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Abstract

If T is a numerical semigroup with maximal ideal N , define associated semigroups B(T ) :=
(N −N) and L(T ) = ∪{(hN −hN) : h ≥ 1}. If S is a numerical semigroup, define strictly
increasing finite sequences {Bi(S) : 0 ≤ i ≤ β(S)} and {Li(S) : 0 ≤ i ≤ λ(S)} of
semigroups by B0(S) := S =: L0(S), Bβ(S)(S) := N =: Lλ(S)(S), Bi+1(S) := B(Bi(S))
for 0 < i < β(S), Li+1(S) := L(Li(S)) for 0 < i < λ(S). It is shown, contrary to recent
claims and conjectures, that B2(S) need not be a subset of L2(S) and that β(S)−λ(S) can
be any preassigned integer. On the other hand, B2(S) ⊆ L2(S) in each of the following
cases: S is symmetric; S has maximal embedding dimension; S has embedding dimension
e(S) ≤ 3. Moreover, if either e(S) = 2 or S is pseudo-symmetric of maximal embedding
dimension, then Bi(S) ⊆ Li(S) for each i, 0 ≤ i ≤ λ(S). For each integer n ≥ 2, an
example is given of a (necessarily non-Arf) semigroup S such that β(S) = λ(S) = n,
Bi(S) = Li(S) for all 0 ≤ i ≤ n− 2, and Bn−1(S) $ Ln−1(S).



1 Introduction

All semigroups considered below are numerical semigroups, that is, sub-
monoids of the natural numbers N := {0, 1, 2, 3, . . . } under addition. We
adopt the conventions of [4] and [2]. In particular, except for the degener-
ate cases S = N and S = {0}, we have a canonical form description of a
semigroup S = 〈a1, . . . , aν〉 so that ν ≥ 2; ai < ai+1 for 1 ≤ i ≤ ν − 1;
GCD(a1, . . . , aν) = 1 (equivalently, N \ S is finite); and
ai /∈ 〈{aj : 1 ≤ j ≤ ν, j 6= i}〉 for 1 ≤ i ≤ ν. Given such a generating set of S,
we call ν the embedding dimension of S and denote it by e(S); and we call a1,
the least positive element of S, the multiplicity of S and denote it by µ(S).
In general, e(S) ≤ µ(S). Besides N, semigroups S satisfying e(S) = µ(S)
are said to be of maximal embedding dimension. Their role in characterizing
a class of Noetherian integral domains of maximal embedding dimension is
given in [2, Proposition II.2.10].

Let S be a semigroup (other than N, {0}). The maximal ideal of S is
M(S) := S \ {0}. The largest element of N \ M(S) is called the Frobe-
nius number of S and is denoted by g(S). For instance, if S := 〈4, 7〉 =
{0, 4, 7, 8, 11, 12, 14, 15, 16, 18,→} (where the symbol “→” means that all
subsequent natural numbers belong to S), then g(S) = 17. More gener-
ally, given any doubly-generated semigroup S = 〈a, b〉 in canonical form, one
knows that g(S) = ab− a− b (cf. [3]). It is also known [3] that each doubly-
generated semigroup S is a symmetric semigroup, in the sense that s 7→
g(S)−s determines a bijection S∩{0, 1, . . . , g(S)} → (N\S)∩{0, 1, . . . , g(S)}.
Evidently, each symmetric semigroup has odd Frobenius number. Several
characterizations of symmetric semigroups are given in [2, Lemma I.1.8], in-
cluding their maximality among semigroups having a given odd number as
Frobenius number. The role of symmetric semigroups in characterizing a
class of Gorenstein domains is due to Kunz (cf. [2, Proposition II.1.1(b)]).
In case of even Frobenius number, analogous considerations of maximality
lead to the class of pseudo-symmetric semigroups characterized in [2, Lemma
I.1.9]; these serve to characterize the so-called Kunz domains [2, Proposition
II.1.12].

