
On the Service Capacity Region of Accessing
Erasure Coded Content

Mehmet Aktaş∗, Sarah E. Anderson†, Ann Johnston‡, Gauri Joshi§,
Swanand Kadhe¶, Gretchen L. Matthews‖, Carolyn Mayer∗∗, and Emina Soljanin∗

∗Rutgers University {mehmet.aktas, emina.soljanin}@rutgers.edu, †University of St. Thomas {ande1298}@stthomas.edu
‡Penn State University {abj5162}@psu.edu, §Carnegie Mellon University {gaurij}@andrew.cmu.edu
¶Texas A&M University {swanand.kadhe}@tamu.edu, ‖Clemson University {gmatthe}@clemson.edu

∗∗University of Nebraska - Lincoln {cmayer}@huskers.unl.edu

Abstract—Cloud storage systems generally add redundancy
in storing content files such that K files are replicated or erasure
coded and stored on N > K nodes. In addition to providing
reliability against failures, the redundant copies can be used to
serve a larger volume of content access requests. A request for
one of the files can either be sent to a systematic node, or one of
the repair groups. In this paper, we seek to maximize the service
capacity region, that is, the set of request arrival rates for the
K files that can be supported by a coded storage system. We
explore two aspects of this problem: 1) for a given erasure code,
how to optimally split incoming requests between systematic
nodes and repair groups, and 2) choosing an underlying erasure
code that maximizes the achievable service capacity region. In
particular, we consider MDS and Simplex codes. Our analysis
demonstrates that erasure coding makes the system more robust
to skews in file popularity than simply replicating a file at
multiple servers, and that coding and replication together can
make the capacity region larger than either alone.

Index Terms—distributed storage, erasure coding, service
capacity

I. INTRODUCTION

Cloud storage systems are expected to provide reliability
against failures and ensure availability of stored content
during high demand, while handling massive amount of
data. In order to combat failures, redundancy is added using
either replication or erasure coding. Even though replication
has conventionally been preferred due its simplicity, a large
body of recent literature has proposed novel erasure coding
techniques as a more efficient way to provide reliability, see
e.g., [1]–[4]. In addition to reliability, redundancy has been
shown to be effective in enhancing availability by reducing
download latency for retrieving entire data in a number of
recent research papers, see e.g., [5]–[8]. On the other hand,
for downloading hot data, wherein users are interested in
downloading individual files with different popularities, the
role of erasure codes in reducing latency is not yet well
understood, and is a topic of active research, see [9]–[11].

Besides download latency, an important metric that mea-
sures the availability of the stored data is the service capacity
region, which is the space of download request rates for
which the system is stable. In comparison to download
latency, this metric of service capacity has received very little

attention. One notable exception is the work of [12], in which
the authors study storage allocation strategies to maximize
the service rate for downloading entire data.

In this paper, we seek to investigate the effect of redun-
dancy on the service capacity region of the the system. To
the best of our knowledge, this is the first work to investigate
the service capacity for downloading hot data from coded
storage. More specifically, we consider a system with K files,
f1, f2, . . . , fK that are replicated or stored in coded form
on N > K servers. Requests to download file fi arrive at
rate λi. Our first objective is to maximize the set of arrival
rates supported by a given coding scheme. Next, we compare
service capacity regions for different coding schemes.

Together with replication and maximum distance separable
(MDS) codes, we consider an important family of distributed
storage codes called availability codes (see [13]–[15]). Avail-
ability codes enable any codeword symbol to be recovered
from multiple, disjoint subsets of other symbols of small
size. Amongst availability codes, we focus our attention on
the special sub-class, namely simplex codes due to their
optimality in rate [16].

We note that MDS codes are more robust to handling
variations in the access patterns compared to replication.
Availability codes handle the skews in popularities better
than MDS codes. Surprisingly, hybrid codes, formed by
replicating some of the files and adding MDS parity symbols
perform exceptionally well by achieving a large service
capacity region.

It is important to note that, even though we focus on
the service capacity for content download, the techniques
are also applicable for analyzing service capacity for coded
computation. For example, suppose some users are interested
in computing a matrix vector product AX , while others are
interested in computing BX . Suppose two worker nodes
store matrices A and B respectively, while the third worker
node stored the sum A + B of the two matrices, (assuming
that A and B are of the same size). Then, excess number of
requests to compute AX can be satisfied by using the other
two workers.

