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1 Introduction
Evaluation codes form an important family of error-correcting codes, including
Cartesian codes, algebraic geometry codes, and many variants finely tuned for
specific applications, such as the locally recoverably codes defined by Tamo, Barg,
and Vladut [11]. In this paper, we consider a particular class of evaluation codes,
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called monomial-Cartesian code closed under divisibility. Monomial-Cartesian
codes closed under divisibility generalize Reed-Solmon and Reed-Muller codes,
as we will see.

A monomial-Cartesian code closed under divisibility is defined using the
following concepts. Let 𝐾 := F𝑞 be a finite field with 𝑞 elements and 𝑅 :=
𝐾[𝑥1, . . . , 𝑥𝑚] be the polynomial ring over 𝐾 in 𝑚 variables. Let ℳ ⊆ 𝑅 be
a set of monomials such that 𝑀 ∈ ℳ and 𝑀 ′ divides 𝑀, then 𝑀 ′ ∈ ℳ. We
say that such a set is closed under divisibility. Let 𝐿(ℳ) be the subspace of
polynomials of 𝑅 that are 𝐾-linear combinations of monomials of ℳ :

𝐿(ℳ) := Span𝐾{𝑀 : 𝑀 ∈ ℳ} ⊆ 𝑅.

Fix non-empty subsets 𝑆1, . . . , 𝑆𝑚 of 𝐾. Define their Cartesian product as

𝒮 := 𝑆1 × · · · × 𝑆𝑚 ⊆ 𝐾𝑚.

In what follows, 𝑛𝑖 := |𝑆𝑖|, the cardinality of 𝑆𝑖 for 𝑖 ∈ [𝑚] := {1, . . . , 𝑚},
and 𝑛 := |𝒮|, the cardinality of 𝒮. Fix a linear order on 𝒮 = {𝑠1, . . . , 𝑠𝑛},

𝑠1 ≺ · · · ≺ 𝑠𝑛. We define the evaluation map

ev𝒮 : 𝐿(ℳ) → 𝐾𝑛

𝑓 ↦→ (𝑓(𝑠1), . . . , 𝑓(𝑠𝑛)) .

From now on, we assume that the degree of each monomial 𝑀 ∈ ℳ in 𝑥𝑖 is less
than 𝑛𝑖. In this case the evaluation map ev𝒮 is injective, see [5, Proposition 2.1].
The complement of ℳ in 𝒮 denoted by ℳ𝑐

𝒮 , is the set of all monomials in 𝑅

that are not in ℳ and their degree respect 𝑖 is less than 𝑛𝑖.

Definition 1.1. If ℳ ⊆ 𝑅 is closed under divisibility, then the image
ev𝒮(𝐿(ℳ)) ⊆ 𝐾𝑛 is called the monomial-Cartesian code closed under
divisibility associated to 𝒮 and ℳ. We denote it by 𝐶(𝒮, ℳ).

The length and the dimension of a monomial-Cartesian code 𝐶(𝒮, ℳ) are given
by 𝑛 = |𝒮| and 𝑘 = dim𝐾 𝐶(𝒮, ℳ) = |ℳ|, respectively [5, Proposition 2.1].
Recall that the minimum distance of a code 𝐶 is given by

𝛿(𝐶) = min{| Supp(𝑐)| : 0 ̸= 𝑐 ∈ 𝐶},

where Supp(𝑐) denotes the support of 𝑐, that is the set of all non-zero entries of
𝑐. Unlike the case of the length and the dimension, in general, there is no explicit
formula for 𝛿(𝐶(𝒮, ℳ)) in terms of 𝒮 and ℳ.

The dual of a code 𝐶 is defined by

𝐶⊥ = {𝑤 ∈ 𝐾𝑛 : 𝑤 · 𝑐 = 0 for all 𝑐 ∈ 𝐶},
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where 𝑤 · 𝑐 represents the Euclidean inner product. The code 𝐶 is called
a linear complementary dual (LCD) [8] if 𝐶 ∩ 𝐶⊥ = {0}, and is called a
self-orthogonal code if 𝐶⊥ ⊆ 𝐶.

