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Abstract. We examine the structure of the Weierstrass semigroup of an
m-tuple of points on a smooth, projective, absolutely irreducible curve
X over a finite field IF. A criteria is given for determining a minimal
subset of semigroup elements which generate such a semigroup where
2 ≤ m ≤| IF |. For all 2 ≤ m ≤ q + 1, we determine the Weierstrass
semigroup of any m-tuple of collinear IFq2 -rational points on a Hermitian
curve yq + y = xq+1.

1 Introduction

Let X be a smooth, projective, absolutely irreducible curve of genus g > 1 over
a finite field IF. Let IF(X) denote the field of rational functions on X defined
over IF. The divisor of a rational function f ∈ IF(X) will be denoted by (f) and
the divisor of poles of f will be denoted by (f)∞.

Given m distinct IF-rational points P1, . . . , Pm on X, the Weierstrass semi-
group H(P1, . . . , Pm) of the m-tuple (P1, . . . , Pm) is defined by

H(P1, . . . , Pm) =

{
(α1, . . . , αm) ∈ INm

0 : ∃f ∈ IF(X) with (f)∞ =
m∑

i=1

αiPi

}
,

and the Weierstrass gap set G(P1, . . . , Pm) of the m-tuple (P1, . . . , Pm) is defined
by

G(P1, . . . , Pm) = INm
0 \H(P1, . . . Pm),

where IN0 := IN ∪ {0} denotes the set of nonnegative integers. If m = 1, the
Weierstrass gap set is the classically studied gap sequence. In [1], the authors
generalized the notion of the semigroup of a point to the semigroup of a pair of
points on a curve. This study was carried on by S. J. Kim [7] and M. Homma [5].
The Weierstrass gap set of an m-tuple of points where m ≥ 2 has been examined
by E. Ballico and Kim [2], and more recently, by C. Carvalho and F. Torres [3].
Weierstrass gap sets play an interesting role in the construction and analysis
of algebraic geometry codes (see [4], [9], [6], [3]). While | G(P1) |= g for any
IF-rational point P1 on X, the cardinality of the set G(P1, . . . , Pm) where m ≥ 2
depends on the choice of points P1, . . . , Pm [1]. However, any pair of IFq2 -rational
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points on a Hermitian curve yq + y = xq+1 has the same Weierstrass semigroup
[9]. The analogous result does not hold for triples of IFq2 -rational points on a
Hermitian curve [10].

In this paper, we consider the notion of a minimal generating subset of a
Weierstrass semigroup of an m-tuple of points on an arbitrary (smooth, projec-
tive, absolutely irreducible) curve over a finite field IF. In Section 2, we discuss
properties of minimal elements of the Weierstrass semigroup. This section con-
cludes with a useful characterization of the elements of the minimal generating
set of the Weierstrass semigroup of an m-tuple of points for 2 ≤ m ≤ |IF|.
An interesting application of this is found in Section 3 where we see that any
m-tuple of collinear IFq2-rational points on a Hermitian curve yq + y = xq+1

has the same Weierstrass semigroup. In addition, we determine this Weierstrass
semigroup and its minimal generating set.

2 Results for arbitrary curves

Let X be a smooth, projective, absolutely irreducible curve of genus g > 1
over a finite field IF. Fix m distinct IF-rational points P1, . . . , Pm on X, where
2 ≤ m ≤ |IF|. For 1 ≤ l ≤ m, set Hl := H(P1, . . . , Pl). Define a partial order ¹
on INm

0 by (n1, . . . , nm) ¹ (p1, . . . , pm) if and only if ni ≤ pi for all i, 1 ≤ i ≤ m.
It is convenient to collect here two results from [3] that will be used in this
section.

Lemma 1. [3] If (n1, . . . , nm), (p1, . . . , pm) ∈ Hm and nj = pj for some j,
1 ≤ j ≤ m, then there exists q = (q1, . . . , qm) ∈ Hm whose coordinates satisfy
the following properties:

1. qi = max(ni, pi) for i 6= j and ni 6= pi.
2. qi ≤ ni for i 6= j and ni = pi.
3. qj = nj = 0 or qj < nj.

Lemma 2. [3] Suppose that there exists i, 1 ≤ i ≤ m, such that (n1, . . . , nm) is
a minimal element of the set {p ∈ Hm : pi = ni} with respect to ¹. If ni > 0
and nj > 0 for some j, 1 ≤ j ≤ m, j 6= i, then ni ∈ G(Pi).