Organization: In Section II, we describe the problem setup

ar
X

iv
:1

71
0.

03
37

6v
1

 [
cs

.I
T

]
 1

0
O

ct
 2

01
7

and formally define the service capacity region. In Section III,
we motivate the analysis of service capacity by computing
the service capacity for several small examples of codes. In
Section IV, we focus on systematic (N,K) MDS codes.
We find an outer bound on the service capacity region,
and present a greedy algorithm referred to as waterfilling
algorithm. We show that the waterfilling algorithm is optimal,
and it achieves the outer bound for MDS codes of rate smaller
than or equal to half. In Section V, we characterize the service
capacity of simplex codes. Our proof for converse uses an
interesting connection to graph covering. In Section VI we
consider hybrid codes consisting of replication and MDS
parities. For K = 2 files, we characterize the service capacity
of hybrid codes as a function of the number of replicas of
the two files and the number of MDS parities.

II. PROBLEM FORMULATION

We have K files, f1, f2, . . . fK of equal size stored redun-
dantly across N nodes, labeled 1 through N . We refer to the
coding scheme encoding K files into N as an (N,K) code.
Requests to download fi arrive at rate λi. Our objective is
to determine the set of arrival rates (λ1, . . . λK) that can be
served by the system. We refer to space of arrival rates that
can be served as the capacity region of the system.

As the coding scheme adds redundancy, each file can be
recovered in multiple ways. For a file fi, a subset of nodes (of
minimal size) from which the file can be recovered is referred
to as a recovering set of fi. We denote the number of distinct
recovering sets of fi as ti, and label them as R(i)

1 , · · · , R(i)
ti .

For example, consider the following (4, 2) code over F3:
{f1, f2, f1 + f2, f1 + 2f2}. There are four recovering sets
for each file. Recovering sets of f1 are given as R(1)

1 = {1},
R

(1)
2 = {2, 3}, R(1)

3 = {2, 4}, and R
(1)
4 = {3, 4}. Observe

that for a systematic (N,K) MDS code, there are
(
N−1
K

)
+1

recovering sets for every file.
We consider the class of scheduling strategies that assign

a fraction of requests for a file to each of its recovering sets.
Let λ(i)j be the fraction of requests for file fi that are assigned
to its recovering set R(i)

j . Note that
∑ti
j=1 λ

(i)
j = λi. Then,

the service capacity region of an (N,K) coding scheme is
defined as follows.

Definition 1 (Service Capacity Region). Consider a system
storing K files over N nodes using an (N,K) code such
that a file fi has ti recovering sets R(i)

1 , · · · , R(i)
ti . Let the

service rate of every node is µ. Then, the service capacity
region of such a system is the set of vectors (λ1, . . . , λK)

such that, for every 1 ≤ i ≤ K, there exist λ(i)j , 1 ≤ j ≤ ti,
satisfying the following:

tMDS∑
j=0

λ
(i)
j = λi, 1 ≤ i ≤ K (1)

K∑
i=1

∑
j:`∈R(i)

j

λ
(i)
j ≤ µ, 1 ≤ ` ≤ N (2)

λ
(i)
j ≥ 0, 1 ≤ i ≤ K, 1 ≤ j ≤ ti. (3)

a a b b

λa
λb

µ µ µ µ

(a) (4, 2) repetition coded system

a a+b a+2b b

λa λb

µ µ µ µ

(b) (4, 2) erasure coded system.

a a a+b b

λa
λb

µ µ µ µ

(c) (4, 2) hybrid system, favoring a

Fig. 1: Different ways of hosting k = 2 files on n = 4 nodes.

Note that, given any K − 1 arrival rates λi1 , · · · , λiK−1
,

finding the maximum value of λiK and the allocations
λ
(il)
j such that (1), (2), and (3) hold can be considered

as a constrained optimization problem. Specifically, given
λ1, · · · , λK−1, the linear program to compute the maximum
λK is described as follows.

maxλK =

tMDS∑
j=0

λ
(K)
j

s.t. (1), (2), (3).

III. EXAMPLES OF SERVICE CAPACITY REGIONS

To motivate the analysis, suppose K = 2, and we have
two files a and b which are stored on N = 4 nodes. We
compare three storage schemes: uncoded, MDS coded, and
a hybrid between repetition and coding shown in Fig. 1.