Instances of monomial-Cartesian codes closed under divisibility for particular
families of Cartesian products 𝒮 and monomials sets that are closed under
divisibility ℳ have been previously studied in the literature. For example, a
Reed-Muller code of order 𝑟 in the sense of [12, p. 37] is monomial-Cartesian code
closed under divisibility 𝐶(𝐾𝑚, 𝑀𝑟), where 𝑀𝑟 is the set of monomials of degree
less than 𝑟. An affine Cartesian code of order 𝑟 is the monomial-Cartesian
code closed under divisibility 𝐶(𝒮, 𝑀𝑟). This family of affine Cartesian codes
appeared first time in [4] and then independently in [6]. In [1], the authors studied
the case when the finite field 𝐾 is F2 and the set of monomials satisfy some
decreasing conditions; then their results were generalized in [2] for 𝐾 = F𝑞 and
monomials associated to curve kernels. The case when the set of monomials ℳ is
a tensor product, the minimum distance of the associated code can be computed
using the same ideas that [9].

It is important to note that some families of monomial-Cartesian codes
are not closed under divisibility. For instance, the family of codes given in [10],
which is well-known for its applications to distributed storage, are not closed
under divisibility because these are subcodes of Reed-Solomon codes where some
monomials are omitted. To be precise, fix 𝑟 ≥ 2 with 𝑟 + 1|𝑛. Set

𝑉 :=
⟨

𝑔(𝑥)𝑗𝑥𝑖 : 0 ≤ 𝑗 ≤ 𝑘

𝑟
− 1, 0 ≤ 𝑖 ≤ 𝑟 − 1

⟩
where 𝑔(𝑥) ∈ F𝑞[𝑥] has deg 𝑔 = 𝑟 + 1 and F𝑞 = 𝐴1

·
∪ · · ·

·
∪ 𝐴 𝑛

𝑟+1
with |𝐴𝑗 | = 𝑟

for all 𝑗 so that ∀𝛽, 𝛽′ ∈ 𝐴𝑗 ,
𝑔(𝛽) = 𝑔(𝛽′).

Then 𝐶(F𝑞, 𝑉 ) is not closed under divisibility as 𝑔(𝑥)𝑗𝑥𝑖 ∈ 𝑉 and 𝑥 divides
𝑔(𝑥)𝑗𝑥𝑖 but 𝑥 /∈ 𝑉 .

This notion of divisibility will be restricted to codes defined by sets of
monomials as defined above. Recall that given a curve 𝑋 over a finite field F and
a divisor 𝐺 on 𝑋, the space of rational functions associated with 𝐺, sometimes
called the Riemann-Roch space of 𝐺, is

ℒ(𝐺) := {𝑓 ∈ F(𝑋) : (𝑓) + 𝐺 ≥ 0} ∪ {0}

where (𝑓) denotes the divisor of 𝑓 . In general ℒ(𝐺) is not closed under divisibility,
meaning 𝑓 ∈ ℒ(𝐺) and 𝑓 = 𝑔ℎ does not imply 𝑔, ℎ ∈ ℒ(𝐺). For instance, if
one considers the Hermitian curve 𝑋 given by 𝑦𝑞 + 𝑦 = 𝑥𝑞+1 over F𝑞2 , then



4 Eduardo Camps

𝑦 ∈ ℒ((𝑞 + 1)𝑃∞). However, 𝑦 = 𝑥 𝑦
𝑥 , but

(︀
𝑦
𝑥

)︀
= (𝑦) − (𝑥) = 𝑞𝑃00 − 𝑃∞ −∑︀

𝑏 ̸=0 𝑃0𝑏 ≱ −(𝑞 + 1)𝑃∞. Hence, 𝑦
𝑥 /∈ ℒ((𝑞 + 1)𝑃∞).

In the next section we prove that the dual of a monomial-Cartesian code
closed under divisibility is also a code of the same type. Then we describe its basic
parameters in terms of the minimal generating set. For more information about
coding theory we recommend [7, 13]. For algebraic concepts not described in this
notes we suggest to the reader [14]. We close this section with a bit of notation
that will be useful in the remainder of this paper. We will use 𝐾* := 𝐾 ∖ {0}
to denote the multiplicative group of 𝐾. Given a point 𝑎 = (𝑎1, . . . , 𝑎𝑚) ∈ Z𝑚

≥0,
𝑥𝑎 is the corresponding monomial in 𝑅; i.e. 𝑥𝑎 := 𝑥𝑎1

1 · · · 𝑥𝑎𝑚
𝑚 .