Proposition 3. Let n ∈ INm. Then n is minimal in {p ∈ Hm : pi = ni} with
respect to ¹ for some i, 1 ≤ i ≤ m, if and only if n is minimal in the set
{p ∈ Hm : pi = ni} with respect to ¹ for all i, 1 ≤ i ≤ m.

Proof. Suppose n ∈ INm is minimal in {p ∈ Hm : pi = ni} with respect to ¹ for
some i, 1 ≤ i ≤ m. Without loss of generality, we may assume that i = 1. Suppose
there exists j, 2 ≤ j ≤ m, such that n is not minimal in {p ∈ Hm : pj = nj}.
Then there exists v ∈ Hm such that v ¹ n, v 6= n, and vj = nj . Note that
v1 < n1 as otherwise v ∈ {p ∈ Hm : p1 = n1} contradicting the minimality of n.
Applying Lemma 1, we see that there exists q ∈ Hm with q1 = n1, qj < nj , and
qi ≤ ni for all 1 ≤ i ≤ m. Thus, q ¹ n, q 6= n, and q ∈ {p ∈ Hm : p1 = n1}.
This contradicts the minimality of n ∈ {p ∈ Hm : p1 = n1}. Thus, n is minimal
in {p ∈ Hm : pj = nj} for all j, 1 ≤ j ≤ m.
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Using these ideas, we set out to describe a subset of Hm that generates the
entire semigroup Hm. To begin, set Γ+

1 = H(P1), the Weierstrass semigroup of
the point P1. For 2 ≤ l ≤ m, define

Γ+
l := {n ∈ INl : n is minimal in {p ∈ Hl : pi = ni} for some i, 1 ≤ i ≤ l}.

The notion of Γ+
2 is due to Kim [7]. As an immediate consequence of Proposi-

tion 3 and Lemma 2, we obtain the following result.

Lemma 4. For 2 ≤ l ≤ m, Γ+
l ⊆ G(P1)× · · · ×G(Pl) .

Using Γ+
l , we will now describe a subset Γl of Hl for 1 ≤ l ≤ m. First, set

Γ1 = Γ+
1 = H(P1). For 2 ≤ l ≤ m, define

Γl := Γ+
l ∪

{
n ∈ INl

0 : (ni1 , . . . , nik
) ∈ Γ+

k for some {i1, . . . , im} = {1, . . . , m}
such that i1 < · · · < ik and nik+1 = · · · = nim

= 0

}
.

Clearly, Γm is completely determined by {Γ+
l : 1 ≤ l ≤ m}.

Example 5. Consider the curve defined by y8 + y = x9 over IF64. Let P1 = P∞
denote the point at infinity and P2 = P00 denote the common zero of x and y.
It is well known that the Weierstrass gap set of the point P1 (and P2) is

1 2 3 4 5 6 7
10 11 12 13 14 15
19 20 21 22 23
28 29 30 31
37 38 39
46 47
55

.

Equivalently, the Weierstrass semigroup of the point P1 is the additive subsemi-
group of IN0 generated by 8 and 9; that is, H(P1) = 〈8, 9〉 := {8a+9b : a, b ∈ IN0}.
Hence, Γ1 = 〈8, 9〉. According to [9],

Γ+
2 =





(1, 55), (2, 47), (3, 39), (4, 31), (5, 23), (6, 15), (7, 7), (10, 46),
(11, 38), (12, 30), (13, 22), (14, 14), (15, 6), (19, 37), (20, 29),
(21, 21), (22, 13), (23, 5), (28, 28), (29, 20), (30, 12), (31, 4),
(37, 19), (38, 11), (39, 3), (46, 10), (47, 2), (55, 1)





.

Then
Γ2 = Γ+

2 ∪ {(n, 0), (0, n) : n ∈ 〈8, 9〉}.
We will show that Γm generates Hm by taking least upper bounds. Given

u1, . . . ,ul ∈ INm
0 , define the least upper bound of u1, . . . ,ul by

lub{u1, . . . ,ul} = (max{u11 , . . . , ul1}, . . . , max{u1m , . . . , ulm}) ∈ INm
0

In [7], Kim proved that H2 = {lub{u1,u2} ∈ IN2
0 : u1,u2 ∈ Γ2}. To obtain a

similar result for Hm where m ≥ 3, we use the next fact which follows immedi-
ately from [3].
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Proposition 6. Suppose that 1 ≤ l ≤ m ≤ |IF| and u1, . . . ,ul ∈ Hm. Then
lub{u1, . . . ,ul} ∈ Hm.

