The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian curve

Gretchen L. Matthews
Department of Mathematical Sciences, Clemson University
Clemson SC 29634-0975, USA
gmatthe@clemson.edu,
WWW home page: www.math.clemson.edu/~gmatthe

Abstract

We examine the structure of the Weierstrass semigroup of an m-tuple of points on a smooth, projective, absolutely irreducible curve X over a finite field \mathbb{F}. A criteria is given for determining a minimal subset of semigroup elements which generate such a semigroup where $2 \leq m \leq|\mathbb{F}|$. For all $2 \leq m \leq q+1$, we determine the Weierstrass semigroup of any m-tuple of collinear $\mathbb{F}_{q^{2}}$-rational points on a Hermitian curve $y^{q}+y=x^{q+1}$.

1 Introduction

Let X be a smooth, projective, absolutely irreducible curve of genus $g>1$ over a finite field \mathbb{F}. Let $\mathbb{F}(X)$ denote the field of rational functions on X defined over \mathbb{F}. The divisor of a rational function $f \in \mathbb{F}(X)$ will be denoted by (f) and the divisor of poles of f will be denoted by $(f)_{\infty}$.

Given m distinct \mathbb{F}-rational points P_{1}, \ldots, P_{m} on X, the Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$ of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is defined by

$$
H\left(P_{1}, \ldots, P_{m}\right)=\left\{\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}_{0}^{m}: \exists f \in \mathbb{F}(X) \text { with }(f)_{\infty}=\sum_{i=1}^{m} \alpha_{i} P_{i}\right\}
$$

and the Weierstrass gap set $G\left(P_{1}, \ldots, P_{m}\right)$ of the m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ is defined by

$$
G\left(P_{1}, \ldots, P_{m}\right)=\mathbb{N}_{0}^{m} \backslash H\left(P_{1}, \ldots P_{m}\right),
$$

where $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$ denotes the set of nonnegative integers. If $m=1$, the Weierstrass gap set is the classically studied gap sequence. In [1], the authors generalized the notion of the semigroup of a point to the semigroup of a pair of points on a curve. This study was carried on by S. J. Kim [7] and M. Homma [5]. The Weierstrass gap set of an m-tuple of points where $m \geq 2$ has been examined by E. Ballico and Kim [2], and more recently, by C. Carvalho and F. Torres [3]. Weierstrass gap sets play an interesting role in the construction and analysis of algebraic geometry codes (see [4], [9], [6], [3]). While $\left|G\left(P_{1}\right)\right|=g$ for any IF-rational point P_{1} on X, the cardinality of the set $G\left(P_{1}, \ldots, P_{m}\right)$ where $m \geq 2$ depends on the choice of points $P_{1}, \ldots, P_{m}[1]$. However, any pair of $\mathbb{F}_{q^{2} \text {-rational }}$
points on a Hermitian curve $y^{q}+y=x^{q+1}$ has the same Weierstrass semigroup [9]. The analogous result does not hold for triples of $\mathbb{F}_{q^{2}}$-rational points on a Hermitian curve [10].

In this paper, we consider the notion of a minimal generating subset of a Weierstrass semigroup of an m-tuple of points on an arbitrary (smooth, projective, absolutely irreducible) curve over a finite field \mathbb{F}. In Section 2, we discuss properties of minimal elements of the Weierstrass semigroup. This section concludes with a useful characterization of the elements of the minimal generating set of the Weierstrass semigroup of an m-tuple of points for $2 \leq m \leq|\mathbb{F}|$. An interesting application of this is found in Section 3 where we see that any m-tuple of collinear $\mathbb{F}_{q^{2}}$-rational points on a Hermitian curve $y^{q}+y=x^{q+1}$ has the same Weierstrass semigroup. In addition, we determine this Weierstrass semigroup and its minimal generating set.

2 Results for arbitrary curves

Let X be a smooth, projective, absolutely irreducible curve of genus $g>1$ over a finite field \mathbb{F}. Fix m distinct \mathbb{F}-rational points P_{1}, \ldots, P_{m} on X, where $2 \leq m \leq|\mathbb{F}|$. For $1 \leq l \leq m$, set $H_{l}:=H\left(P_{1}, \ldots, P_{l}\right)$. Define a partial order \preceq on \mathbb{N}_{0}^{m} by $\left(n_{1}, \ldots, n_{m}\right) \preceq\left(p_{1}, \ldots, p_{m}\right)$ if and only if $n_{i} \leq p_{i}$ for all $i, 1 \leq i \leq m$. It is convenient to collect here two results from [3] that will be used in this section.

Lemma 1. [3] If $\left(n_{1}, \ldots, n_{m}\right),\left(p_{1}, \ldots, p_{m}\right) \in H_{m}$ and $n_{j}=p_{j}$ for some j, $1 \leq j \leq m$, then there exists $\mathbf{q}=\left(q_{1}, \ldots, q_{m}\right) \in H_{m}$ whose coordinates satisfy the following properties:

1. $q_{i}=\max \left(n_{i}, p_{i}\right)$ for $i \neq j$ and $n_{i} \neq p_{i}$.
2. $q_{i} \leq n_{i}$ for $i \neq j$ and $n_{i}=p_{i}$.
3. $q_{j}=n_{j}=0$ or $q_{j}<n_{j}$.

Lemma 2. [3] Suppose that there exists $i, 1 \leq i \leq m$, such that $\left(n_{1}, \ldots, n_{m}\right)$ is a minimal element of the set $\left\{\mathbf{p} \in H_{m}: p_{i}=n_{i}\right\}$ with respect to \preceq. If $n_{i}>0$ and $n_{j}>0$ for some $j, 1 \leq j \leq m, j \neq i$, then $n_{i} \in G\left(P_{i}\right)$.
Proposition 3. Let $\mathbf{n} \in \mathbb{N}^{m}$. Then \mathbf{n} is minimal in $\left\{\mathbf{p} \in H_{m}: p_{i}=n_{i}\right\}$ with respect to \preceq for some $i, 1 \leq i \leq m$, if and only if \mathbf{n} is minimal in the set $\left\{\mathbf{p} \in H_{m}: p_{i}=n_{i}\right\}$ with respect to \preceq for all $i, 1 \leq i \leq m$.