Let S be a semigroup with maximal ideal M . It is useful to consider
the associated semigroups B(S) := (M − M) = {x ∈ N : x + M ⊆ M}
and L(S) := ∪∞h=1(hM − hM). In honor of [5], L(S) is called the Lipman
semigroup of S. Evidently, B(S) ⊆ L(S). In fact, S is of maximal embedding
dimension if and only if B(S) = L(S) (see Proposition 2.2(d)).
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By iterating the B and L constructions, one arrives at an interesting class
of semigroups of maximal embedding dimension called the Arf semigroups.
(See [2, Theorem I.3.4] for fifteen characterizations of Arf semigroups and
[2, Theorem II.2.13] for their role in characterizing Arf rings, an important
class of rings studied in algebraic geometry and commutative algebra: cf.
[1], [5].) In general, for any semigroup S, we obtain two ascending chains of
semigroups

B0(S) := S ⊆ B1(S) := B(B0(S)) ⊆ . . . ⊆ Bh+1(S) := B(Bh(S)) ⊆ . . . ,

L0(S) := S ⊆ L1(S) := L(L0(S)) ⊆ . . . ⊆ Lh+1(S) := L(Lh(S)) ⊆ . . . .

We say that S is an Arf semigroup in case Bi(S) = Li(S) for each i ≥ 0. For
an arbitrary semigroup S, we define β(S) and λ(S) to be the least integers
such that Bβ(S)(S) = N = Lλ(S)(S). Of course, if S is an Arf semigroup,
then β(S) = λ(S).

We come now to the focus of this paper. Since any semigroup S satisfies
B0(S) = L0(S) and B1(S) ⊆ L1(S), it is tempting to conjecture that Bi(S) ⊆
Li(S) for all i ≥ 0 and for arbitrary S. Indeed, this conjecture is claimed as
fact for i = 2 in [2, p. 14]. However, that claim is mistaken, for Example 2.3
produces a semigroup S such that B2(S) * L2(S). In that example, e(S) = 4.
On the other hand, by re-examining the work underlying the erroneous claim
in [2], we are led to Theorem 2.4(c): if e(S) ≤ 3, then B2(S) ⊆ L2(S). The
same conclusion holds if S is symmetric or of maximal embedding dimension:
see Theorem 2.4(a),(b).

In the context of their erroneous claim, the authors of [2] remark that
“there is much calculational evidence to suggest that λ(S) ≤ β(S)” [2, p.
14]. However, the semigroup S in Example 2.3 shows otherwise, as it satisfies
β(S) < λ(S). Moreover, the speculative inequality fails dramatically, for
Proposition 2.5 constructs semigroups S showing that β(S) − λ(S) can be
any integer (positive, negative, or 0).

Let us return to the “tempting” (but false) conjecture that Bi(S) ⊆ Li(S)
for each i ≥ 0. The success in Theorem 2.4 leads one naturally to ask for
classes of semigroups S for which the conjecture has an affirmative answer.
We present two such classes, the doubly-generated (hence symmetric) semi-
groups (see Theorem 2.6) and the pseudo-symmetric semigroups of maximal
embedding dimension (see Corollary 2.8).

One may consider a related question, namely, whether a semigroup S is
necessarily Arf provided that Bi(S) ⊆ Li(S) for each i ≥ 0, with Bi(S) =
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Li(S) for “most i”. The paper ends on a sobering note, as Example 2.10
gives a negative answer, with examples S for which β(S) = λ(S) can be any
integer ≥ 2.

2 Results

We begin with an elementary result that settles the case i = 1.

Proposition 2.1 (a) B1(S) ⊆ L1(S) for each (numerical) semigroup S.
(b) There exists a semigroup S, for instance S := 〈3, 4〉, such that B1(S) 6=
L1(S).

Proof. (a) If M denotes the maximal ideal of S, then B1(S) = (M −M) =
(1M − 1M) ⊆ ∪{(hM − hM) : h ≥ 1} = L1(S).