Proof. Let q2 := lub{u1,u2}. For 3 ≤ i ≤ l, define qi := lub{qi−1,ui}. Accord-
ing to [3], q2 ∈ Hm. Repeated application gives qi ∈ Hm for all i ∈ {2, . . . , l}.
This completes the proof as lub{u1, . . . ,ul} = ql ∈ Hm.

Theorem 7. If 1 ≤ m ≤ |IF|, then

Hm = {lub {u1, . . . ,um} ∈ INm
0 : u1, . . . ,um ∈ Γm} .

Proof. The fact that {lub {u1, . . . ,um} ∈ INm
0 : u1, . . . ,um ∈ Γm} ⊆ Hm follows

from Proposition 6.
Suppose n ∈ Hm \ Γm. Without loss of generality, we may assume that

n ∈ INm. (Otherwise, (ni1 , . . . nil
) ∈ INl for some {i1, . . . , im} = {1, . . . , m}

such that i1 < · · · < il and nil+1 = · · · = nim = 0, and the same argument
applies to (ni1 , . . . nil

)). Then, according to Proposition 3, n is not minimal in
{p ∈ Hm : pi = ni} for any i, 1 ≤ i ≤ m. Hence, there exists ui ∈ Γm with
uii = ni, ui ¹ n, and ui 6= n for each i, 1 ≤ i ≤ m. Then n = lub{u1, . . . ,um},
completing the proof.

According to Theorem 7 and the definition of Γm, the Weierstrass semigroup
Hm is completely determined by {Γ+

l : 1 ≤ l ≤ m}. We conclude this section
with a useful characterization of elements of the sets Γ+

l , 1 ≤ l ≤ m. To do this, it
is helpful to consider dimensions of certain divisors. For a divisor D on X defined
over IF, let L(D) denote the set of rational functions f ∈ IF(X) with divisor
(f) ≥ −D together with the zero function. Then L(D) is a finite dimensional
vector space over IF. Let l(D) denote the dimension of the vector space L(D)
over IF. The Riemann-Roch Theorem states that l(D) = deg D+1−g+l(K−D),
where K is any canonical divisor on X. This gives a characterization of elements
of the Weierstrass semigroup of an m-tuple (P1, . . . , Pm) according to dimensions
of divisors supported by the points P1, . . . , Pm. This is an easy generalization of
a lemma due to Kim [7].

Lemma 8. For (α1, . . . , αm) ∈ INm, the following are equivalent:
(i) (α1, . . . , αm) ∈ H(P1, . . . , Pm).
(ii) l(

∑m
i=1 αiPi) = l((αj − 1)Pj +

∑m
i=1,i6=j αiPi) + 1 for all j, 1 ≤ j ≤ m.

Proposition 9. Let 1 ≤ l ≤ m ≤| IF | and n ∈ INl. Then n ∈ Γ+
l if and only

if n ∈ Hl and l(
∑l

j=1(nj − 1)Pj) = l((nk − 1)Pk +
∑l

j=1,j 6=k njPj) for all k,
1 ≤ k ≤ l.

Proof. Suppose n ∈ Γ+
l . If l(

∑l
j=1(nj − 1)Pj) 6= l((nk − 1)Pk +

∑l
j=1,j 6=k njPj)

for some k, 1 ≤ k ≤ l, then there exists v ∈ Hl with v ¹ n, vk ≤ nk − 1, and
vt = nt for some t, 1 ≤ t ≤ l. This contradicts the assumption that n is minimal
in {p ∈ Hl : pt = nt}. Thus, l(

∑l
j=1(nj−1)Pj) = l((nk−1)Pk +

∑l
j=1,j 6=k njPj)

for all k, 1 ≤ k ≤ l.
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Suppose n ∈ Hl and l(
∑l

j=1(nj − 1)Pj) = l((nk− 1)Pk +
∑l

j=1,j 6=k njPj) for
all k, 1 ≤ k ≤ l. This implies

L

(
(n1 − 1)P1 +

l∑
j=2

njPj

)
= L

(
l∑

j=1

(nj − 1)Pj

)
= L




(nk − 1)Pk +

l∑

j = 1
j 6= k

njPj




for all k, 1 ≤ k ≤ l, as L(
∑l

j=1(nj − 1)Pj) ⊆ L((nk − 1)Pk +
∑l

j=1,j 6=k njPj).
If n /∈ Γ+

l , then there exists u ∈ Hl with u1 = n1, u ¹ n, and u 6= n. In
particular, uk < nk for some k, 2 ≤ k ≤ l. Thus, there exists a rational function
f ∈ L((nk − 1)Pk +

∑l
j=1,j 6=k njPj) such that f /∈ L((n1 − 1)P1 +

∑l
j=2 njPj),

which is a contradiction.