A. Repetition Coding

Consider the uncoded system where file a and b are
replicated at 2 servers each, illustrated in Fig. 1a. Since each
server can support rate µ of arrivals, we have constraints
λa ≤ 2µ and λb ≤ 2µ. Thus the achievable rate region is the
square 0 ≤ λa, λb ≤ 2µ illustrated in pink in Section III-A.

B. MDS Coding

Next let us find the rate region of the (4, 2) coded system
illustrated in Fig. 1. Recall for each given λa, we want
to determine the maximum achievable λb. We divide the

λa

λb

0
µ 2µ 3µ

µ

2µ

3µ

Fig. 2: Service capacity regions of the (4, 2) repetition (in
pink), MDS coded (in blue) and hybrid (in green) systems.

problem into three cases:
Case 1 (0 ≤ λa < µ): All the requests for file a should be
assigned to the systematic node a. Requests for file b can
utilize the remaining capacity µ − λa of this node. We can
use this by assigning (µ−λa)/2 requests for file b to nodes a
and a+ b, and (µ−λa)/2 to nodes a and a+2b. Now nodes
a+ b and a+ 2b have µ/2 + λa/2 capacity each remaining,
which can be used to serve µ/2+λa/2 requests per second.
Thus, maximum achievable λb is

λb = µ+ (µ− λa) + (µ+ λa)/2 (4)
= 2.5µ− λa/2 (5)

Case 2 (µ ≤ λa < 2µ):
Out of λa, µ volume of requests are assigned to the system-
atic node a. The remaining λa−µ traffic is assigned to nodes
a + b and a + 2b from which we can recover file a. Thus,
the coded nodes a+ b and a+2b have µ− (λa−µ) capacity
remaining to serve requests for file b. Hence, the maximum
achievable λb is

λb = µ+ µ− (λa − µ), (6)
= 3µ− λa. (7)

Case 3 (λa ≥ 2µ): The solution to this case is same
as Case 1, with λa replaced by λb. Thus the maximum
achievable λb is

λb = 5µ− 2λa (8)

Combining these cases, we get the achievable rate region
illustrated in blue in Fig. 2.

C. Hybrid Coding

If file a is known to be more popular than b, we can have
a coded system with N = 4 nodes storing a, a, a + b
and b respectively. This coding scheme is a combination
of repetition and erasure coding. We can find the service
capacity by dividing the problem into cases, similar to
Section III-B. For this system the service capacity region
is given by Fig. 2.

λ1	

μ μ

λcoded

λ2	

λ3	

Fig. 3: Water-filling strategy to server the requests using
coded nodes

IV. (N,K) SYSTEMATIC MDS CODED SYSTEMS

In this section we find the service capacity region of a
system of N servers that store K files f1, . . . , fK together
with N −K parity files that are generated using an (N,K)
MDS code. Each of the original and redundant files are dis-
tributed across all N servers. Each file fi can be downloaded
from the server storing it, which we refer to as the systematic
server for the file, or by accessing any K of the remaining
N − 1 servers.

Let the arrival rate of requests for file fi be denoted by
λi. We want to determine the set of arrival rate vectors
(λ1, . . . λK) that can supported by the system.

A. Outer Bound on the Rate Region

First we find an outer bound of the service capacity region.

Theorem 1 (Outer Bound). The set of all achievable request
vectors (λ1, λ2, . . . , λK) lies inside the region described by

K∑
i=1

(
min(λi, µ) +K(λi − µ)+

)
≤ Nµ, (9)

where the notation (x)+ = max(0, x).

Proof. Each server in the system can support µ volume
of requests, and thus the total capacity is Nµ. We now
determine the total system capacity utilized by file download
requests, and ensure that it is less than Nµ. Downloading
a file from K coded servers requires downloading data of
size K times the file size. If λi is the rate of request arrivals
for file fi, the minimum system capacity utilized by these
requests is min(λi, µ) +K(λi−µ)+. Since the total system
capacity is Nµ, the sum of the capacity utilized by all
requests must be less than Nµ. Thus we have (9).

Remark 1. For the (4, 2) system, the region described by
Theorem 1 matches exactly with the achievable region found
in Section III-A.

