + q

q0
+ 1)− (kα − 1)q0 where

kα :=

{
m if 0 ≤ s ≤ bm−1

2 c+ 1
m + 1 if bm−1

2 c+ 2 ≤ s ≤ q0 − 1.

In [M1, Theorem 3.3] it is shown that

Γ(P1, P2) = {(α, 2g − 1 + q − (q − 1)jα − α) : α ∈ G(P1)}
∪ (H(P1)× {0}) ∪ ({0} ×H(P2)) .

According to Proposition 2.3, the pure gap set of the pair (P1, P2) is

G0(P1, P2) = {(α, β) ∈ G(P1)×G(P2) : β < 2g − 1 + q − (q − 1)jα − α} .

Example 2.5. Let X be a nonsingular model of the projective curve defined by
yq + y = xm over Fq2 where q is a prime power, m is a divisor of q + 1, and m > 2.
If one takes m = q + 1, the much-studied Hermitian curve is obtained. It can be
shown that the genus of X is (m−1)(q−1)

2 and that X has exactly q(m(q−1)+1)+1
Fq2 -rational points [GV].
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Let P1 = P∞, P2 = P0b2 , P3 = P0b3 , . . . , Pq+1 = P0bq+1 be q + 1 distinct Fq2-
rational points on the curve X. Set c := q+1

m and l := min{m, q}. Then

G(Pi) =
{

(t− j)m + j : 1 ≤ j ≤ l − 1,
j ≤ t ≤ q − 1− j(c− 1)

}

for all i, 1 ≤ i ≤ q + 1 [GV, Theorem 3]. Given 1 ≤ r ≤ q + 1, t ∈ Nr, and j ∈ N
such that 1 ≤ j ≤ l − 1 and j ≤ ti ≤ q − 1− j(c− 1) for all 1 ≤ i ≤ r, define

γt,j := ((t1 − j)m + j, (t2 − j)m + j, . . . , (tr − j)m + j) ∈ Nr.

According to [M3, Theorem 3.7],

Γ(P1, . . . , Pr) ∩ Nr =

{
γt,j ∈ Nr :

r∑

i=1

ti = (m− j)c + r(j − 1)

}
.

By Proposition 2.3, γt,j ∈ G0(P1, . . . , Pr) if and only if
{

γt′,j ∈ Nr :
r∑

i=1

t′i = (m− j)c + r(j − 1), t′i = ti, t
′
k ≤ tk∀k, 1 ≤ k ≤ r

}
= ∅

for all i, 1 ≤ i ≤ r.

2.3. Floors and ceilings. Given a divisor A of X with `(A) > 0, it is shown
in [MMP, Proposition 2.1] that there is a unique divisor bAc of X such that

bAc ∈ {A′ ∈ DX : L(A′) = L(A)}
and

degbAc = min{deg A′ : A′ ∈ DX ,L(A′) = L(A)}.
The divisor bAc is called the floor of A. It is always the case the bAc ≤ A. If a
spanning set of L(A) is known, then it can be used to compute the floor of a divisor A
[MMP, Theorem 2.6]. The Weierstrass semigroup H(P1, . . . , Pr) provides another
way to compute the floors of effective divisors supported by the points P1, . . . , Pr.

Proposition 2.6. Given α ∈ Nr, the floor of the divisor
∑r

i=1 αiPi is given
by ⌊

r∑

i=1

αiPi

⌋
=

r∑

i=1

α′iPi

where α′ is maximal in

{a ∈ H(P1, . . . , Pr) : a ¹ α} .

Proof. Let A :=
∑r

i=1 αiPi. Since A is effective, the support of the floor
of A is contained in the support of A ([MMP, Theorem 2.5]). Thus, bAc =∑r

i=1 α′iPi for some α′ ∈ Nr
0. By the definition of the floor of a divisor, we have that

L(
∑r

i=1 α′iPi − Pj) 6= L(
∑r

i=1 α′iPi) for all j, 1 ≤ j ≤ r. According to Lemma 2.1,
α′ ∈ H(P1, . . . , Pr). This implies α′ ∈ {a ∈ H(P1, . . . , Pr) : a ¹ α}. Suppose
that there exists n ∈ {a ∈ H(P1, . . . , Pr) : a ¹ α} such that α′ ¹ n and α′ 6= n.
Then α′i < ni for some i, 1 ≤ i ≤ r. Since bAc ≤ ∑r

i=1 niPi ≤ A, we have that
L(

∑r
i=1 α′iPi) ⊆ L(

∑r
i=1 niPi) ⊆ L(

∑r
i=1 αiPi). Since L(bAc) = L(A), it follows

that L(bAc) = L(
∑r

i=1 niPi). This is a contradiction according to Lemma 2.1 as
n ∈ H(P1, . . . , Pr). ¤
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Let W be a canonical divisor of X and A be a divisor of X with `(W −A) > 0.
In [MM], we show that there is a unique divisor dAe such that

dAe ∈ {A′ ∈ DX : L(W −A′) = L(W −A)}
and

degdAe = max {deg A′ : A′ ∈ DX ,L(W −A′) = L(W −A)} .