3 Computation of H(P1, . . . , Pm) for collinear points
P1, . . . , Pm on a Hermitian curve

In this section, we restrict our attention to the curve X defined by yq +y = xq+1

over IFq2 . Given a, b ∈ IFq2 with bq +b = aq+1, let Pab denote the common zero of
x−a and y−b. Fix a ∈ IFq2 . Then there are exactly q elements b2, . . . , bq+1 ∈ IFq2

such that bq
i + bi = aq+1. Set P1 = P∞, P2 = Pab2 , P3 = Pab3 , . . . , Pq+1 = Pabq+1 .

For 1 ≤ m ≤ q + 1, let Hm := H(P1, . . . , Pm). We set out to determine Γm for
all 1 ≤ m ≤ q + 1.

Notice that the divisors of x− a and y are given by

(x− a) =
q+1∑

i=2

Pabi − qP∞ and (y) = (q + 1)(P00 − P∞).

It will also be useful to consider functions habi := y − bi − aq(x − a) where
2 ≤ i ≤ q + 1. Note that the divisor of habi is given by

(habi) = (q + 1)(Pabi − P∞)

(see [8]). Using the functions x and y and the fact that X is a curve of genus
q(q−1)

2 , one can check H(P1) = 〈q, q + 1〉 and that the Weierstrass gap set G(P1)
is

1 2 · · · q − 2 q − 1
(q + 1) + 1 (q + 1) + 2 · · · (q + 1) + (q − 2)

...
... . . .

(q − 3)(q + 1) + 1 (q − 3)(q + 1) + 2
(q − 2)(q + 1) + 1

.

In fact, the above set is the Weierstrass gap set of any IFq2 -rational point on X.
Given α ∈ G(P ) where P is any IFq2 -rational point, α can be written uniquely
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as α = (t − j)(q + 1) + j with 1 ≤ j ≤ t ≤ q − 1. Here, j denotes the column
containing α and t denotes the diagonal containing α in the above diagram.

From above, Γ+
1 = H(P1) = 〈q, q + 1〉. According to [9, Theorem 3.7],

Γ+
2 =

{
((t1 − j)(q + 1) + j, (t2 − j)(q + 1) + j) :

1 ≤ j ≤ t1, t2 ≤ q − 1,
t1 + t2 = q + j − 1

}
.

To describe Γ+
m for 3 ≤ m ≤ q + 1, we must set up some notation. Given

1 ≤ m ≤ q + 1, t = (t1, . . . , tm) ∈ INm, and j ∈ IN, define

γt,j := ((t1 − j)(q + 1) + j, (t2 − j)(q + 1) + j, . . . , (tm − j)(q + 1) + j) ∈ INm
0 .

Notice that if 1 ≤ j ≤ ti ≤ q − 1 for all 1 ≤ i ≤ m, then

γt,j ∈ G(P1)×G(P2)× · · · ×G(Pm).

We next show that certain γt,j form a generating set for the Weierstrass semi-
group Hm.

Theorem 10. Let a ∈ IFq2 and P1 = P∞, P2 = Pab2 , P3 = Pab3 , . . . , Pq+1 =
Pabq+1 be q + 1 distinct IFq2-rational points on the Hermitian curve X defined
by yq + y = xq+1. For 2 ≤ m ≤ q + 1,

Γ+
m =

{
γt,j :

∑m
i=1 ti = q + (m− 1)(j − 1),

1 ≤ j ≤ ti ≤ q − 1 for all 1 ≤ i ≤ m

}
.

In particular, the Weierstrass semigroup H(P1, . . . , Pm) is generated by
{

n ∈ INm
0 : (ni1 , . . . nil

) = γt,j ∈ Γ+
l and nil+1 = · · · = nim = 0

for some l ∈ IN and {i1, . . . , im} = {1, . . . , m}
}

.

Proof. We begin by setting up some notation. For 2 ≤ m ≤ q + 1, set

Sm :=
{

γt,j :
∑m

i=1 ti = q + (m− 1)(j − 1),
1 ≤ j ≤ ti ≤ q − 1 for all 1 ≤ i ≤ m

}
.

For each 2 ≤ i ≤ q + 1, let hi := habi ∈ IFq2(X) be as above so that

(hi) = (q + 1)Pi − (q + 1)P1.

Given v := (v1, . . . , vm) ∈ ZZm, let v+ := (vi1 , . . . , vil
) ∈ INl where i1 < · · · < il

and vi > 0 if and only if i = ir for some 1 ≤ r ≤ l; that is, v+ is the vector
formed from v by deleting each coordinate of v containing a negative or zero
entry.