Proof. Suppose $\mathbf{n} \in \mathbb{N}^{m}$ is minimal in $\left\{\mathbf{p} \in H_{m}: p_{i}=n_{i}\right\}$ with respect to \preceq for some $i, 1 \leq i \leq m$. Without loss of generality, we may assume that $i=1$. Suppose there exists $j, 2 \leq j \leq m$, such that \mathbf{n} is not minimal in $\left\{\mathbf{p} \in H_{m}: p_{j}=n_{j}\right\}$. Then there exists $\mathbf{v} \in H_{m}$ such that $\mathbf{v} \preceq \mathbf{n}, \mathbf{v} \neq \mathbf{n}$, and $v_{j}=n_{j}$. Note that $v_{1}<n_{1}$ as otherwise $\mathbf{v} \in\left\{\mathbf{p} \in H_{m}: p_{1}=n_{1}\right\}$ contradicting the minimality of \mathbf{n}. Applying Lemma 1 , we see that there exists $\mathbf{q} \in H_{m}$ with $q_{1}=n_{1}, q_{j}<n_{j}$, and $q_{i} \leq n_{i}$ for all $1 \leq i \leq m$. Thus, $\mathbf{q} \preceq \mathbf{n}, \mathbf{q} \neq \mathbf{n}$, and $\mathbf{q} \in\left\{\mathbf{p} \in H_{m}: p_{1}=n_{1}\right\}$. This contradicts the minimality of $\mathbf{n} \in\left\{\mathbf{p} \in H_{m}: p_{1}=n_{1}\right\}$. Thus, \mathbf{n} is minimal in $\left\{\mathbf{p} \in H_{m}: p_{j}=n_{j}\right\}$ for all $j, 1 \leq j \leq m$.

Using these ideas, we set out to describe a subset of H_{m} that generates the entire semigroup H_{m}. To begin, set $\Gamma_{1}^{+}=H\left(P_{1}\right)$, the Weierstrass semigroup of the point P_{1}. For $2 \leq l \leq m$, define

$$
\Gamma_{l}^{+}:=\left\{\mathbf{n} \in \mathbb{N}^{l}: \mathbf{n} \text { is minimal in }\left\{\mathbf{p} \in H_{l}: p_{i}=n_{i}\right\} \text { for some } i, 1 \leq i \leq l\right\} .
$$

The notion of Γ_{2}^{+}is due to Kim [7]. As an immediate consequence of Proposition 3 and Lemma 2, we obtain the following result.

Lemma 4. For $2 \leq l \leq m, \Gamma_{l}^{+} \subseteq G\left(P_{1}\right) \times \cdots \times G\left(P_{l}\right)$.
Using Γ_{l}^{+}, we will now describe a subset Γ_{l} of H_{l} for $1 \leq l \leq m$. First, set $\Gamma_{1}=\Gamma_{1}^{+}=H\left(P_{1}\right)$. For $2 \leq l \leq m$, define
$\Gamma_{l}:=\Gamma_{l}^{+} \cup\left\{\begin{array}{c}\mathbf{n} \in \mathbb{N}_{0}^{l}:\left(n_{i_{1}}, \ldots, n_{i_{k}}\right) \in \Gamma_{k}^{+} \text {for some }\left\{i_{1}, \ldots, i_{m}\right\}=\{1, \ldots, m\} \\ \text { such that } i_{1}<\cdots<i_{k} \text { and } n_{i_{k+1}}=\cdots=n_{i_{m}}=0\end{array}\right\}$.
Clearly, Γ_{m} is completely determined by $\left\{\Gamma_{l}^{+}: 1 \leq l \leq m\right\}$.
Example 5. Consider the curve defined by $y^{8}+y=x^{9}$ over \mathbb{F}_{64}. Let $P_{1}=P_{\infty}$ denote the point at infinity and $P_{2}=P_{00}$ denote the common zero of x and y. It is well known that the Weierstrass gap set of the point $P_{1}\left(\right.$ and $\left.P_{2}\right)$ is

1	2	3	4	5	6	7
10	11	12	13	14	15	
19	20	21	22	23		
28	29	30	31			
37	38	39				
46	47					
55						

Equivalently, the Weierstrass semigroup of the point P_{1} is the additive subsemigroup of \mathbb{N}_{0} generated by 8 and 9 ; that is, $H\left(P_{1}\right)=\langle 8,9\rangle:=\left\{8 a+9 b: a, b \in \mathbb{N}_{0}\right\}$. Hence, $\Gamma_{1}=\langle 8,9\rangle$. According to [9],

$$
\Gamma_{2}^{+}=\left\{\begin{array}{l}
(1,55),(2,47),(3,39),(4,31),(5,23),(6,15),(7,7),(10,46), \\
(11,38),(12,30),(13,22),(14,14),(15,6),(19,37),(20,29) \\
(21,21),(22,13),(23,5),(28,28),(29,20),(30,12),(31,4), \\
(37,19),(38,11),(39,3),(46,10),(47,2),(55,1)
\end{array}\right\}
$$

Then

$$
\Gamma_{2}=\Gamma_{2}^{+} \cup\{(n, 0),(0, n): n \in\langle 8,9\rangle\} .
$$

We will show that Γ_{m} generates H_{m} by taking least upper bounds. Given $\mathbf{u}_{1}, \ldots, \mathbf{u}_{1} \in \mathbb{N}_{0}^{m}$, define the least upper bound of $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{1}}$ by
$\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{l}}\right\}=\left(\max \left\{u_{1_{1}}, \ldots, u_{l_{1}}\right\}, \ldots, \max \left\{u_{1_{m}}, \ldots, u_{l_{m}}\right\}\right) \in \mathbb{N}_{0}^{m}$
In [7], Kim proved that $H_{2}=\left\{\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\} \in \mathbb{N}_{0}^{2}: \mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}} \in \Gamma_{2}\right\}$. To obtain a similar result for H_{m} where $m \geq 3$, we use the next fact which follows immediately from [3].

Proposition 6. Suppose that $1 \leq l \leq m \leq|\mathbb{F}|$ and $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{1}} \in H_{m}$. Then $\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{1}\right\} \in H_{m}$.

Proof. Let $\mathbf{q}_{\mathbf{2}}:=\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$. For $3 \leq i \leq l$, define $\mathbf{q}_{\mathbf{i}}:=\operatorname{lub}\left\{\mathbf{q}_{\mathbf{i}-\mathbf{1}}, \mathbf{u}_{\mathbf{i}}\right\}$. According to [3], $\mathbf{q}_{\mathbf{2}} \in H_{m}$. Repeated application gives $\mathbf{q}_{\mathbf{i}} \in H_{m}$ for all $i \in\{2, \ldots, l\}$. This completes the proof as $\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{1}\right\}=\mathbf{q}_{1} \in H_{m}$.