The divisor dAe is called the ceiling of A. Note that

dAe = A + EW−A

where EW−A := W − A − bW − Ac. Hence, Proposition 2.6 may also be applied
compute the ceiling of a divisor A where W −A is effective.

3. Applications to codes

The notions of pure gaps and floors and ceilings of divisors were motivated
by how divisors are used to define algebraic geometry codes. For instance, given
effective divisors G and D := Q1+· · ·+Qn where Q1, . . . , Qn are distinct Fq-rational
points and suppG∩suppD = ∅, it follows immediately that CL(D,G) = CL(D, bGc)
and so the minimum distance of CL(D, G) is at least n − deg G + deg(G − bGc).
Similiarly, if supp (dG−De+ D)∩ suppD = ∅ then CΩ(D, G) = CΩ(D, dG−De+
D) = CΩ(D,G + EW−G+D) implies that the minimum distance of CΩ(D,G) is at
least deg(dG −De + D) − (2g − 2) = deg G − (2g − 2) + deg EW−G+D. Next, we
state a perhaps more interesting application of the floor to give an improved bound
on the minimum distance.

Theorem 3.1. [MM, Corollary 17] Let X be a curve over Fq of genus g > 1.
Let D := Q1 + · · · + Qn where Q1, . . . , Qn are distinct Fq-rational points on X,
and let G := H + A where H and A are effective divisors of X such that bHc ≤
A ≤ H and the support of H does not contain any of the places Q1, . . . , Qn. If the
code CΩ(D, G) is nontrivial, then the minimum distance of CΩ(D,G) is at least
deg G− (2g − 2) + deg(H −A).

Corollary 3.2. [CT, Theorem 3.4] Let X be a curve over Fq of genus g > 1
and let D := Q1 + · · · + Qn where Q1, . . . , Qn, P1, . . . , Pr are distinct Fq-rational
points on X. Suppose α and β are pure gaps of the r-tuple of points (P1, . . . , Pr)
such that β − α º 0 and δ ∈ G0(P1, . . . , Pr) for all δ,α ¹ δ ¹ β. Set G =∑r

i=1(αi + βi − 1)Pi. If the code CΩ(D,G) is nontrivial, then it has minimum
distance at least deg G− (2g − 2) + (

∑r
i=1 βi − αi) + r.

Proof. Let H =
∑r

i=1 βiPi and A =
∑r

i=1(αi−1)Pi. Since δ ∈ G0(P1, . . . , Pm)
for all α ¹ δ ¹ β, L(A) = L(H). Hence, bHc ≤ A ≤ H. Then Theorem 3.1 applies
to give

d ≥ deg G− (2g − 2) + deg(H −A) = deg G− (2g − 2) +
r∑

i=1

(βi − αi + 1).

¤

Example 3.3. Let X denote a nonsingular model of the curve defined by

y8 − y = x3
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over F64. Then X has genus 7 and 177 F64-rational points. According to Proposition
2.6 and the minimal generating set given in Example 2.5, the floor of 9P∞+P00+P01

is
b9P∞ + P00 + P01c = 9P∞.

Let D be the sum of all 174 F64-rational points other than P∞, P00, and P01. Then
Theorem 3.1 applies showing that CΩ(D, 18P∞ + P00 + P01) is a [174, 160,≥ 10]-
code. This code can be compared with the one-point Hermitian code over F64

with a similar information rate. According to [YK], CΩ(D + P00 + P01, 69P∞) is a
[512, 470, 16]-code which has information rate 470

512 ≈ 0.91797 and relative distance
16
512 = 0.03125. The code CΩ(D, 18P∞ + P00 + P01) has information rate 160

174 ≈
0.91954 and relative distance at least 10

174 ≈ 0.05747, both greater than that of the
comparable one-point Hermitian code over F64.

Example 3.4. Consider the Suzuki curve X over F8 which is defined by

y8 − y = x2(x8 − x).

Note that the genus of X is 14. Recall that the Weierstrass semigroup of the point
P∞ is H(P∞) = 〈8, 10, 12, 13〉. According to Proposition 2.6, the floor of 15P∞ is
b15P∞c = 13P∞. Let D be the sum of all 64 F8-rational points on X other than
P∞. Then CL(D, 15P∞) = CL(D, 13P∞) and so is a [64, 5,≥ 64 − 13 = 51]-code
over F8. In [CD], it is shown that CL(D, 15P∞) is a [64, 5, 51]-code. Moreover, this
is a best known code of length 64 and dimension 5 over F8 [B].

Now let D be the sum of all 63 F8-rational points on X other than P∞ and
P00. Take H = 23P∞ + P00. Then Proposition 2.6 and Example 2.4 imply that

b23P∞ + P00c = 23P∞.

As a result, Theorem 3.1 applies to give that CΩ(D, 46P∞+P00) is a [63, 29,≥ 22]-
code. This is a best known code of length 63 and dimension 29 over F8 [B].
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