2 Basic parameters
In this section we continue with the same notation as in Section 1, in particular
ℳ ⊆ 𝑅 is a set of monomials that is closed under divisibility, 𝒮 represents a
Cartesian set 𝒮 = 𝑆1 × · · · × 𝑆𝑚, 𝑛𝑖 = |𝑆𝑖|, for 𝑖 ∈ [𝑚], 𝑛 = |𝒮| and 𝐶(𝒮, ℳ)
represents the decreasing monomial-Cartesian code associated to 𝒮 and ℳ.

A monomial matrix is a square matrix with exactly one nonzero entry in
each row and column. Let 𝐶1 and 𝐶2 be codes of the same length over 𝐾, and let
𝐺1 be a generator matrix for 𝐶1. Then 𝐶1 and 𝐶2 are monomially equivalent
provided there is a monomial matrix 𝑀 with entries over the same field 𝐾 so
that 𝐺1𝑀 is a generator matrix of 𝐶2. Monomially equivalent codes have the
same length, dimension, and minimum distance.

Definition 2.1. For 𝑠 = (𝑠1, . . . , 𝑠𝑚) ∈ 𝒮 and 𝑓 ∈ 𝑅, define the residue of 𝑓

at 𝑠 as

Res𝑠 𝑓 = 𝑓(𝑠)

⎛⎝ 𝑚∏︁
𝑖=1

∏︁
𝑠′

𝑖∈𝑆𝑖∖{𝑠𝑖}

(︀
𝑠𝑖 − 𝑠′

𝑖

)︀⎞⎠−1

.

and the residues vector of 𝑓 at 𝒮 as

Res𝒮 𝑓 = (Res𝑠1 𝑓, . . . , Res𝑠𝑛 𝑓) .

Theorem 2.2. The dual of the code 𝐶(𝒮, ℳ) is monomially equivalent to a
monomial-Cartesian code closed under divisibility. Even more, the set

Δ :=
{︂

Res𝒮
𝑥𝑛1−1

1 · · · 𝑥𝑛𝑚−1
𝑚

𝑀
: 𝑀 ∈ ℳ𝑐

}︂
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forms a basis for the dual 𝐶(𝒮, ℳ)⊥, meaning

𝐶(𝒮, ℳ)⊥ = Span𝐾 (Δ) .

Proof. We start by proving that the set

Δ′ :=
{︂

𝑥𝑛1−1
1 · · · 𝑥𝑛𝑚−1

𝑚

𝑀
: 𝑀 ∈ ℳ𝑐

𝒮

}︂
is closed under divisibility. Let 𝑀 ∈ ℳ𝑐

𝒮 and 𝑥𝑎 a divisor of 𝑥
𝑛1−1
1 ···𝑥𝑛𝑚−1

𝑚

𝑀 .

Then there exists a monomial 𝑥𝑏 in 𝑅 such that 𝑥
𝑛1−1
1 ···𝑥𝑛𝑚−1

𝑚

𝑀 = 𝑥𝑎𝑥𝑏. As
𝑀 ∈ ℳ𝑐 and ℳ is closed under divisibility, then 𝑥𝑏𝑀 ∈ ℳ𝑐 and 𝑥𝑎 =
𝑥

𝑛1−1
1 ···𝑥𝑛𝑚−1

𝑚

𝑥𝑏𝑀
∈ Δ′. This proves that the set Δ′ is closed under divisibility. Due

to [5, Theorem 2.7] and its proof, Δ is a basis for the dual 𝐶(𝒮, ℳ)⊥. Finally, it
is clear that Span𝐾{𝑐 : 𝑐 ∈ Δ} is monomially equivalent to ev𝒮(Δ′), which is a
monomial-Cartesian code closed under divisibility.

Example 2.3. Let 𝐾 = F7, 𝒮 = 𝐾2 and ℳ the set of monomials of 𝐾[𝑥1, 𝑥2]
whose exponents are the points in the left picture below. Then the code 𝐶(𝒮, ℳ)
is generated by the vectors ev𝒮(𝑀), where 𝑀 is a monomial whose exponent
is a point in the left picture below and the dual 𝐶(𝒮, ℳ)⊥ is generated by the
vectors Res𝒮(𝑀), where 𝑀 is a monomial whose exponent is a point in the right
picture below.