We will prove that Γ+
m = Sm by induction on m. By [9, Theorem 3.7],

Γ+
2 = {γ(t1,t2),j : t1 + t2 = q + j − 1, 1 ≤ j ≤ t1, t2 ≤ q − 1} = S2,

which settles the case where m = 2. We now proceed by induction on m ≥ 3.
Assume that Γ+

l = Sl holds for all 2 ≤ l ≤ m− 1.
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First, we claim that Sm ⊆ Γ+
m . Let γt,j ∈ Sm. Then

(
(x− a)q−j+1

ht2−j+1
2 ht3−j+1

3 · · ·htm−j+1
m

)

∞
=

m∑

i=1

((ti − j)(q + 1) + j)Pi.

Hence, γt,j ∈ Hm.
In order to show that γt,j ∈ Γ+

m , it suffices to prove that γt,j is minimal in
{p ∈ Hm : p1 = (t1 − j)(q + 1) + j}. Suppose γt,j is not minimal in

{p ∈ Hm : p1 = (t1 − j)(q + 1) + j}.

Then there exists u ∈ Hm with u1 = (t1 − j)(q + 1) + j, u ¹ γt,j , and u 6= γt,j .
Let f ∈ IFq2(X) be such that (f)∞ = u1P1 + · · · + umPm. Without loss of
generality, we may assume that um < (tm − j)(q + 1) + j as u 6= γt,j gives
ui < (ti − j)(q + 1) + j for some 2 ≤ i ≤ m and a similar argument holds if
2 ≤ i ≤ m− 1. Hence,

um = (tm − j)(q + 1) + j − k

for some k ≥ 1. There are two cases to consider:

(1) j > k.
(2) j ≤ k.

Case (1): Suppose j > k. Then

(
fhtm−j

m (x− a)j−k
)
∞ = ((t1+tm−j−k)(q+1)+k)P1+

m−1∑

i=2

max{ui−(j−k), 0}Pi.

Therefore,

v := ((t1 + tm − j − k)(q + 1) + k, v2, . . . , vm−1) ∈ Hm−1,

where vi = max{ui − (j − k), 0} for 2 ≤ i ≤ m− 1. Set

w := γ(t1+tm−j,t2−j+1+k,t3−j+k,...,tm−1−j+k),k.

Clearly,
v ¹ w.

Note that
w ∈ Sm−1

since t1 + tm − j + t2 − j + 1 + k +
∑m−1

i=3 (ti − j + k) = q + (m − 2)(k − 1),
k ≤ t2 − j + 1 + k ≤ t2 ≤ q − 1 as j − k > 0, k ≤ ti − j + k ≤ ti ≤ q − 1
for 3 ≤ i ≤ m − 1, and k ≤ j ≤ t1 + tm − j ≤ q − 1 (otherwise,

∑m−1
i=2 ti ≤

(m− 2)(j − 1) < (m− 2)j). By the induction hypothesis, Sm−1 = Γ+
m−1, and so

w ∈ Γ+
m−1.
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By Proposition 3, w is minimal in {p ∈ Hm−1 : p1 = (t1 +tm−j−k)(q+1)+k}.
This leads to a contradiction as

v ∈ {p ∈ Hm−1 : p1 = (t1 + tm − j − k)(q + 1) + k},
v ¹ w, and
v 6= w.

Case (2): Suppose j ≤ k. Then

(
fhtm−j

m

)
∞ = ((t1 + tm − 2j)(q + 1) + j)P1 +

m−1∑

i=2

uiPi

which implies that

v := ((t1 + tm − j − j)(q + 1) + j, u2, . . . , um−1) ∈ Hm−1.

Note that there exists i, 2 ≤ i ≤ m − 1, such that ti < q − 1 since otherwise
2j ≤ t1 + tm = q + (m − 1)(j − 1) − (m − 2)(q − 1) implies that 0 ≤ 2 − m
contradicting the assumption that m ≥ 3. We may assume that i = 2 as a similar
argument holds in the case 2 < i ≤ m− 1. Set

w := γ(t1+tm−j,t2+1,t3...,tm−1),j .

Clearly,
v ¹ w.

Also note that
w ∈ Sm−1

since t1 + tm − j + t2 + 1 +
∑m−1

i=3 ti = q + (m− 2)(j − 1), j ≤ t2 + 1 ≤ q − 1 as
t2 < q− 1, j ≤ ti ≤ q− 1 for 3 ≤ i ≤ m− 1, and j ≤ t1 + tm − j ≤ q− 1. By the
induction hypothesis, Sm−1 = Γ+

m−1, and so

w ∈ Γ+
m−1.