(b) Consider the semigroup S := 〈3, 4〉 = {0, 3, 4, 6,→}, with maximal
ideal M = {3, 4, 6,→}. Then B1(S) = (M −M) = {0, 3,→} 6= N. However,
N ⊇ L1(S) ⊇ (2M − 2M) = N since 2M = {6,→}. Hence, L1(S) = N 6=
B1(S). 2

In a sense, the semigroup S := 〈3, 4〉 gives a minimal example of the
behavior described in Proposition 2.1(b). Specifically, consider the semigroup
T := 〈2, h〉, where h ≥ 3 is any odd positive integer. Then Bi(T ) = Li(T )
for all i (that is, T is an Arf semigroup), by [2, Theorem I.4.2, (v) ⇒ (i)].

The example S := 〈3, 4〉 in Proposition 2.1(b) also serves to motivate a
number of later results. Note that B2(S) = B(B1(S)) = B({0, 3,→}) = N =
L1(S) = L2(S). It is shown, more generally, in Theorem 2.6 that for any
2-generated semigroup T = 〈a1, a2〉 where a1 < a2 and a1 is relatively prime
to a2, we have Bi(T ) ⊆ Li(T ). Note also that S = 〈3, 4〉 is a symmetric
semigroup. Theorem 2.4(a) establishes, in fact, that B2(T ) ⊆ L2(T ) for any
symmetric semigroup T . However, S is not entirely typical of semigroups T
such that B2(T ) ⊆ L2(T ). Indeed, S is not of maximal embedding dimension,
since e(S) = 2 < 3 = µ(S), while Theorem 2.4(b) ensures that B2(T ) ⊆
L2(T ) for each semigroup T of maximal embedding dimension.

It is convenient next to collect some results from [2] that will be used
frequently.
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Proposition 2.2 Let S = 〈a1, a2, . . . , aν〉 be a semigroup (written according
to the canonical form conventions in the Introduction). Then:
(a) g(B1(S)) = g(S)− a1.
(b) L(S) = 〈a1, a2 − a1, . . . , aν − a1〉 .
(c) If S is symmetric, then B1(S) = 〈a1, a2, . . . , aν , g〉.
(d) S is of maximal embedding dimension if and only if B1(S) = L1(S).

We next produce, contrary to what was claimed in [2, p. 14], a semigroup
S such that B2(S) * L2(S). In so doing, we also disprove the conjecture that
λ(S) ≤ β(S). We return to the latter matter in Proposition 2.5.

Example 2.3 There exists a semigroup S, for instance S := 〈5, 7, 11, 13〉,
such that e(S) = 4 and B2(S) * L2(S). It can also be arranged that β(S) <
λ(S).

Proof. Since S := 〈5, 7, 11, 13〉 = {0, 5, 7, 10,→}, B1(S) = {0, 5,→}, so
that B2(S) = N. In particular, β(S) = 2. On the other hand, it follows
from Proposition 2.2(b) that L1(S) = L(S) = 〈5, 2, 6, 8〉 = 〈2, 5〉, L2(S) =
L(〈2, 5〉) = 〈2, 3〉 6= N, and L3(S) = L(〈2, 3〉) = N. In particular, B2(S) =
N * 〈2, 3〉 = L2(S) and λ(S) = 3 > 2 = β(S). 2

The next result includes some assertions that were promised following the
proof of Proposition 2.1, while also showing the minimality of the condition
“e(S) = 4” in Example 2.3.

Theorem 2.4 Let S = 〈a1, . . . , aν〉 be a semigroup (written according to the
canonical form conventions in the Introduction). Then B2(S) ⊆ L2(S) in
each of the following four cases:
(a) S is symmetric;
(b) S is of maximal embedding dimension;
(c) e(S) ≤ 3;
(d) a2 > 2a1.