Theorem 7. If $1 \leq m \leq|\mathbb{F}|$, then

$$
H_{m}=\left\{\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\} \in \mathbb{N}_{0}^{m}: \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}} \in \Gamma_{m}\right\}
$$

Proof. The fact that $\left\{\operatorname{lub}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{m}}\right\} \in \mathbb{N}_{0}^{m}: \mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}} \in \Gamma_{m}\right\} \subseteq H_{m}$ follows from Proposition 6.

Suppose $\mathbf{n} \in H_{m} \backslash \Gamma_{m}$. Without loss of generality, we may assume that $\mathbf{n} \in \mathbb{N}^{m}$. (Otherwise, $\left(n_{i_{1}}, \ldots n_{i_{l}}\right) \in \mathbb{N}^{l}$ for some $\left\{i_{1}, \ldots, i_{m}\right\}=\{1, \ldots, m\}$ such that $i_{1}<\cdots<i_{l}$ and $n_{i_{l+1}}=\cdots=n_{i_{m}}=0$, and the same argument applies to $\left(n_{i_{1}}, \ldots n_{i_{l}}\right)$). Then, according to Proposition 3, \mathbf{n} is not minimal in $\left\{\mathbf{p} \in H_{m}: p_{i}=n_{i}\right\}$ for any $i, 1 \leq i \leq m$. Hence, there exists $\mathbf{u}_{\mathbf{i}} \in \Gamma_{m}$ with $u_{i_{i}}=n_{i}, \mathbf{u}_{\mathbf{i}} \preceq \mathbf{n}$, and $\mathbf{u}_{\mathbf{i}} \neq \mathbf{n}$ for each $i, 1 \leq i \leq m$. Then $\mathbf{n}=\operatorname{lub}\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}$, completing the proof.

According to Theorem 7 and the definition of Γ_{m}, the Weierstrass semigroup H_{m} is completely determined by $\left\{\Gamma_{l}^{+}: 1 \leq l \leq m\right\}$. We conclude this section with a useful characterization of elements of the sets $\Gamma_{l}^{+}, 1 \leq l \leq m$. To do this, it is helpful to consider dimensions of certain divisors. For a divisor D on X defined over \mathbb{F}, let $L(D)$ denote the set of rational functions $f \in \mathbb{F}(X)$ with divisor $(f) \geq-D$ together with the zero function. Then $L(D)$ is a finite dimensional vector space over \mathbb{F}. Let $l(D)$ denote the dimension of the vector space $L(D)$ over \mathbb{F}. The Riemann-Roch Theorem states that $l(D)=\operatorname{deg} D+1-g+l(K-D)$, where K is any canonical divisor on X. This gives a characterization of elements of the Weierstrass semigroup of an m-tuple $\left(P_{1}, \ldots, P_{m}\right)$ according to dimensions of divisors supported by the points P_{1}, \ldots, P_{m}. This is an easy generalization of a lemma due to $\operatorname{Kim}[7]$.

Lemma 8. For $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{N}^{m}$, the following are equivalent:
(i) $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in H\left(P_{1}, \ldots, P_{m}\right)$.
(ii) $l\left(\sum_{i=1}^{m} \alpha_{i} P_{i}\right)=l\left(\left(\alpha_{j}-1\right) P_{j}+\sum_{i=1, i \neq j}^{m} \alpha_{i} P_{i}\right)+1$ for all $j, 1 \leq j \leq m$.

Proposition 9. Let $1 \leq l \leq m \leq|\mathbb{F}|$ and $\mathbf{n} \in \mathbb{N}^{l}$. Then $\mathbf{n} \in \Gamma_{l}^{+}$if and only if $\mathbf{n} \in H_{l}$ and $l\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right)=l\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} P_{j}\right)$ for all k, $1 \leq k \leq l$.

Proof. Suppose $\mathbf{n} \in \Gamma_{l}^{+}$. If $l\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right) \neq l\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} P_{j}\right)$ for some $k, 1 \leq k \leq l$, then there exists $\mathbf{v} \in H_{l}$ with $\mathbf{v} \preceq \mathbf{n}, v_{k} \leq n_{k}-1$, and $v_{t}=n_{t}$ for some $t, 1 \leq t \leq l$. This contradicts the assumption that \mathbf{n} is minimal in $\left\{\mathbf{p} \in H_{l}: p_{t}=n_{t}\right\}$. Thus, $l\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right)=l\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} P_{j}\right)$ for all $k, 1 \leq k \leq l$.

Suppose $\mathbf{n} \in H_{l}$ and $l\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right)=l\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} P_{j}\right)$ for all $k, 1 \leq k \leq l$. This implies

$$
L\left(\left(n_{1}-1\right) P_{1}+\sum_{j=2}^{l} n_{j} P_{j}\right)=L\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right)=L\left(\left(n_{k}-1\right) P_{k}+\sum_{\substack{j=1 \\ j \neq k}}^{l} n_{j} P_{j}\right)
$$

for all $k, 1 \leq k \leq l$, as $L\left(\sum_{j=1}^{l}\left(n_{j}-1\right) P_{j}\right) \subseteq L\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} P_{j}\right)$. If $\mathbf{n} \notin \Gamma_{l}^{+}$, then there exists $\mathbf{u} \in H_{l}$ with $u_{1}=n_{1}, \mathbf{u} \preceq \mathbf{n}$, and $\mathbf{u} \neq \mathbf{n}$. In particular, $u_{k}<n_{k}$ for some $k, 2 \leq k \leq l$. Thus, there exists a rational function $f \in L\left(\left(n_{k}-1\right) P_{k}+\sum_{j=1, j \neq k}^{l} n_{j} \overline{P_{j}}\right)$ such that $f \notin L\left(\left(n_{1}-1\right) P_{1}+\sum_{j=2}^{l} n_{j} P_{j}\right)$, which is a contradiction.

3 Computation of $H\left(P_{1}, \ldots, P_{m}\right)$ for collinear points P_{1}, \ldots, P_{m} on a Hermitian curve

In this section, we restrict our attention to the curve X defined by $y^{q}+y=x^{q+1}$ over $\mathbb{F}_{q^{2}}$. Given $a, b \in \mathbb{F}_{q^{2}}$ with $b^{q}+b=a^{q+1}$, let $P_{a b}$ denote the common zero of $x-a$ and $y-b$. Fix $a \in \mathbb{F}_{q^{2}}$. Then there are exactly q elements $b_{2}, \ldots, b_{q+1} \in \mathbb{F}_{q^{2}}$ such that $b_{i}^{q}+b_{i}=a^{q+1}$. Set $P_{1}=P_{\infty}, P_{2}=P_{a b_{2}}, P_{3}=P_{a b_{3}}, \ldots, P_{q+1}=P_{a b_{q+1}}$. For $1 \leq m \leq q+1$, let $H_{m}:=H\left(P_{1}, \ldots, P_{m}\right)$. We set out to determine Γ_{m} for all $1 \leq m \leq q+1$.