By Proposition 3, w is minimal in {p ∈ Hm−1 : p1 = (t1 + tm−j−j)(q+1)+j}.
This leads to a contradiction as

v ∈ {p ∈ Hm−1 : p1 = (t1 + tm − j − j)(q + 1) + j},
v ¹ w, and
v 6= w.

Since both cases (1) and (2) yield a contradiction, it must be the case that
γt,j is minimal in {p ∈ Hm : p1 = (t1−j)(q+1)+j}. Therefore, by the definition
of Γ+

m , we have that γt,j ∈ Γ+
m . This completes the proof of the claim that

Sm ⊆ Γ+
m .

Next, we will show that Γ+
m ⊆ Sm. Suppose not; that is, suppose that there

exists n ∈ Γ+
m \ Sm. Then there exists f ∈ IFq2(X) with pole divisor (f)∞ =

n1P1 + · · ·+ nmPm. By Lemma 4,

n ∈ Γ+
m ⊆ G(P1)×G(P2)× · · · ×G(Pm).
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Thus,

n = ((t1 − j1)(q + 1) + j1, (t2 − j2)(q + 1) + j2, . . . , (tm − jm)(q + 1) + jm)

where 1 ≤ ji ≤ ti ≤ q − 1 for all 1 ≤ i ≤ m. Without loss of generality, we
may assume that jm = max{ji : 2 ≤ i ≤ m} as a similar argument holds if
jr = max{ji : 2 ≤ i ≤ m} for some 2 ≤ r ≤ m− 1. Then

(fhtm−jm+1
m )∞ = (n1 + (tm − jm + 1)(q + 1))P1 +

m−1∑

i=2

niPi,

which implies that (n1 +(tm−jm +1)(q+1), n2, . . . , nm−1) ∈ Hm−1. Then there
exists u ∈ Γm−1 such that

u ¹ (n1 + (tm − jm + 1)(q + 1), n2, . . . , nm−1)

and u2 = n2 = (t2− j2)(q +1)+ j2. If u1 ≤ n1, then (u1, . . . , um−1, 0) ¹ n which
contradicts the minimality of n in {p ∈ Hm : p2 = n2}. Thus, u1 > n1 > 0. By
the induction hypothesis,

u+ = γ(Ti1 ,...,Til
),j′ ∈ Sl = Γ+

l

for some l, 2 ≤ l ≤ m − 1, and some (Ti1 , . . . , Til
) and j′ satisfying 1 ≤ j′ ≤

Tir ≤ q − 1 for 1 ≤ r ≤ l and
∑l

r=1 Tir = q + (l− 1)(j′ − 1). Hence, there exists
an index set {i1, . . . , im−1} = {1, . . . , m− 1} such that i1 < i2 < · · · < il and

uir =
{ (Tir − j′)(q + 1) + j′ if 1 ≤ r ≤ l

0 if l + 1 ≤ r ≤ m− 1
.

Since u1 > n1 > 0, i1 = 1. Similarly, i2 = 2 because u2 = n2 6= 0. Since

(T2 − j′)(q + 1) + j′ = ui2 = u2 = (t2 − j2)(q + 1) + j2

implies that (q +1) | (j′− j2), we must have that j′ = j2 as −(q− 1) ≤ j′− j2 ≤
q − 1. In addition, T2 = t2. As a result,

u+ = γ(T1,T2,Ti3 ,...,Til
),j2 ,

uir =
{ (Tir − j2)(q + 1) + j2 if 1 ≤ r ≤ l

0 if l + 1 ≤ r ≤ m− 1
,

T1 +T2 +Ti3 + · · ·+Til
= q+(l−1)(j2−1), and j2 ≤ Tir ≤ q−1 for all 1 ≤ r ≤ l.

At this point, we separate the remainder of the proof into two cases:

(1) u1 − (tm − jm + 1)(q + 1) ≥ 0
(2) u1 − (tm − jm + 1)(q + 1) < 0

Case (1): Suppose u1 − (tm − jm + 1)(q + 1) ≥ 0. Since q + 1 - j2, it follows
that u1 − (tm − jm + 1)(q + 1) > 0. Set

v := (u1− (tm− jm +1)(q +1), u2, u3, . . . , um−1, (tm− jm + j2− j2)(q +1)+ j2).
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Notice that v ¹ n since u1 ≤ n1 +(tm−jm +1)(q+1), ui ≤ ni for 2 ≤ i ≤ m−1,
and j2 ≤ jm = max{ji : 2 ≤ i ≤ m}. We claim that v+ ∈ Sl+1. To see this, it is
helpful to express v+ as

v+ = γ(T1−tm+jm−1,T2,Ti3 ,...,Til
,tm−jm+j2),j2 .