Proof. (a) Put g := g(S). Since S is symmetric, B1(S) = 〈a1, . . . , aν , g〉 by
Proposition 2.2(c). We claim that B2(S) ⊆ T := 〈a1, . . . , aν , g − a1, . . . , g − aν〉
(where the generator g − aj is considered if and only if aj < g). Take
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x ∈ B2 \ B1. Let y := g − x. Then y ∈ M(S) by the symmetry of S. Write
y =

∑ν
i=1 ciai, with ci ∈ N. If

∑ν
i=1 ci > 1, then g − ai ∈ g − y + M(S) =

x+M(S) ⊆ B1(S) for some ai by definition of B2(S). This is a contradiction
in view of Proposition 2.2(c), since g−ai < g, and g−ai /∈ S is a consequence
of the symmetry of S. Therefore,

∑ν
i=1 ci = 1 and x = g − aj ∈ T for some

j. Thus, B2 ⊆ T .
Next we show that T ⊆ L2(S). Clearly g− a1 = g(B1(S)) ∈ B(B1(S)) ⊆

L(B1(S)) ⊆ L2(S). Let 1 < j ≤ ν. Then g−aj = (g−aj +a1)−a1 ∈ L1(S) ⊆
L2(S) since g − aj + a1 ∈ S by the symmetry of S and the irredundancy of
the generating set. This gives B2(S) ⊆ T ⊆ L2(S), completing the proof of
(a).

(b) By Proposition 2.2(d), B1(S) = L1(S). Therefore, by Proposition
2.1(a), B2(S) = B(B1(S)) = B1(L1(S)) ⊆ L1(L1(S)) = L2(S), thus proving
(b).

(d) Suppose x ∈ B2(S). Then x + 2a1 ∈ S. Thus, x = s − 2a1 for some
s ∈ S. Since 2a1 < a2, iterating the formula in Proposition 2.2(b) gives
L2(S) = 〈a1, a2 − 2a1, . . . , aν − 2a1〉. Then clearly x = s− 2a1 ∈ L2(S).

(c) Assume that e(S) ≤ 3. If a2 > 2a1, the result holds by (d) above.
Thus, there is no loss of generality in assuming a2 < 2a1. Suppose x ∈
B2(S) such that x /∈ L2(S). By definition of B2(S), x + 2a1, x + a1 + a2 ∈
B2 + 2M(S) ∈ M(S). Thus, there exist c1, c2, c3, d1, d2, d3 ∈ N, such that
x = c1a1 + c2a2 + c3a3−2a1 = d1a1 +d2a2 +d3a3−a1−a2 (where c3 = d3 = 0
in case e(S) = 2). Since x /∈ L2(S), it follows from Proposition 2.2(b)
that c1 + c2 + c3 = 1. If e(S) = 2, this forces x = a2 − 2a1 < 0, which
is a contradiction. Thus, we may restrict ourselves to the case e(S) = 3.
Then, by Proposition 2.2(b), L1(S) = 〈a2 − a1, a1, a3 − a1〉 and L2(S) =
〈a2 − a1, 2a1 − a2, a3 − a2〉. These descriptions of L1(S) and L2(S) together
with the fact that x /∈ L2(S) imply that c1 = d1 = c2 = d2 = 0 and
c3 = d3 = 1; that is, x = a3 − 2a1 = a3 − a1 − a2. Then a1 = a2, which is a
contradiction. 2

By pursuing the calculations figuring in the proof of Theorem 2.4(c), one
finds a number of necessary conditions on the generators ai of any semi-
group satisfying B2(S) * L2(S). Such considerations led us to discover the
semigroup in Example 2.3 (which, by Theorem 2.4(c), is now seen to have
minimal embedding dimension). Extending the final assertion of Example
2.3, we next show that the conjecture that λ(S) ≤ β(S) (cf. [2, p. 14]) fails
in every possible way.
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Proposition 2.5 For each integer n, there exists a semigroup S such that
β(S)− λ(S) = n.