Notice that the divisors of $x-a$ and y are given by

$$
(x-a)=\sum_{i=2}^{q+1} P_{a b_{i}}-q P_{\infty} \quad \text { and } \quad(y)=(q+1)\left(P_{00}-P_{\infty}\right)
$$

It will also be useful to consider functions $h_{a b_{i}}:=y-b_{i}-a^{q}(x-a)$ where $2 \leq i \leq q+1$. Note that the divisor of $h_{a b_{i}}$ is given by

$$
\left(h_{a b_{i}}\right)=(q+1)\left(P_{a b_{i}}-P_{\infty}\right)
$$

(see [8]). Using the functions x and y and the fact that X is a curve of genus $\frac{q(q-1)}{2}$, one can check $H\left(P_{1}\right)=\langle q, q+1\rangle$ and that the Weierstrass gap set $G\left(P_{1}\right)$ is

$$
\begin{array}{cclc}
1 & 2 & \cdots & q-2 \\
(q+1)+1 & (q+1)+2 & \cdots(q+1)+(q-2) \\
\vdots & \vdots & .
\end{array}
$$

In fact, the above set is the Weierstrass gap set of any $\mathbb{F}_{q^{2}}$-rational point on X. Given $\alpha \in G(P)$ where P is any $\mathbb{F}_{q^{2}}$-rational point, α can be written uniquely
as $\alpha=(t-j)(q+1)+j$ with $1 \leq j \leq t \leq q-1$. Here, j denotes the column containing α and t denotes the diagonal containing α in the above diagram.

From above, $\Gamma_{1}^{+}=H\left(P_{1}\right)=\langle q, q+1\rangle$. According to [9, Theorem 3.7],

$$
\Gamma_{2}^{+}=\left\{\left(\left(t_{1}-j\right)(q+1)+j,\left(t_{2}-j\right)(q+1)+j\right): \begin{array}{l}
1 \leq j \leq t_{1}, t_{2} \leq q-1 \\
t_{1}+t_{2}=q+j-1
\end{array}\right\} .
$$

To describe Γ_{m}^{+}for $3 \leq m \leq q+1$, we must set up some notation. Given $1 \leq m \leq q+1, \mathbf{t}=\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{N}^{m}$, and $j \in \mathbb{N}$, define

$$
\gamma_{\mathbf{t}, j}:=\left(\left(t_{1}-j\right)(q+1)+j,\left(t_{2}-j\right)(q+1)+j, \ldots,\left(t_{m}-j\right)(q+1)+j\right) \in \mathbb{N}_{0}^{m}
$$

Notice that if $1 \leq j \leq t_{i} \leq q-1$ for all $1 \leq i \leq m$, then

$$
\gamma_{\mathbf{t}, j} \in G\left(P_{1}\right) \times G\left(P_{2}\right) \times \cdots \times G\left(P_{m}\right) .
$$

We next show that certain $\gamma_{\mathbf{t}, j}$ form a generating set for the Weierstrass semigroup H_{m}.

Theorem 10. Let $a \in \mathbb{F}_{q^{2}}$ and $P_{1}=P_{\infty}, P_{2}=P_{a b_{2}}, P_{3}=P_{a b_{3}}, \ldots, P_{q+1}=$ $P_{a b_{q+1}}$ be $q+1$ distinct $\mathbb{F}_{q^{2}}$-rational points on the Hermitian curve X defined by $y^{q}+y=x^{q+1}$. For $2 \leq m \leq q+1$,

$$
\Gamma_{m}^{+}=\left\{\gamma_{\mathbf{t}, j}: \begin{array}{l}
\sum_{i=1}^{m} t_{i}=q+(m-1)(j-1), \\
1 \leq j \leq t_{i} \leq q-1 \text { for all } 1 \leq i \leq m
\end{array}\right\} .
$$

In particular, the Weierstrass semigroup $H\left(P_{1}, \ldots, P_{m}\right)$ is generated by

$$
\left\{\mathbf{n} \in \mathbb{N}_{0}^{m}:\left(n_{i_{1}}, \ldots n_{i_{l}}\right)=\gamma_{\mathbf{t}, j} \in \Gamma_{l}^{+} \text {and } n_{i_{l+1}}=\cdots=n_{i_{m}}=0\right\}
$$

Proof. We begin by setting up some notation. For $2 \leq m \leq q+1$, set

$$
S_{m}:=\left\{\gamma_{\mathbf{t}, j}: \begin{array}{l}
\sum_{i=1}^{m} t_{i}=q+(m-1)(j-1) \\
1 \leq j \leq t_{i} \leq q-1 \text { for all } 1 \leq i \leq m
\end{array}\right\}
$$

For each $2 \leq i \leq q+1$, let $h_{i}:=h_{a b_{i}} \in \mathbb{F}_{q^{2}}(X)$ be as above so that

$$
\left(h_{i}\right)=(q+1) P_{i}-(q+1) P_{1} .
$$

Given $\mathbf{v}:=\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{Z}^{m}$, let $\mathbf{v}^{+}:=\left(v_{i_{1}}, \ldots, v_{i_{l}}\right) \in \mathbb{N}^{l}$ where $i_{1}<\cdots<i_{l}$ and $v_{i}>0$ if and only if $i=i_{r}$ for some $1 \leq r \leq l$; that is, \mathbf{v}^{+}is the vector formed from \mathbf{v} by deleting each coordinate of \mathbf{v} containing a negative or zero entry.

We will prove that $\Gamma_{m}^{+}=S_{m}$ by induction on m. By [9, Theorem 3.7],

$$
\Gamma_{2}^{+}=\left\{\gamma_{\left(t_{1}, t_{2}\right), j}: t_{1}+t_{2}=q+j-1,1 \leq j \leq t_{1}, t_{2} \leq q-1\right\}=S_{2}
$$

which settles the case where $m=2$. We now proceed by induction on $m \geq 3$. Assume that $\Gamma_{l}^{+}=S_{l}$ holds for all $2 \leq l \leq m-1$.