It is easy to see that T1−tm+jm−1+T2+Ti3+· · ·+Til
+tm−jm+j2 = q+l(j2−1),

T1 − (tm − jm) − 1 ≤ T1 ≤ q − 1, j2 ≤ Tir ≤ q − 1 for 2 ≤ r ≤ l, and
j2 ≤ tm − jm + j2 ≤ tm ≤ q − 1 as j2 ≤ jm. If T1 − tm + jm − 1 < j2, then
u1− (tm− jm +1)(q +1) = (T1− j2− (tm− jm +1))(q +1)+ j2 < 0 which is not
the case. Thus, j2 ≤ T1 − tm + jm − 1, establishing the claim that v+ ∈ Sl+1.
Since Sl+1 ⊆ Γ+

l+1 ⊆ Hl+1, it follows that v ∈ Γm ⊆ Hm. Now, v ¹ n and
n ∈ Γ+

m force n = v as otherwise n is not minimal in {p ∈ Hm : p2 = n2}.
Hence, l + 1 = m and n = v = v+ ∈ Sm, which is a contradiction.

Case (2): Suppose that u1− (tm− jm +1)(q +1) < 0. There are two subcases
to consider:

(a) j1 < t1.
(b) j1 = t1.

Subcase (a): Suppose j1 < t1. Set

v := ((t1−j1+j2−1−j2)(q+1)+j2, u2, . . . , um−1, (T1−t1+j1−j2)(q+1)+j2).

Notice that v ¹ n and v 6= n since (t1 − j1 − 1)(q + 1) + j2 ≤ (t1 − j1)(q + 1) ≤
(t1 − j1)(q + 1) + j1, ui ≤ ni for 2 ≤ i ≤ m− 1, and u1 < (tm − jm + 1)(q + 1)
implies that T1 − j2 ≤ tm − jm which leads to (T1 − t1 + j1 − j2)(q + 1) + j2 ≤
(tm − jm)(q + 1) + jm as j2 ≤ jm. The fact that j1 < t1 gives v+ ∈ INl+1. We
claim that v+ ∈ Sl+1. To see this, it is helpful to express v+ as

v+ = γ(t1−j1+j2−1,T2,Ti3 ,...,Til
,T1−t1+j1),j2 .

It is easy to see that t1 − j1 + j2 − 1 + T2 + Ti3 + · · · + Til
+ T1 − t1 + j1 =

q + l(j2 − 1), j2 ≤ Tir ≤ q− 1 for 2 ≤ r ≤ l, j2 ≤ t1 − j1 + j2 − 1 as j1 < t1, and
T1 − (t1 − j1) ≤ q − 1. In order to conclude that v+ ∈ Sl+1, it only remains to
show that t1−j1+j2−1 ≤ q−1 and j2 ≤ T1−t1+j1. It suffices to show that j2 ≤
T1−t1 +j1 since this implies that j2 ≤ q−(t1−j1) and so t1−j1 +j2−1 ≤ q−1.
If j2 > T1− t1 +j1, then (T1−j2)(q+1) < (t1−j1)(q+1)+j1−j2, contradicting
the fact that u1 > n1. Hence, j2 ≤ T1− t1 + j1 and v+ ∈ Sl+1 ⊆ Γ+

l+1 ⊆ Hl+1. It
follows that v ∈ Hm and so v ∈ {p ∈ Hm : p2 = n2}. This yields a contradiction
as n is minimal in {p ∈ Hm : p2 = n2}, concluding the proof in this subcase.

Subcase (b): Suppose that j1 = t1. Set

v := (0, u2, . . . , um−1, (T1 − j2)(q + 1) + j2).

Then v ¹ n and v 6= n since 0 < n1, ui ≤ ni for 2 ≤ i ≤ m − 1, and
u1 < (tm − jm + 1)(q + 1) implies T1 − j2 ≤ tm − jm which means (T1 − j2)(q +
1) + j2 ≤ (tm − jm)(q + 1) + jm as j2 ≤ jm. It is easy to see that v+ ∈ Sl as∑l

r=1 Tir = q +(l−1)(j2−1) and j2 ≤ Tir ≤ q−1 for all 1 ≤ r ≤ l. As before, it
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follows that v ∈ Hm and v ∈ {p ∈ Hm : p2 = n2}. Since v 6= n, this contradicts
the minimality of n in the set {p ∈ Hm : p2 = n2}, concluding the proof in this
subcase.