Proof. We consider first the case n ≤ −1. Let a := 3 − 2n, an odd integer
≥ 5. We shall show that S := {0, a, a+2, 2a,→} satisfies β(S)−λ(S) = n. It
is straightforward to verify that B1(S) = {0, a,→} 6= N, and so B2(S) = N,
whence β(S) = 2. It remains to prove that λ(S) = 2 − n = a+1

2
. Since a is

odd, it follows from Proposition 2.2(b) that L1(S) = 〈2, a〉. Applying this
formula repeatedly, we obtain that Li(S) = 〈2, a− 2(i− 1)〉 for all 1 ≤ i ≤
a−1
2

. In particular, La−1
2

(S) = 〈2, 3〉 6= N, and so La+1
2

(S) = L1(〈2, 3〉) = N,

whence λ(S) = a+1
2

.
Suppose next that n ≥ 0. Let S := 〈n + 2, n + 3〉. By Proposition 2.2(b),

L1(S) = N, and so λ(S) = 1. It remains to show that β(S) = n + 1. This
will follow immediately from the proof of Theorem 2.6. Observe that this
can be verified independently as well. 2

In view of Theorem 2.4, it seems reasonable to ask if some “naturally
occurring” classes of semigroups S satisfy Bi(S) ⊆ Li(S) for each i. Theorem
2.6 identifies such a class of symmetric semigroups. Corollary 2.8 addresses
this issue within the universe of pseudo-symmetric semigroups.

Theorem 2.6 Let S be a semigroup of embedding dimension e(S) = 2; that
is, S = 〈a, b〉, where a and b are relatively prime integers such that 2 ≤
a < b. If i ≥ 0, then Li(S) = Bj(S) for some j ≥ i and, consequently,
Bi(S) ⊆ Li(S) and λ(S) ≤ β(S). Indeed, Li(S) = B∑i−1

j=0(µ(Lj(S))−1)(S).

Proof. It will be convenient here to write Bi and Li instead of Bi(S) and
Li(S), respectively. Most of the proof is devoted to establishing the claim that
Ba−1 = L1; that is, Ba−1 = 〈a, b− a〉. Then the result follows by induction,
since either L1 = 〈a, b− a〉 has embedding dimension 2 or L1 = N.

It remains to prove that Ba−1 = 〈a, b− a〉. Without loss of generality,
a ≥ 3, for if a = 2, then S is an Arf semigroup [2, Theorem I.4.2], in which
case the assertions are immediate. Observe that the hypothesis on S ensures
that S is a symmetric semigroup with Frobenius number g = ab− a− b [3].
We shall show that if 1 ≤ i ≤ a− 2, then

Bi = 〈a, b, g − (i− 1)b, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉 .
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By Proposition 2.2(c), B1 = 〈a, b, g〉. This settles the case i = 1.
We now proceed by induction on i ≥ 1. In particular, assume that

Bj = 〈a, b, g − (j − 1)b, g − a− (j − 2)b, g − 2a− (j − 3)b, . . . , g − (j − 1)a〉 ,
for all j, 0 ≤ j ≤ i − 1. Suppose for now that i ≤ a − 2. We claim that
g(Bj) = g − ja for all 0 ≤ j ≤ i − 1. Using the fact that i < a − 1, one
can check that a < b < g − (j − 2)b, the smallest generator of Bj−1 other
than a and b. Thus, µ(Bk) = a for all 0 ≤ k ≤ j − 1. By j applications of
Proposition 2.2(a), g(Bj) = g − (

∑j−1
k=0 µ(Bk)) = g − ja.

By the induction hypothesis and Proposition 2.1(b),

Bi−1 = 〈a, b, g − (i− 2)b, g − a− (i− 3)b, . . . , g − (i− 2)a〉 ⊆ Bi = B(Bi−1)

⊆ L(Bi−1) = 〈a, b− a, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉 .
Let 0 ≤ j ≤ i−1. We will show that g− ja− (i− j−1)b ∈ Bi. It is apparent
that g− ja− (i− j − 1)b + a ∈ Bi−1 and g− ja− (i− j − 1)b + b ∈ Bi−1. It
remains to verify that p := (g−ja−(i−j−1)b)+(g−ka−(i−k−2)b) ∈ Bi−1

for all 0 ≤ k ≤ i− 2. Observe that if j = i− 1 or k = i− 2, then p > g(Bi−1)
and so p ∈ Bi−1. Thus, we may restrict ourselves to the case 0 ≤ j ≤ i − 2
and 0 ≤ k ≤ i− 3. First, suppose that 0 ≤ j + k ≤ i− 3. Then

p = (g − ja− (i− j − 1)b) + (g − ka− (i− k − 2)b)

= (g − (j + k + 1)a− (i− (j + k + 1)− 2)b) + (a− i− 1)b

∈ Bi−1 + M(S) ⊆ Bi−1.