First, we claim that $S_{m} \subseteq \Gamma_{m}^{+}$. Let $\gamma_{\mathbf{t}, j} \in S_{m}$. Then

$$
\left(\frac{(x-a)^{q-j+1}}{h_{2}^{t_{2}-j+1} h_{3}^{t_{3}-j+1} \cdots h_{m}^{t_{m}-j+1}}\right)_{\infty}=\sum_{i=1}^{m}\left(\left(t_{i}-j\right)(q+1)+j\right) P_{i}
$$

Hence, $\boldsymbol{\gamma}_{\mathbf{t}, j} \in H_{m}$.
In order to show that $\gamma_{\mathbf{t}, j} \in \Gamma_{m}^{+}$, it suffices to prove that $\gamma_{\mathbf{t}, j}$ is minimal in $\left\{\mathbf{p} \in H_{m}: p_{1}=\left(t_{1}-j\right)(q+1)+j\right\}$. Suppose $\gamma_{\mathbf{t}, j}$ is not minimal in

$$
\left\{\mathbf{p} \in H_{m}: p_{1}=\left(t_{1}-j\right)(q+1)+j\right\}
$$

Then there exists $\mathbf{u} \in H_{m}$ with $u_{1}=\left(t_{1}-j\right)(q+1)+j, \mathbf{u} \preceq \gamma_{\mathbf{t}, j}$, and $\mathbf{u} \neq \boldsymbol{\gamma}_{\mathbf{t}, j}$. Let $f \in \mathbb{F}_{q^{2}}(X)$ be such that $(f)_{\infty}=u_{1} P_{1}+\cdots+u_{m} P_{m}$. Without loss of generality, we may assume that $u_{m}<\left(t_{m}-j\right)(q+1)+j$ as $\mathbf{u} \neq \gamma_{\mathbf{t}, j}$ gives $u_{i}<\left(t_{i}-j\right)(q+1)+j$ for some $2 \leq i \leq m$ and a similar argument holds if $2 \leq i \leq m-1$. Hence,

$$
u_{m}=\left(t_{m}-j\right)(q+1)+j-k
$$

for some $k \geq 1$. There are two cases to consider:

$$
\begin{aligned}
& \text { (1) } j>k . \\
& \text { (2) } j \leq k .
\end{aligned}
$$

Case (1): Suppose $j>k$. Then
$\left(f h_{m}^{t_{m}-j}(x-a)^{j-k}\right)_{\infty}=\left(\left(t_{1}+t_{m}-j-k\right)(q+1)+k\right) P_{1}+\sum_{i=2}^{m-1} \max \left\{u_{i}-(j-k), 0\right\} P_{i}$.
Therefore,

$$
\mathbf{v}:=\left(\left(t_{1}+t_{m}-j-k\right)(q+1)+k, v_{2}, \ldots, v_{m-1}\right) \in H_{m-1},
$$

where $v_{i}=\max \left\{u_{i}-(j-k), 0\right\}$ for $2 \leq i \leq m-1$. Set

$$
\mathbf{w}:=\gamma_{\left(t_{1}+t_{m}-j, t_{2}-j+1+k, t_{3}-j+k, \ldots, t_{m-1}-j+k\right), k} .
$$

Clearly,

$$
\mathbf{v} \preceq \mathbf{w} .
$$

Note that

$$
\mathbf{w} \in S_{m-1}
$$

since $t_{1}+t_{m}-j+t_{2}-j+1+k+\sum_{i=3}^{m-1}\left(t_{i}-j+k\right)=q+(m-2)(k-1)$, $k \leq t_{2}-j+1+k \leq t_{2} \leq q-1$ as $j-k>0, k \leq t_{i}-j+k \leq t_{i} \leq q-1$ for $3 \leq i \leq m-1$, and $k \leq j \leq t_{1}+t_{m}-j \leq q-1$ (otherwise, $\sum_{i=2}^{m-1} t_{i} \leq$ $(m-2)(j-1)<(m-2) j)$. By the induction hypothesis, $S_{m-1}=\Gamma_{m-1}^{+}$, and so

$$
\mathbf{w} \in \Gamma_{m-1}^{+}
$$

By Proposition 3, wis minimal in $\left\{\mathbf{p} \in H_{m-1}: p_{1}=\left(t_{1}+t_{m}-j-k\right)(q+1)+k\right\}$. This leads to a contradiction as

$$
\begin{aligned}
& \mathbf{v} \in\left\{\mathbf{p} \in H_{m-1}: p_{1}=\left(t_{1}+t_{m}-j-k\right)(q+1)+k\right\}, \\
& \mathbf{v} \preceq \mathbf{w}, \text { and } \\
& \mathbf{v} \neq \mathbf{w} .
\end{aligned}
$$

Case (2): Suppose $j \leq k$. Then

$$
\left(f h_{m}^{t_{m}-j}\right)_{\infty}=\left(\left(t_{1}+t_{m}-2 j\right)(q+1)+j\right) P_{1}+\sum_{i=2}^{m-1} u_{i} P_{i}
$$

which implies that

$$
\mathbf{v}:=\left(\left(t_{1}+t_{m}-j-j\right)(q+1)+j, u_{2}, \ldots, u_{m-1}\right) \in H_{m-1} .
$$

Note that there exists $i, 2 \leq i \leq m-1$, such that $t_{i}<q-1$ since otherwise $2 j \leq t_{1}+t_{m}=q+(m-1)(j-1)-(m-2)(q-1)$ implies that $0 \leq 2-m$ contradicting the assumption that $m \geq 3$. We may assume that $i=2$ as a similar argument holds in the case $2<i \leq m-1$. Set

$$
\mathbf{w}:=\gamma_{\left(t_{1}+t_{m}-j, t_{2}+1, t_{3} \ldots, t_{m-1}\right), j}
$$

Clearly,

$$
\mathbf{v} \preceq \mathbf{w} .
$$

Also note that

$$
\mathbf{w} \in S_{m-1}
$$

since $t_{1}+t_{m}-j+t_{2}+1+\sum_{i=3}^{m-1} t_{i}=q+(m-2)(j-1), j \leq t_{2}+1 \leq q-1$ as $t_{2}<q-1, j \leq t_{i} \leq q-1$ for $3 \leq i \leq m-1$, and $j \leq t_{1}+t_{m}-j \leq q-1$. By the induction hypothesis, $S_{m-1}=\bar{\Gamma}_{m-1}^{+}$, and so

$$
\mathbf{w} \in \Gamma_{m-1}^{+}
$$

By Proposition 3, \mathbf{w} is minimal in $\left\{\mathbf{p} \in H_{m-1}: p_{1}=\left(t_{1}+t_{m}-j-j\right)(q+1)+j\right\}$. This leads to a contradiction as

$$
\begin{aligned}
& \mathbf{v} \in\left\{\mathbf{p} \in H_{m-1}: p_{1}=\left(t_{1}+t_{m}-j-j\right)(q+1)+j\right\}, \\
& \mathbf{v} \preceq \mathbf{w}, \text { and } \\
& \mathbf{v} \neq \mathbf{w} .
\end{aligned}
$$