B. N −K ≥ K: Achievable Region Matches Outer Bound

We seek to find a strategy to split the download requests
across the N servers such that the set of feasible arrival
rates matches, or comes close to the outer bound given by
Theorem 1. We now propose a water-filling algorithm to
schedule requests to servers on a (N,K) coded system. Then
we prove the optimality of this algorithm by considering

two cases: 1) N − K ≥ K (the code rate ≤ 1/2), and 2)
N −K < K (the code rate > 1/2).

Definition 2 (Waterfilling Algorithm). Given arrival rates
λ1, λ2, . . .λK for the K files, the water-filling algorithm
assigns them to the N nodes as follows.

• Let γi be the load on node i for i = 1, 2, . . . N .
Assign requests to their respective systematic nodes until
these nodes are saturated. Set γi = min(λi, µ) for
i = 1, . . .K.

• Each of the remaining λcoded =
∑K
i=1(λi−µ)+ requests

can be served by any K unsaturated servers.
• While λcoded > 0 and mini γi < µ do the following:

– Find the K least-loaded servers in the system, that
is, the K servers with minimum γi’s.

– From λcoded, send an infinitesimally small rate ε >
0 to each of these K servers. Decrement λcoded by
ε, and increment the corresponding K γi’s by ε.

Theorem 2. For N − K ≥ K, the proposed water-filling
algorithm is optimal. The set of feasible arrival rates span
the whole region inside the outer bound given in Theorem 1.

Proof. For N − K ≥ K let us evaluate the set of feasible
arrival rates using this waterfilling algorithm.

Without loss of generality, sort the arrival rates in descend-
ing order such that λ1 ≥ λ2 ≥ · · · ≥ λK . After sending
requests to systematic servers until they are saturated, the
total residual arrival rate is λcoded =

∑K
i=1(λi − µ)+, as

illustrated in Fig. 3 for the (6, 3) MDS coded system. Assume
that λ1 ≥ µ. If this is not true, then λcoded = 0 and all
requests can be served by systematic servers.

The algorithm first uniformly splits min(γK(N −
K)/k, λcoded) requests over N − K servers, K + 1, . . . N .
Then, for every r = k, . . . , 2, it uniformly splits min((γr−1−
γr)(N − r + 1)/k, λcoded) requests over N − r + 1 servers,
r, r + 1, . . . N . Using this water-filling algorithm, the max-
imum rate of requests that can be supported using coded
servers is

λmax = min(λK , µ)
N −K
K

+ (10)

(min(λK−1, µ)−min(λK , µ))
N −K + 1

K
+ · · ·+

(11)

(min(λ1, µ)−min(λ2, µ))
N − 1

K
(12)

= min(λ1, µ)
N

K
−

K∑
i=1

min(λi, µ)
1

K
(13)

= µ
N

K
−

K∑
i=1

min(λi, µ)
1

K
(14)

In Fig. 3, the height of each patterned fill in the rightmost
column, starting from the bottom upwards, corresponds to
each term in the above summation.

The residual rate λcoded should be less than the total
remaining service capacity using non-systematic servers.

K∑
i=1

(λi − µ)+ ≤ µ
N

K
−

K∑
i=1

min(λi, µ)
1

K
(15)

Rearranging, this is equivalent to (9). Thus, for N−K ≥ K,
the waterfilling can achieve the region given by the outer
bound in Theorem 1. Hence, it is optimal for N − K ≥
K.

C. N −K < K: Waterfilling is optimal

Next let us consider the second case N − K < K. For
this case, we cannot always achieve the the same rate region
as given by the outer bound. However, we can show that the
waterfilling algorithm is optimal, and no other rate splitting
scheme can yield a strictly larger service capacity region.
This result follows from the two lemmas below.

Lemma 1. It is optimal to first send requests to their
systematic node. Only when the systematic node is saturated,
requests should be served using coded servers.

Proof. For N − K < K, we show that not utilizing the
systematic node can only add load to the system, and thus
reduce its service capacity region. Suppose λi < µ for
some i, that is all requests for fi can be served by the
systematic node. Instead, suppose we serve λi− ε rate using
the systematic node i, and send the remaining ε portion to K
other servers, and decode file fi from the coded versions. As
a result we are reducing the load on the systematic node by ε,
and instead adding ε load to K other servers. If N−K < K,
at least one of these K servers is also a systematic node,
which stores file fj . Thus, the maximum rate of requests for
file fj that can be served by its systematic node reduces by
ε.