In the remaining case, i − 2 ≤ j + k ≤ 2i − 5. Write j + k = i − 2 + r,
0 ≤ r ≤ i− 3. Then

p = g − (j + k)a + g − (2i− (j + k)− 3)b

= (g − (i− 2)a) + (g − ra− (i− r − 1)b) > g(Bi−2)

since g − ra− (i− r − 1)b = (a− (i + 1))b + (r + 1)(b− a) > 0. Therefore,
p ∈ Bi−2 ⊆ Bi−1. As a result,

〈a, b, g − (i− 1)b, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉
⊆ Bi ⊆ 〈a, b− a, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉 .
It suffices to prove that if x ∈ 〈a, b− a〉 ∩ (Bi \ S), then

x ∈ 〈a, b, g − (i− 1)b, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉 .
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By definition of Bi, x + a ∈ Bi−1. If x + a ∈ Bi−1 \ S, then there exist j,
0 ≤ j ≤ i − 2, and m ∈ Bi−1 such that x + a = g − ja − (i − j − 2)b + m.
Thus, x = g−(j+1)a−(i−j−2)b+m, and the assertion holds. In the other
case, x + a ∈ S. Thus, we may write x + a = c1a + c2b, where c1, c2 ∈ N. As
x /∈ S, this forces c1 = 0 and x = c2b− a. First suppose x ≥ g − (i− 1)b. It
follows that c2 = a− i+k for some k, 0 ≤ k ≤ i− 2. Then x = (a− i+k)b−
a = g − (i − 1)b + kb, and the assertion holds. It only remains to consider
x < g − (i − 1)b. Since x ∈ Bi, x + b = (c2 + 1)b − a ∈ Bi−1. In particular,
(c2+1)b−a ∈ S with c2 ≤ a−2, as x+b < g−(i−2)b, the smallest generator
of Bi−1 other than a and b. This implies g = ((c2+1)b−a)+(a−c2−2)b ∈ S,
which is a contradiction. Therefore, the assertion holds in all cases.

This proves that

Bi = 〈a, b, g − (i− 1)b, g − a− (i− 2)b, g − 2a− (i− 3)b, . . . , g − (i− 1)a〉
for all 0 ≤ i ≤ a− 2. In particular, when i = a− 2, this yields

Ba−2 = 〈a, b, g − (a− 3)b, g − a− (a− 4)b, g − 2a− (a− 5)b, . . . , g − (a− 3)a〉 .
We claim that the above is a canonical form description of Ba−2. Let

0 ≤ j ≤ a− 3. Suppose that g − ja− (a− j − 3)b ∈ W where

W := 〈a, b, g − (a− 3)b, g − a− (a− 4)b, . . . , g − (j − 1)a− (a− (j − 1)− 3)b〉 .
It follows that (j − k)b − (j − k)a = (g − ja − (a − j − 3)b) − (g − ka −
(a − k − 3)b) ∈ W ⊆ Ba−2 for some 0 ≤ k ≤ j − 1. By definition of Ba−2,
(j−k)b−a ∈ (j−k)b− (j−k)a+(j−k−1)M(S) ⊆ Ba−j+k−1. This implies
(j−k)b−a ∈ S since (j−k)b−a < g−(a−j+k−2)b, the smallest generator
of Ba−j+k−1 other than a and b. Then g = (a−(j−k)−1)b+(j−k)b−a ∈ S,
which is a contradiction. Thus, the claim holds.