Since both cases (1) and (2) yield a contradiction, it must be the case that $\gamma_{\mathbf{t}, j}$ is minimal in $\left\{\mathbf{p} \in H_{m}: p_{1}=\left(t_{1}-j\right)(q+1)+j\right\}$. Therefore, by the definition of Γ_{m}^{+}, we have that $\gamma_{\mathbf{t}, j} \in \Gamma_{m}^{+}$. This completes the proof of the claim that

$$
S_{m} \subseteq \Gamma_{m}^{+}
$$

Next, we will show that $\Gamma_{m}^{+} \subseteq S_{m}$. Suppose not; that is, suppose that there exists $\mathbf{n} \in \Gamma_{m}^{+} \backslash S_{m}$. Then there exists $f \in \mathbb{F}_{q^{2}}(X)$ with pole divisor $(f)_{\infty}=$ $n_{1} P_{1}+\cdots+n_{m} P_{m}$. By Lemma 4,

$$
\mathbf{n} \in \Gamma_{m}^{+} \subseteq G\left(P_{1}\right) \times G\left(P_{2}\right) \times \cdots \times G\left(P_{m}\right)
$$

Thus,

$$
\mathbf{n}=\left(\left(t_{1}-j_{1}\right)(q+1)+j_{1},\left(t_{2}-j_{2}\right)(q+1)+j_{2}, \ldots,\left(t_{m}-j_{m}\right)(q+1)+j_{m}\right)
$$

where $1 \leq j_{i} \leq t_{i} \leq q-1$ for all $1 \leq i \leq m$. Without loss of generality, we may assume that $j_{m}=\max \left\{j_{i}: 2 \leq i \leq m\right\}$ as a similar argument holds if $j_{r}=\max \left\{j_{i}: 2 \leq i \leq m\right\}$ for some $2 \leq r \leq m-1$. Then

$$
\left(f h_{m}^{t_{m}-j_{m}+1}\right)_{\infty}=\left(n_{1}+\left(t_{m}-j_{m}+1\right)(q+1)\right) P_{1}+\sum_{i=2}^{m-1} n_{i} P_{i}
$$

which implies that $\left(n_{1}+\left(t_{m}-j_{m}+1\right)(q+1), n_{2}, \ldots, n_{m-1}\right) \in H_{m-1}$. Then there exists $\mathbf{u} \in \Gamma_{m-1}$ such that

$$
\mathbf{u} \preceq\left(n_{1}+\left(t_{m}-j_{m}+1\right)(q+1), n_{2}, \ldots, n_{m-1}\right)
$$

and $u_{2}=n_{2}=\left(t_{2}-j_{2}\right)(q+1)+j_{2}$. If $u_{1} \leq n_{1}$, then $\left(u_{1}, \ldots, u_{m-1}, 0\right) \preceq \mathbf{n}$ which contradicts the minimality of \mathbf{n} in $\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$. Thus, $u_{1}>n_{1}>0$. By the induction hypothesis,

$$
\mathbf{u}^{+}=\boldsymbol{\gamma}_{\left(T_{i_{1}}, \ldots, T_{i_{l}}\right), j^{\prime}} \in S_{l}=\Gamma_{l}^{+}
$$

for some $l, 2 \leq l \leq m-1$, and some $\left(T_{i_{1}}, \ldots, T_{i_{l}}\right)$ and j^{\prime} satisfying $1 \leq j^{\prime} \leq$ $T_{i_{r}} \leq q-1$ for $1 \leq r \leq l$ and $\sum_{r=1}^{l} T_{i_{r}}=q+(l-1)\left(j^{\prime}-1\right)$. Hence, there exists an index set $\left\{i_{1}, \ldots, i_{m-1}\right\}=\{1, \ldots, m-1\}$ such that $i_{1}<i_{2}<\cdots<i_{l}$ and

$$
u_{i_{r}}= \begin{cases}\left(T_{i_{r}}-j^{\prime}\right)(q+1)+j^{\prime} & \text { if } 1 \leq r \leq l \\ 0 & \text { if } l+1 \leq r \leq m-1\end{cases}
$$

Since $u_{1}>n_{1}>0, i_{1}=1$. Similarly, $i_{2}=2$ because $u_{2}=n_{2} \neq 0$. Since

$$
\left(T_{2}-j^{\prime}\right)(q+1)+j^{\prime}=u_{i_{2}}=u_{2}=\left(t_{2}-j_{2}\right)(q+1)+j_{2}
$$

implies that $(q+1) \mid\left(j^{\prime}-j_{2}\right)$, we must have that $j^{\prime}=j_{2}$ as $-(q-1) \leq j^{\prime}-j_{2} \leq$ $q-1$. In addition, $T_{2}=t_{2}$. As a result,

$$
\begin{gathered}
\mathbf{u}^{+}=\gamma_{\left(T_{1}, T_{2}, T_{i_{3}}, \ldots, T_{i_{l}}\right), j_{2}}, \\
u_{i_{r}}=\left\{\begin{array}{ll}
\left(T_{i_{r}}-j_{2}\right)(q+1)+j_{2} & \text { if } 1 \leq r \leq l \\
0 & \text { if } l+1 \leq r \leq m-1
\end{array},\right.
\end{gathered}
$$

$T_{1}+T_{2}+T_{i_{3}}+\cdots+T_{i_{l}}=q+(l-1)\left(j_{2}-1\right)$, and $j_{2} \leq T_{i_{r}} \leq q-1$ for all $1 \leq r \leq l$. At this point, we separate the remainder of the proof into two cases:
(1) $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1) \geq 0$
(2) $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1)<0$

Case (1): Suppose $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1) \geq 0$. Since $q+1 \nmid j_{2}$, it follows that $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1)>0$. Set
$\mathbf{v}:=\left(u_{1}-\left(t_{m}-j_{m}+1\right)(q+1), u_{2}, u_{3}, \ldots, u_{m-1},\left(t_{m}-j_{m}+j_{2}-j_{2}\right)(q+1)+j_{2}\right)$.