𝐾

1

2

3

4

5

6

0

𝐾

1 2 3 4 5 6 𝐾

6

5

4

3

2

1

0
𝐾

6 5 4 3 2 1

Definition 2.4. A subset ℬ(ℳ) ⊆ ℳ is a generating set of ℳ if for every
𝑀 ∈ ℳ there exists a monomial 𝐵 ∈ ℬ(ℳ) such that 𝑀 divides 𝐵. A generating
set ℬ(ℳ) is called minimal if for every two elements 𝐵1, 𝐵2 ∈ ℬ(ℳ), 𝐵1 does
not divide 𝐵2 and 𝐵2 doesn’t divide 𝐵1.
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Example 2.5. Let 𝐾 = F7, 𝒮 = 𝐾2 and ℳ the set of monomials of 𝐾[𝑥1, 𝑥2]
whose exponents are the points in the left picture of Example 2.3. The circles
in the following picture are the exponents of the monomials that belong to the
minimal generating set of ℳ.

𝐾

1

2

3

4

5

6

0

K

1 2 3 4 5 6

From now on, ℬ(ℳ) denotes the minimal generating set of ℳ. We are going
to describe properties of the code 𝐶(𝒮, ℳ) in terms of ℬ(ℳ). The following
proposition says how to find a generating set of ℳ𝑐

𝒮 in terms of ℬ(ℳ).

Proposition 2.6. Given a monomial 𝑀 = 𝑥𝑎1
1 · · · 𝑥𝑎𝑚

𝑚 ∈ ℬ(ℳ), define the

monomials 𝑃 (𝑀) :=
{︂

𝑥𝑛1−1
1 · · · 𝑥𝑛𝑚−1

𝑛

𝑥𝑎𝑖−1
𝑖

: 𝑖 ∈ [𝑚], and 𝑛𝑖 − 𝑎𝑖 − 2 ≥ 0
}︂

. The

set
gcd (𝑃 (𝑀))𝑀∈ℬ(ℳ)

is a generating set of ℳ𝑐. The set gcd is defined by induction, if 𝑀1, 𝑀2 and
𝑀3 are elements of ℬ(ℳ), then

gcd(𝑃 (𝑀1), 𝑃 (𝑀2), 𝑃 (𝑀3)) = gcd(gcd(𝑃 (𝑀1), 𝑃 (𝑀2)), 𝑃 (𝑀3)),

where gcd(𝑃 (𝑀1), 𝑃 (𝑀2)) = {gcd(𝑀 ′
1, 𝑀 ′

2) : 𝑀 ′
1 ∈ 𝑀1, 𝑀 ′

2 ∈ 𝑀2}.

Proof. It is clear that for every monomial 𝑀 = 𝑥𝑎1
1 · · · 𝑥𝑎𝑚

𝑚 ∈ ℬ(ℳ) the set
𝑃 (𝑀) is a minimal generating set for {𝑀}𝑐. Given any two monomials 𝑀1 and
𝑀2, the set {gcd(𝑀1, 𝑀2)} is a minimal generating set for the set of monomials
that divide 𝑀1 and 𝑀2, thus the result follows.
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It is important to note that the set gcd (𝑃 (𝑀))𝑀∈ℬ(ℳ) from Proposition 2.6 is
not always a minimal generating set, as the following example shows.

Example 2.7. Let 𝐾 = F7, 𝒮 = 𝐾2 and ℳ the set of monomials of 𝐾[𝑥1, 𝑥2]
whose exponents are the points in the left picture of Example 2.3. The circles in
the picture of Example 2.5 are the exponents of the monomials that belong to
ℬ(ℳ). The circles below are the exponents that belong to gcd (𝑃 (𝑀))𝑀∈ℬ(ℳ).
It is clear that it is not a minimal generating set.

𝐾

6

5

4

3

2

1

0
𝐾

6 5 4 3 2 1

Theorem 2.8. Let 𝑃𝑖 be the subsets of size 𝑖 of ℬ(ℳ). Then
(i) The length of 𝐶(𝒮, ℳ) is given by

∏︀𝑚
𝑖=1 𝑛𝑖.

(ii) The dimension of the code 𝐶(𝒮, ℳ) is

|ℬ(ℳ)|∑︁
𝑖=1

⎛⎝(−1)𝑖−1
∑︁

𝑇 ∈𝑃𝑖

𝑛∏︁
𝑗=1

(𝑡𝑗 + 1)

⎞⎠ ,

where (𝑡1, . . . , 𝑡𝑚) is the exponent of the gcd of the elements of 𝑇.