Observe that Ba−2 is of maximal embedding dimension, as e(Ba−2) = a =
µ(Ba−2). Then, by Proposition 2.2(b),(d), we have

Ba−1 = B(Ba−2) = L(Ba−2)

= 〈a, b− a, g − a− (a− 3)b, g − 2a− (a− 4)b, . . . , g − (a− 2)a〉 .
Notice that g − (j + 1)a − (a − j − 3)b = (j + 2)(b − a) ∈ 〈a, b− a〉 for all
0 ≤ j ≤ a− 3. Therefore, Ba−1 = 〈a, b− a〉 = L1, as desired.

Repeated application of the above procedure gives B∑i−1
j=0(µ(Lj(S))−1)(S) =

Li for all i, 0 ≤ i ≤ λ. Thus, Bi ⊆ Li for all i, 0 ≤ i. 2
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The next two results may be viewed as companions of Theorem 2.6.

Proposition 2.7 Let S = 〈a1, . . . , aν〉 be a semigroup (written according to
the canonical form conventions of the Introduction). If i ≥ 0 and ia1 < a2,
then Bj(S) ⊆ Lj(S) for all 0 ≤ j ≤ i.

Proof. Let 0 ≤ j ≤ i. Suppose x ∈ Bj(S). Then x + ja1 ∈ x + jM(S) ⊆
M(S). Thus, x = s − ja1 for some s ∈ S. We claim that x ∈ Lj(S). Since
ia1 < a2 and j ≤ i, iterating the formula in Proposition 2.2(b) gives Lj(S) =
〈a1, a2 − ja1, . . . , aν − ja1〉. Therefore, x ∈ Lj(S) and so Bj(S) ⊆ Lj(S) 2

The sharpness of Proposition 2.7 may be illustrated by the semigroup S
in Example 2.3. There, for i := 2, we have (i − 1)a1 < a2 < 2a1 = ia1,
Bj(S) ⊆ Lj(S) for 0 ≤ j ≤ i− 1, and Bi(S) * Li(S).

Recall what is arguably the deepest result in [2], namely, the characteriza-
tion of the pseudo-symmetric semigroup S of maximal embedding dimension
and Frobenius number g [2, Theorem I.4.4]: S =

〈
3, g

2
+ 3, g + 3

〉
, where g is

a positive even integer and g ≡ 1, 2 (mod 3).

Corollary 2.8 If S is a pseudo-symmetric semigroup of maximal embedding
dimension, then Bi(S) ⊆ Li(S) for each i ≥ 0.

Proof. If i = 0, the assertion holds by definition of B0(S) and L0(S). By the
above remarks, S =

〈
3, g

2
+ 3, g + 3

〉
, where 2 ≤ g ≡ 1, 2 (mod 3). Hence, by

Proposition 2.2(b), L1(S) =
〈
3, g

2
, g

〉
=

〈
3, g

2

〉
. On the other hand, the proof

of [2, Theorem I.4.4, (ii) ⇒ (iii)] establishes that B1(S) =
〈
3, g

2

〉
. Hence, if

i ≥ 2, Theorem 2.6 yields that Bi(S) = Bi−1(
〈
3, g

2

〉
) ⊆ Li−1(

〈
3, g

2

〉
) = Li(S).

2

Remark 2.9 Recall that each symmetric semigroup of maximal embed-
ding dimension is an Arf semigroup [2, Theorem I.4.2]. However, accord-
ing to [2, Theorem I.4.5], the only psuedo-symmetric Arf semigroups are
〈3, 4, 5〉 and 〈3, 5, 7〉, corresponding to Frobenius numbers 2 and 4, respec-
tively. Therefore, by [2, Theorem I.4.4], the pseudo-symmetric semigroup
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of maximal embedding dimension which is not an Arf semigroup and has
minimal Frobenius number g is S := 〈3, 7, 11〉. By the proof of Corollary
2.8, B1(S) = L1(S) =

〈
3, g

2

〉
= 〈3, 4〉. Applying Proposition 2.2(b), we see

that Li(S) = N for each i ≥ 2. On the other hand, it is straightforward to
verify that B2(S) = 〈3, 4, 5〉 $ L2(S) and if i ≥ 3, then Bi(S) = N = Li(S).
Thus, the failure of S to be Arf is detected by only one of the inclusions
Bi(S) ⊆ Li(S) in Corollary 2.8 being a proper inclusion, namely, at i = 2.