Notice that $\mathbf{v} \preceq \mathbf{n}$ since $u_{1} \leq n_{1}+\left(t_{m}-j_{m}+1\right)(q+1), u_{i} \leq n_{i}$ for $2 \leq i \leq m-1$, and $j_{2} \leq j_{m}=\max \left\{j_{i}: 2 \leq i \leq m\right\}$. We claim that $\mathbf{v}^{+} \in S_{l+1}$. To see this, it is helpful to express \mathbf{v}^{+}as

$$
\mathbf{v}^{+}=\boldsymbol{\gamma}_{\left(T_{1}-t_{m}+j_{m}-1, T_{2}, T_{i_{3}}, \ldots, T_{i_{l}}, t_{m}-j_{m}+j_{2}\right), j_{2}}
$$

It is easy to see that $T_{1}-t_{m}+j_{m}-1+T_{2}+T_{i_{3}}+\cdots+T_{i_{l}}+t_{m}-j_{m}+j_{2}=q+l\left(j_{2}-1\right)$, $T_{1}-\left(t_{m}-j_{m}\right)-1 \leq T_{1} \leq q-1, j_{2} \leq T_{i_{r}} \leq q-1$ for $2 \leq r \leq l$, and $j_{2} \leq t_{m}-j_{m}+j_{2} \leq t_{m} \leq q-1$ as $j_{2} \leq j_{m}$. If $T_{1}-t_{m}+j_{m}-1<j_{2}$, then $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1)=\left(T_{1}-j_{2}-\left(t_{m}-j_{m}+1\right)\right)(q+1)+j_{2}<0$ which is not the case. Thus, $j_{2} \leq T_{1}-t_{m}+j_{m}-1$, establishing the claim that $\mathbf{v}^{+} \in S_{l+1}$. Since $S_{l+1} \subseteq \Gamma_{l+1}^{+} \subseteq H_{l+1}$, it follows that $\mathbf{v} \in \Gamma_{m} \subseteq H_{m}$. Now, $\mathbf{v} \preceq \mathbf{n}$ and $\mathbf{n} \in \Gamma_{m}^{+}$force $\mathbf{n}=\mathbf{v}$ as otherwise \mathbf{n} is not minimal in $\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$. Hence, $l+1=m$ and $\mathbf{n}=\mathbf{v}=\mathbf{v}^{+} \in S_{m}$, which is a contradiction.

Case (2): Suppose that $u_{1}-\left(t_{m}-j_{m}+1\right)(q+1)<0$. There are two subcases to consider:

$$
\text { (a) } j_{1}<t_{1}
$$

(b) $j_{1}=t_{1}$.

Subcase (a): Suppose $j_{1}<t_{1}$. Set
$\mathbf{v}:=\left(\left(t_{1}-j_{1}+j_{2}-1-j_{2}\right)(q+1)+j_{2}, u_{2}, \ldots, u_{m-1},\left(T_{1}-t_{1}+j_{1}-j_{2}\right)(q+1)+j_{2}\right)$.
Notice that $\mathbf{v} \preceq \mathbf{n}$ and $\mathbf{v} \neq \mathbf{n}$ since $\left(t_{1}-j_{1}-1\right)(q+1)+j_{2} \leq\left(t_{1}-j_{1}\right)(q+1) \leq$ $\left(t_{1}-j_{1}\right)(q+1)+j_{1}, u_{i} \leq n_{i}$ for $2 \leq i \leq m-1$, and $u_{1}<\left(t_{m}-j_{m}+1\right)(q+1)$ implies that $T_{1}-j_{2} \leq t_{m}-j_{m}$ which leads to $\left(T_{1}-t_{1}+j_{1}-j_{2}\right)(q+1)+j_{2} \leq$ $\left(t_{m}-j_{m}\right)(q+1)+j_{m}$ as $j_{2} \leq j_{m}$. The fact that $j_{1}<t_{1}$ gives $\mathbf{v}^{+} \in \mathbb{N}^{l+1}$. We claim that $\mathbf{v}^{+} \in S_{l+1}$. To see this, it is helpful to express \mathbf{v}^{+}as

$$
\mathbf{v}^{+}=\gamma_{\left(t_{1}-j_{1}+j_{2}-1, T_{2}, T_{i_{3}}, \ldots, T_{i_{l}}, T_{1}-t_{1}+j_{1}\right), j_{2}}
$$

It is easy to see that $t_{1}-j_{1}+j_{2}-1+T_{2}+T_{i_{3}}+\cdots+T_{i_{l}}+T_{1}-t_{1}+j_{1}=$ $q+l\left(j_{2}-1\right), j_{2} \leq T_{i_{r}} \leq q-1$ for $2 \leq r \leq l, j_{2} \leq t_{1}-j_{1}+j_{2}-1$ as $j_{1}<t_{1}$, and $T_{1}-\left(t_{1}-j_{1}\right) \leq q-1$. In order to conclude that $\mathbf{v}^{+} \in S_{l+1}$, it only remains to show that $t_{1}-j_{1}+j_{2}-1 \leq q-1$ and $j_{2} \leq T_{1}-t_{1}+j_{1}$. It suffices to show that $j_{2} \leq$ $T_{1}-t_{1}+j_{1}$ since this implies that $j_{2} \leq q-\left(t_{1}-j_{1}\right)$ and so $t_{1}-j_{1}+j_{2}-1 \leq q-1$. If $j_{2}>T_{1}-t_{1}+j_{1}$, then $\left(T_{1}-j_{2}\right)(q+1)<\left(t_{1}-j_{1}\right)(q+1)+j_{1}-j_{2}$, contradicting the fact that $u_{1}>n_{1}$. Hence, $j_{2} \leq T_{1}-t_{1}+j_{1}$ and $\mathbf{v}^{+} \in S_{l+1} \subseteq \Gamma_{l+1}^{+} \subseteq H_{l+1}$. It follows that $\mathbf{v} \in H_{m}$ and so $\mathbf{v} \in\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$. This yields a contradiction as \mathbf{n} is minimal in $\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$, concluding the proof in this subcase.

Subcase (b): Suppose that $j_{1}=t_{1}$. Set

$$
\mathbf{v}:=\left(0, u_{2}, \ldots, u_{m-1},\left(T_{1}-j_{2}\right)(q+1)+j_{2}\right)
$$

Then $\mathbf{v} \preceq \mathbf{n}$ and $\mathbf{v} \neq \mathbf{n}$ since $0<n_{1}, u_{i} \leq n_{i}$ for $2 \leq i \leq m-1$, and $u_{1}<\left(t_{m}-j_{m}+1\right)(q+1)$ implies $T_{1}-j_{2} \leq t_{m}-j_{m}$ which means $\left(T_{1}-j_{2}\right)(q+$ 1) $+j_{2} \leq\left(t_{m}-j_{m}\right)(q+1)+j_{m}$ as $j_{2} \leq j_{m}$. It is easy to see that $\mathbf{v}^{+} \in S_{l}$ as $\sum_{r=1}^{l} T_{i_{r}}=q+(l-1)\left(j_{2}-1\right)$ and $j_{2} \leq T_{i_{r}} \leq q-1$ for all $1 \leq r \leq l$. As before, it
follows that $\mathbf{v} \in H_{m}$ and $\mathbf{v} \in\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$. Since $\mathbf{v} \neq \mathbf{n}$, this contradicts the minimality of \mathbf{n} in the set $\left\{\mathbf{p} \in H_{m}: p_{2}=n_{2}\right\}$, concluding the proof in this subcase.