For N−K > K, we showed in Theorem 2 that the water-
filling algorithm, which first sends requests to the systematic
node is optimal. Thus, there is no loss of optimality in
sending requests to the systematic node until it is saturated.

Lemma 2. After the systematic node is saturated, it is
optimal to always send each request to the K least-loaded
servers that can serve it.

Proof. For each ε > 0 rate of requests in λcoded, we pick K
servers that will serve it. By using any algorithm for picking
the K servers, we will reach one of 2 possible states:

1) R ≥ K unsaturated servers with the same load γ < µ.
Then we can split a maximum of (µ−γ)R/K request
rate uniformly over these servers. As a result all servers
will be saturated, and the outer bound will be achieved.

2) There are exactly K unsaturated servers in the system
with loads γ1 ≥ γ2 ≥ γ3 ≥ · · · ≥ γK , where at least
one of these inequalities is strict. Then the additional
rate we can serve is µ−γ1. This would leave a non-zero
amount of capacity unused.

Since it always sends requests to the K least-loaded nodes
in the system, the water-filling algorithm always achieves the

first state when it is feasible. And if the system ends up in
the second state, water-filling minimizes γ1.

V. BINARY SIMPLEX CODED SYSTEMS

Simplex codes are important subclass of availability codes.
When files f1, . . . , fK are encoded with a binary (N,K)
simplex code, N = 2K − 1 must hold and a particular file
fi can be recovered from 2K−1 − 1 (availability) disjoint
groups of two (locality) servers. As an example, a (7, 3)
simplex code encodes three files {f1, f2, f3} into seven as
{f1, f2, f3, f1+f2, f1+f3, f2+f3, f1+f2+f3}. This code
has availability three, e.g., file f1 can be can be repaired
from either f2 and f1+ f2 or f3 and f1+ f3, or f2+ f3 and
f1 + f2 + f3.

Each file can be recovered from its systematic or any of
its 2K−1 − 1 repair groups. Therefore, the request for each
file can be served at rate 2K−1µ when the requests for all
other files are zero.

Lemma 1. Maximum sum of arrival rates λ1+ . . .+λK that
can be served by (N,K) Simplex system is 2K−1µ.

(a) (a+ b) (b)λa
0

λb
1 λa

1
λb
0

(a)

(a+ b)

(b)

(a+ b+ c)

(a+ c)

(c)(b+ c)

λa
0

λb
0

λc
0

λb
1

λa
1

λc
1

λa
2

λc
2 λb

2

λc
3 λb

3

λa
3

Fig. 4: Graph representation of Simplex code for K = 2
(Top) and K = 3 (Bottom), that is inspired by the Fano
plane [17]. Files are denoted as a, b, Vertices correspond
to servers and edges refer to repair of a file using either
systematic servers (loops) or repair groups (edges between
two vertices)

Proof. Fig. 4 shows graph representation (i.e., Fano plane)
of Simplex code for K = 2, 3. Vertices correspond to servers
and file stored on each server is indicated by its label.
Each edge corresponds to service of a particular file from
a systematic server (reflective loops on a server) or a repair
group (edges between two servers). Recall that repairing a
file from one of its repair groups requires accessing two
servers, hence supplying a unit of service rate from a repair
group consumes twice the capacity of supplying it from a
systematic server. Service rates are shown with label λfi ’s
on each edge such that f ∈ {a, b, . . .} denotes the file that
is served and i ∈ {0, 1, 2, . . .} is an index to differentiate
between the edges that serve the same file. Sum of the service

rates supplied from edges that share the same vertex cannot
be greater than µ.