The situation is different for the “next larger” pseudo-symmetric non-
Arf semigroup of maximal embedding dimension, namely, T := 〈3, 8, 13〉,
with Frobenius number 10. Indeed, B1(T ) = 〈3, 5〉 = L1(T ), but B2(T ) =
〈3, 5, 7〉 $ 〈2, 3〉 = L2(T ) and B3(T ) = 〈2, 3〉 $ N = L3(T ). Thus, there
are exactly two indices i for which the inclusions Bi(T ) ⊆ Li(T ) are proper
inclusions: i = 1, 2.

Examples of the above type raise the question of whether a semigroup K
is Arf provided that β(K) = λ(K) and Bi(K) ⊆ Li(K) for all i, with these
inclusions known to be equalities except possibly for a “few” values of i. We
do not know of any such result. In particular, Example 2.10 shows, as in the
case of S above, that the sole proper inclusion may occur at i = β(K)− 1.

Example 2.10 For each integer i ≥ 0, the semigroup

Si := 〈6, 8 + 6i, 9 + 6i, 13 + 6i, 16 + 6i, 17 + 6i〉

satisfies Bj(S
i) = Lj(S

i) for all 0 ≤ j ≤ i, Bj(S
i) = Lj(S

i) for all j ≥ i + 2
(indeed, β(Si) = λ(Si) = i + 2), and Bi+1(S

i) $ Li+1(S
i).

Proof. We begin by considering the case i = 0. Then S0 = 〈6, 8, 9, 13, 16, 17〉 =
{0, 6, 8, 9, 12,→} can be described in canonical form as 〈6, 8, 9, 13〉. By
Proposition 2.2(b), L1(S

0) = 〈2, 3〉 6= N and Lj(S
0) = N for all j ≥ 2.

In particular, λ(S0) = 2. Moreover, B1(S
0) = {0, 6,→} $ 〈2, 3〉 = L1(S

0)
and B2(S

0) = N, so that Bj(S
0) = N for each j ≥ 2. In particular, β(S0) = 2.

Fix i ≥ 1. It is straightforward to verify that Si is of maximal embedding
dimension, that is, that the given generating set of cardinality 6 for Si is irre-
dundant. (Of course, S0 is not of maximal embedding dimension.) It follows
from Proposition 2.2(b),(d) that B1(S

i) = L1(S
i) consists of the nonnega-

tive integers obtainable by subtracting 6 from an element of Si. Therefore,
L1(S

i) = Si−1.
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We now proceed to a proof of the assertion by induction on i ≥ 1. Con-
sider 1 ≤ j ≤ i + 2. It was shown above that B1(S

i) = L1(S
i) = Si−1,

and so Bj(S
i) = Bj−1(B1(S

i)) = Bj−1(L1(S
i)) = Bj−1(S

i−1) and Lj(S
i) =

Lj−1(L1(S
i)) = Lj−1(S

i−1). Now, if 1 ≤ j ≤ i, the induction hypothesis
ensures that Bj(S

i) = Lj(S
i), Bi+1(S

i) $ Li+1(S
i) $ N, and Bi+1(S

i−1) =
N = Li+1(S

i−1) which can be rewritten as Bi+2(S
i) = N = Li+2(S

i). In view
of the definitions of β and λ, this completes the induction step and the proof.
2

Our work leaves open two problems concerning the property “Bi(S) ⊆
Li(S) for all i ≥ 0”: in the spirit of Theorem 2.6 and Corollary 2.8, to find
additional classes of symmetric or pseudo-symmetric semigroups satisfying
this property; and, despite Example 2.10, to find a role for this property in
characterizing at least some Arf semigroups.
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