Since both cases (1) and (2) yield a contradiction, it must be the case that no such \mathbf{n} exists. Hence, $\Gamma_{m}^{+} \backslash S_{m}=\emptyset$. This establishes that $\Gamma_{m}^{+} \subseteq S_{m}$, concluding the proof that $\Gamma_{m}^{+}=S_{m}$.

To illustrate Theorem 10, we provide an example.

Example 11. As in Example 5, consider the curve X defined by $y^{8}+y=x^{9}$ over $\mathbb{F}_{64}=\mathbb{F}_{2}(\omega)$ where $\omega^{6}+\omega^{4}+\omega^{3}+\omega+1=0$. Let $P_{1}=P_{\infty}, P_{2}=P_{00}, P_{3}=P_{01}$, $P_{4}=P_{0 \omega^{9}}$. Since $\Gamma_{1}=\langle 8,9\rangle$ and Γ_{2}^{+}is described in Example 5, to determine $H\left(P_{1}, P_{2}, P_{3}\right)$ it only remains to find Γ_{3}^{+}. By Theorem $10, \Gamma_{3}^{+}=$

```
{\begin{array}{l}{(1,1,46),(1,10,37),(1,19,28),(1,28,19),(1,37,10),(1,46,1),}\\{(2,2,38),(2,11,29),(2,20,20),(2,29,11),(2,38,2),}\\{(3,3,30),(3,12,21),(3,21,12),(3,30,3),}\\{(4,4,22),(4,13,13),(4,22,4),}\\{(5,5,14),(5,14,5),(6,6,6),}\\{(10,1,37),(10,10,28),(10,19,19),(10,28,10),(10,37,1),}\\{(11,2,29),(11,11,20),(11,20,11),(11,29,2),}\\{(12,3,21),(12,12,12),(12,21,3),}\\{(13,4,13),(13,13,4),}\\{(14,5,5),}\\{(19,1,28),(19,10,19),(19,19,10),(19,28,1),}\\{(20,2,20),(20,11,11),(20,20,2),}\\{(21,3,12),(21,12,3),}\\{(22,4,4),}\\{(28,1,19),(28,10,10),(28,19,1),}\\{(29,2,11),(29,11,2),}\\{(30,3,3),}\\{(37,1,10),(37,10,1),}\\{(38,2,2),}\\{(46,1,1)}\end{array}
```

To find $H\left(P_{1}, P_{2}, P_{3}, P_{4}\right)$, we only need to apply Theorem 10 to see that $\Gamma_{4}^{+}=$

```
\((1,1,1,37),(1,1,10,28),(1,1,19,19),(1,1,28,10),(1,1,37,1),(1,10,1,28)\),
\((1,10,10,19),(1,10,19,10),(1,10,28,1),(1,19,1,19),(1,19,10,10),(1,19,19,1)\),
\((1,28,1,10),(1,28,10,1),(1,37,1,1)\),
\((2,2,2,29),(2,2,11,20),(2,2,20,11),(2,2,29,2),(2,11,2,20),(2,11,11,11)\),
\((2,11,20,2),(2,20,2,11),(2,20,11,2),(2,29,2,2)\),
\((3,3,3,21),(3,3,12,12),(3,3,21,3),(3,12,3,12),(3,12,12,3),(3,21,3,3)\),
\((4,4,4,13),(4,4,13,4),(4,13,4,4)\),
\((5,5,5,5)\),
\((10,1,1,28),(10,1,10,19),(10,1,19,10),(10,1,28,1),(10,10,1,19),(10,10,10,10)\),
\((10,10,19,1),(10,19,1,10),(10,19,10,1),(10,28,1,1)\),
\((11,2,2,20),(11,2,11,11),(11,2,20,2),(11,11,2,11),(11,11,11,2),(11,20,2,2)\),
\((12,3,3,12),(12,3,12,3),(12,12,3,3)\),
(13, 4, 4, 4),
\((19,1,1,19),(19,1,10,10),(19,1,19,1),(19,10,1,10),(19,10,10,1),(19,19,1,1)\),
\((20,2,2,11),(20,2,11,2),(20,11,2,2)\),
\((21,3,3,3)\),
\((28,1,1,10),(28,1,10,1),(28,10,1,1)\),
(29, 2, 2, 2),
\((37,1,1,1)\)
```

Similarly, one can use Theorem 10 to find $\Gamma_{5}^{+}, \Gamma_{6}^{+}, \Gamma_{7}^{+}, \Gamma_{8}^{+}$, and Γ_{9}^{+}.

4 Acknowledgements

The author wishes to thank the anonymous referee whose careful reading and detailed comments led to numerous improvements in the proof of Theorem 10. This project was supported by NSF grant DMS-0201286 and an ORAU Ralph E. Powe Junior Faculty Enhancement Award.

References

1. E. Arbarello, M. Cornalba, P. Griffiths, and J. Harris, Geometry of Algebraic Curves, Springer-Verlag, 1985.
2. E. Ballico and S. J. Kim, Weierstrass multiple loci of n-pointed algebraic curves, J. Algebra 199 (1998), 455-471.
3. C. Carvalho and F. Torres, On Goppa codes and Weierstrass gaps at several points, preprint.
4. A. Garcia, S. J. Kim, and R. F. Lax, Consecutive Weierstrass gaps and minimum distance of Goppa codes, J. Pure Appl. Algebra 84 (1993), 199-207.
5. M. Homma, The Weierstrass semigroup of a pair of points on a curve, Arch. Math. 67 (1996), 337-348.
6. M. Homma and S. J. Kim, Goppa codes with Weierstrass pairs, J. Pure Appl. Algebra 162 (2001), 273-290.
7. S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. 62 (1994), 73-82.
8. H. Maharaj, G. L. Matthews, and G. Pirsic, Riemann-Roch spaces for the Hermitian function field with applications to low-discrepency sequences and algebraic geometry codes, preprint.
9. G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes and Cryptog. 22 (2001), 107-121.
10. G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Ph.D. dissertation, Louisiana State University, Baton Rouge, Louisiana, USA, May 1999.