(iii) The minimum distance of 𝐶(𝒮, ℳ) is given by

min

{︃
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖) : 𝑥𝑎1

1 · · · 𝑥𝑎𝑚
𝑚 ∈ ℬ(ℳ)

}︃
.

Proof. (i) It is clear because
𝑚∏︁

𝑖=1
𝑛𝑖 is the cardinality of 𝒮. (ii) Given two monomi-

als 𝑀 and 𝑀 ′, we see that gcd(𝑀, 𝑀 ′) is the minimal generating set of the set of
monomials that divide to 𝑀 and also to 𝑀 ′. For any monomial 𝑀 = 𝑥𝑡1

1 · · · 𝑥𝑡𝑚
𝑚 ,



8 Eduardo Camps

𝑛∏︁
𝑗=1

(𝑡𝑗 +1) is the number of monomials that divide 𝑀. Thus the dimension follows

from the inclusion exclusion theorem. (iii) Let ≺ be the graded-lexicographical
order and take 𝑓 ∈ Span𝐾{𝑀 : 𝑀 ∈ ℳ}. If 𝑀 = 𝑥𝑏1

1 · · · 𝑥𝑏𝑚
𝑚 is the leading

monomial of 𝑓, in [3, Proposition 2.3] the author proved that | Supp(ev𝒮 𝑓)| ≥
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑏𝑖) . As ℬ(ℳ) is a minimial generating set of ℳ, there exists 𝑀 ′ =

𝑥𝑎1
1 · · · 𝑥𝑎𝑚

𝑚 ∈ ℬ(ℳ) such that 𝑀 divides 𝑀 ′. Thus | Supp(ev𝒮 𝑓)| ≥
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖)

and 𝛿(𝐶(𝒮, ℳ)) ≥ min

{︃
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖) : 𝑥𝑎1

1 · · · 𝑥𝑎𝑚
𝑚 ∈ ℬ(ℳ)

}︃
. Assume for 𝑖 ∈

[𝑚], 𝑆𝑖 = {𝑠𝑖1, . . . , 𝑠𝑖𝑛𝑖} . Let 𝑥𝛼1
1 · · · 𝑥𝛼𝑚

𝑚 ∈ ℬ(ℳ) such that
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝛼𝑖) =

min

{︃
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖) : 𝑥𝑎1

1 · · · 𝑥𝑎𝑚
𝑚 ∈ ℬ(ℳ)

}︃
. Define 𝑓𝛼 :=

𝑚∏︁
𝑖=1

𝛼𝑖∏︁
𝑗=1

(𝑥𝑖 − 𝑠𝑖𝑗) . As

| Supp(ev𝒮 𝑓𝛼)| =
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖) , and 𝑓𝛼 ∈ Span𝐾{𝑀 : 𝑀 ∈ ℳ} because all

monomials that appear in 𝑓𝛼 divide 𝑥𝛼1
1 · · · 𝑥𝛼𝑚

𝑚 , then we have 𝛿(𝐶(𝒮, ℳ)) ≤

min

{︃
𝑚∏︁

𝑖=1
(𝑛𝑖 − 𝑎𝑖) : 𝑥𝑎1

1 · · · 𝑥𝑎𝑚
𝑚 ∈ ℬ(ℳ)

}︃
and the result follows.

Example 2.9. Let 𝐾 = F7, 𝒮 = 𝐾2 and ℳ the set of monomials of 𝐾[𝑥1, 𝑥2]
whose exponents are the points in the left picture of Example 2.3. The length of
the code is 49, which is the total number of grid points in 𝒮. The dimension is 34,
which is the total number of points in the left picture of Example 2.3. The minimal
generating set ℬ(ℳ) is {𝑥2

1𝑥6
2, 𝑥4

1𝑥4
2, 𝑥5

1𝑥2
2}. By Theorem 2.8 | Supp(ev𝒮 𝑥2𝑦6)| ≥

5, which is the number of grid points between the point (2, 6) and the point (6, 6).
See first picture (from left to right) below. In a similar way | Supp(ev𝒮 𝑥4

1𝑥4
2)| ≥ 9

and | Supp(ev𝒮 𝑥5
1𝑥2

2)| ≥ 10. See second and third picture (from left to right)
below. As min {5, 9, 10} = 5, the minimum distance 𝛿(𝐶(𝒮, ℳ)) is 5.
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