Firstly consider K = 2 system. Total service rate supplied
by the system is

λa + λb = λa0 + λa1 + λb0 + λb1

which is the sum of the service rates supplied by all the edges
in K = 2 graph. Edges with label λa0 and λb1 are attached to
vertex (a), hence λa0 +λ

b
1 ≤ µ. Similarly, λb0+λ

a
1 ≤ µ. Thus

λa + λb ≤ 2µ

Secondly consider K = 3 system. Total service rate
supplied by the system is

λa + λb + λc =

3∑
i=0

λai + λbi + λci

All edges in the graph are covered by the edges attached
to vertices (a), (b), (c) and (a + b + c). Therefore we can
conclude

λa + λb + λc ≤ 4µ

In general, total number of edges |E| in the graph of a
Simplex code for K ≥ 2 can be written as

|E| = |V |K +K

2

where number of vertices |V | = 2K − 1.
Simplex is a binary linear code with generator matrix

consisting of all size-K bit vectors up to but not including
vector of all ones. For instance, for K = 3, the generator
matrix is 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

Every vertex in the graph of a Simplex code can be associated
with the corresponding bit vector. For instance for K = 3,
a = [0, 0, 1], b = [0, 1, 0] and a + b = [0, 1, 1]. Ignoring
the loops on systematic vertices, there is an edge between
two vertices if and only if corresponding bit vectors differ
in a single bit (so that a symbol can be repaired from the
two vertices). Then, graph of any Simplex code is a bipartite
graph such that vertices that correspond to bit vectors with
even number of ones can be separated from those with odd
number of ones. All edges (excluding the loops) are covered
by either one of the partitions. To cover also the loops, we
need to pick the partition that includes the systematic vertices
(i.e., bit vectors with a single one). In this chosen partition,
every vertex has K edges attached and no two vertices share
any edge, therefore, number of vertices in the partition is
|E|/K = 2K−1.

Overall, for any K ≥ 2, there exists of a set of 2K−1

vertices that cover all the edges in the graph. Then total
service rate that can be supplied by the system can be
bounded as

λ1 + λ2 + . . .+ λK ≤ 2K−1µ

Using Lemma 1, we show that capacity region of an
(N,K) Simplex system is the simplex geometry in RK .

Theorem 1. (N,K) Simplex system can serve arrival rates
λ1, . . . , λK if and only if λ1 + · · ·+ λK ≤ 2K−1µ.

Proof. If every server (systematic or not) dedicates the
fraction αi/2

K−1 of its capacity solely to serving requests
for file fi, then the part of the system dedicated to fi acts
as a (N,K) binary simplex code on 2K − 1 servers, each
with capacity αi/2

K−1µ serving exclusively requests for
file fi, giving the supplied service rate of λi = 2K−1µαi.
By construction, inequality α1 + . . . + αK ≤ 1 always
has to hold, and thus every achievable service rate tuple
(λ1, . . . , λK) can be realized by the corresponding choice of
fraction tuple (α1, . . . , αK). This observation together with
Lemma 1 shows that achievable capacity region of the system
is a simplex in RK .

VI. EFFECT OF ADDING SYSTEMATIC NODES

Suppose we have K = 2 files a and b stored across a
storage system of N cache nodes. Denote the arrival rates of
requests for a and b as λa and λb, respectively. In all that
follows, we assume any 2 coded nodes or a coded node and
systematic node may recover file a and file b. The service
capacity region will be denoted by S. Moreover, A is the
number of systematic nodes for file a, B is the number of
systematic nodes for file b, and C is the number of coded
nodes. In this section, we identify the service capacity region
of such storage systems.

Let λ∗a denote the maximum demand for a that can be
supported by a given storage system. Thus, there exists
some splitting strategy for requests to the storage system
that handles demand λ∗a for file a. For every λa ≤ λ∗a this
guaranteed splitting strategy also supports demand (λa, 0).
Also, given expected wait time µ for each of the N nodes,
any demand λb > Nµ cannot be supported by the storage
system. In this way, given any fixed demand λa ≤ λ∗a, the
set of all of supported λb is a non-empty, closed subset of
R that is bounded above by Nµ. Thus, there is a maximum
such λb, with (λa, λb) in the service capacity region of the
storage system. Define L(λa) to be this maximum supported
λb at given λa. With this definition, the function

L : [0, λ∗a]→ R
λa 7→ L(λa) (16)

is well-defined. The storage system’s service capacity region
can be described as the subset of R2 that is bounded by
λa = 0, λa = λ∗a, λb = 0 , and λb = L(λa). For convenience,
further denote λ∗b = L(0).

Lemma 2. If A = B = 0 and there are C > 1 coded
nodes, then S is the region bounded by λa = 0, λb = 0,
and λb = N

2 µ − λa. If there are C ≤ 1 coded nodes and
no systematic nodes, then the service capacity region is the
point (0, 0).