Since both cases (1) and (2) yield a contradiction, it must be the case that no
such n exists. Hence, Γ+

m \ Sm = ∅. This establishes that Γ+
m ⊆ Sm, concluding

the proof that Γ+
m = Sm.

To illustrate Theorem 10, we provide an example.

Example 11. As in Example 5, consider the curve X defined by y8 +y = x9 over
IF64 = IF2(ω) where ω6 +ω4 +ω3 +ω+1 = 0. Let P1 = P∞, P2 = P00, P3 = P01,
P4 = P0ω9 . Since Γ1 = 〈8, 9〉 and Γ+

2 is described in Example 5, to determine
H(P1, P2, P3) it only remains to find Γ+

3 . By Theorem 10, Γ+
3 =





(1, 1, 46), (1, 10, 37), (1, 19, 28), (1, 28, 19), (1, 37, 10), (1, 46, 1),
(2, 2, 38), (2, 11, 29), (2, 20, 20), (2, 29, 11), (2, 38, 2),
(3, 3, 30), (3, 12, 21), (3, 21, 12), (3, 30, 3),
(4, 4, 22), (4, 13, 13), (4, 22, 4),
(5, 5, 14), (5, 14, 5), (6, 6, 6),
(10, 1, 37), (10, 10, 28), (10, 19, 19), (10, 28, 10), (10, 37, 1),
(11, 2, 29), (11, 11, 20), (11, 20, 11), (11, 29, 2),
(12, 3, 21), (12, 12, 12), (12, 21, 3),
(13, 4, 13), (13, 13, 4),
(14, 5, 5),
(19, 1, 28), (19, 10, 19), (19, 19, 10), (19, 28, 1),
(20, 2, 20), (20, 11, 11), (20, 20, 2),
(21, 3, 12), (21, 12, 3),
(22, 4, 4),
(28, 1, 19), (28, 10, 10), (28, 19, 1),
(29, 2, 11), (29, 11, 2),
(30, 3, 3),
(37, 1, 10), (37, 10, 1),
(38, 2, 2),
(46, 1, 1)





.
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To find H(P1, P2, P3, P4), we only need to apply Theorem 10 to see that Γ+
4 =





(1, 1, 1, 37), (1, 1, 10, 28), (1, 1, 19, 19), (1, 1, 28, 10), (1, 1, 37, 1), (1, 10, 1, 28),
(1, 10, 10, 19), (1, 10, 19, 10), (1, 10, 28, 1), (1, 19, 1, 19), (1, 19, 10, 10), (1, 19, 19, 1),
(1, 28, 1, 10), (1, 28, 10, 1), (1, 37, 1, 1),
(2, 2, 2, 29), (2, 2, 11, 20), (2, 2, 20, 11), (2, 2, 29, 2), (2, 11, 2, 20), (2, 11, 11, 11),
(2, 11, 20, 2), (2, 20, 2, 11), (2, 20, 11, 2), (2, 29, 2, 2),
(3, 3, 3, 21), (3, 3, 12, 12), (3, 3, 21, 3), (3, 12, 3, 12), (3, 12, 12, 3), (3, 21, 3, 3),
(4, 4, 4, 13), (4, 4, 13, 4), (4, 13, 4, 4),
(5, 5, 5, 5),
(10, 1, 1, 28), (10, 1, 10, 19), (10, 1, 19, 10), (10, 1, 28, 1), (10, 10, 1, 19), (10, 10, 10, 10),
(10, 10, 19, 1), (10, 19, 1, 10), (10, 19, 10, 1), (10, 28, 1, 1),
(11, 2, 2, 20), (11, 2, 11, 11), (11, 2, 20, 2), (11, 11, 2, 11), (11, 11, 11, 2), (11, 20, 2, 2),
(12, 3, 3, 12), (12, 3, 12, 3), (12, 12, 3, 3),
(13, 4, 4, 4),
(19, 1, 1, 19), (19, 1, 10, 10), (19, 1, 19, 1), (19, 10, 1, 10), (19, 10, 10, 1), (19, 19, 1, 1),
(20, 2, 2, 11), (20, 2, 11, 2), (20, 11, 2, 2),
(21, 3, 3, 3),
(28, 1, 1, 10), (28, 1, 10, 1), (28, 10, 1, 1),
(29, 2, 2, 2),
(37, 1, 1, 1)





.

Similarly, one can use Theorem 10 to find Γ+
5 , Γ+

6 , Γ+
7 , Γ+

8 , and Γ+
9 .
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