Proof. Since each node can support rate µ of arrivals and
recovering either file requires the use of two coded nodes,

λa ≤ C
2 µ and λb ≤ C

2 µ. If C ≤ 1, no file can be recovered.
Suppose C > 1 and label the nodes 1, . . . , C. For each i =
1, . . . , C, pair node i with node i + 1 mod C. Note that
each node is in two pairs. Requests for file a may be evenly
divided among the C pairs, and requests for file b can utilize
the remaining µ−2λa

C capacity of each node, with half of the
node’s remaining capacity devoted to each of the two pairs
the node is in. Thus, the maximum achievable λb is

λb = C
1

2

(
µ− 2

λa
C

)
=
C

2
µ− λa. (17)

Note that the conclusion of Lemma 2 could be expressed
as λ∗a = C

2 µ and L(λa) = C
2 µ−λa. Also, λ∗b =

C
2 µ. In this

case, the boundary λa = λ∗a is redundant.

Lemma 3. Given a storage system S with N = A+B +C
nodes:
• Case 1: If A < C and a systematic node is added for

file a, then the service capacity region S ′ has λb-bound

L′(λa) =

{
− 1

2λa +
A+C+1

2 µ+Bµ, 0 ≤ λa ≤ µ
L(λa − µ), µ ≤ λa ≤ λ∗a + µ.

(18)

• Case 2: If A ≥ C and a systematic node is added for
file a, then the service capacity region S ′ has λb-bound

L′(λa) =

{
λ∗b , 0 ≤ λa ≤ µ
L(λa − µ), µ ≤ λa ≤ λ∗a + µ.

(19)

• Case 3: If B < C and a systematic node is added for
file b, then the service capacity region S ′ has λb-bound
L′(λa) =

{
L(λa) + µ, 0 ≤ λa ≤ λ∗a
−2λa + (2A+B + C + 1)µ, λ∗a ≤ λa ≤ λ∗a +

µ
2 .

(20)

• Case 4: If B ≥ C and a systematic node is added for
file b, then the service capacity region S ′ has λb-bound

L′(λa) = L(λa) + µ for 0 ≤ λa ≤ λ∗a.

Proof. Case 1: First, consider when 0 ≤ λa ≤ µ.
Subcase 1 (A + C is odd): Since 0 ≤ λa ≤ µ, requests

for file a may be divide evenly among the A+ 1 systematic
nodes for file a. Since a systematic node and coded node
can recover both files and A < C, every systematic node for
file a can be paired with a coded node and requests for file
b can utilize the remaining capacity µ − λa

A+1 . Thus, A + 1

coded nodes now have capacity µ′ = λa

A+1 . From Lemma 2,
we know they can support A+1

2 µ′ = λa

2 requests for file b.
We can also pair off the remaining coded nodes, the number
of which is even since A + C is odd. They can be utilized
their full capacity µ. Note, the B systematic nodes for file b

can support a rate µ of arrivals for file b. Thus, the maximum
achievable λb is

λb = −
λa
2

+
A+ C + 1

2
µ+Bµ.

Subcase 2 (A + C is even): Since 0 ≤ λa ≤ µ, requests
for file a may be divide evenly among A of the systematic
nodes for file a. As above, every systematic node for file a
can be paired with a coded node, and each pair can support
A
2 µ
′ = λa

2 requests for file b. Note, one of the systematic
nodes for file a has not received any requests. We can form
a triple with this systematic node and two coded nodes to
serve 1.5µ requests for file b. Also, the B systematic nodes
for file b can support a rate µ of arrivals for file b. Thus, the
maximum achievable λb is the same as Subcase 1.

Now, if µ ≤ λa ≤ λ∗a + µ, then we may send µ requests
for file a to the systematic node for file a that was added to
the system. Then the system of available nodes reduces to
the previous system, L(λa−µ). A similar argument may be
used to prove Cases 2, 3, and 4.

Note that in Lemma 3, the region S has λ∗b =
µ
2 (A+C+

2B), so it would be equivalent in Case 1 to specify L′(·) on
0 ≤ λa ≤ µ as L(λa) = − 1

2λa+
1
2µ+λ

∗
b . In this way, when

A < C the addition of a systematic node for file a adds a
“bonus” region beyond the right-shift by µ that is seen both
in Case 2 and when such a node is added to an uncoded
system. A similar “bonus” region is added in Case 3. Figure
5 pictures the resulting rate region for systems with B = 0.

λa

λb

C
2 µ

Aµ (C2 +A)µ

C+A
2 µ

0

λa

λb

C
2 µ

Aµ(C2 +A)µ

Cµ

(A− C)µ
0

Fig. 5: S when B = 0 and (left) A ≤ C, (right) A > C.

Theorem 2. The service capacity region is bounded by λa =

0, λb = 0, λa = min{(A+C)µ, (A+B
2 +

C
2)µ}, and L(λa) =

(B + C)µ if A > C and
0 ≤ λa ≤ (A− C)µ

− 1
2λa + (A2 +B + C

2)µ if A > C and
(A− C)µ < λa ≤ Aµ

− 1
2λa + (A2 +B + C

2)µ if A ≤ C and
0 ≤ λa ≤ Aµ

−λa + (A+B + C
2)µ if Aµ < λa ≤ (A+ C

2)µ

−2λa + (2A+B + C)µ if B > C and
(A+ C

2)µ < λa ≤ A+ C

−2λa + (2A+B + C)µ if B ≤ C and (A+ C
2)µ

< λa ≤ (A+ B
2 + C

2)µ.

Proof. Let A′ = A if A ≤ C and A′ = C otherwise. Let
A′′ = A−C if A > C and 0 otherwise. Similarly, let B′ = B
if B ≤ C and B′ = C otherwise and let B′′ = B−C if B >
C and B′′ = 0 otherwise. Consider building a coded storage
system by first adding C coded nodes. Then by Lemma 2,
the service capacity region is bounded by λa = 0, λb = 0,
and L(λa) = C

2 µ− λa where 0 ≤ λa ≤ C
2 µ.

We will then add A′ systematic nodes for file a. Repeatedly
applying Lemma 3 Case 1 yields L(λa) ={

− 1
2λa +

A′+C
2 µ, 0 ≤ λa ≤ A′µ

(A′ + C
2)µ− λa, A′µ ≤ λa ≤ A′µ+ C

2 µ.
(21)

If A′′ 6= 0, then we may continue to add systematic nodes
for file a by applying Lemma 3 Case 2. This yields L(λa) =

A′+C
2 µ if 0 ≤ λa ≤ A′′µ
− 1

2λa +
A′+A′′+C

2 µ if A′′µ ≤ λa ≤ (A′ +A′′)µ

(A′ +A′′ + C
2)µ− λa if (A′ +A′′)µ ≤ λa

≤ (A′ +A′′)µ+ C
2 µ.

(22)

Thus we have L(λa) =
− 1

2λa +
A+C

2 µ if A ≤ C and 0 ≤ λa ≤ Aµ
Cµ if A > C and 0 ≤ λa ≤ (A− C)µ
− 1

2λa +
A+C

2 µ if A > C and (A− C)µ ≤ λa ≤ Aµ
(A+ C

2)µ− λa if Aµ ≤ λa ≤ Aµ+ C
2 µ.

(23)

Applying Lemma 3 Case 3 to add B′ systematic nodes for
file b yields L(λa) =

− 1
2λa + (A+C

2 +B′)µ if A ≤ C and 0 ≤ λa ≤ Aµ
(B′ + C)µ if A > C and

0 ≤ λa ≤ (A− C)µ
− 1

2λa + (A+C
2 +B′)µ if A > C and

(A− C)µ ≤ λa ≤ Aµ
(A+B′ + C

2)µ− λa if Aµ ≤ λa ≤ Aµ+ C
2 µ

−2λa + (2A+B′ + C)µ if Aµ+ C
2 µ < λa

≤ (A+ B′+C
2)µ.

(24)

λa

λb

0
µ 2µ 3µ 4µ 5µ

µ

2µ

3µ

4µ

5µ

(a)

λa

λb

0
µ 2µ 3µ 4µ 5µ 6µ

µ

2µ

3µ

4µ

5µ

(b)

Fig. 6: Boundaries of rate regions with N = 8.
(a) A = 4, B = 4, C = 0 (solid), A = 3, B = 3, C = 2
(dashed), A = 1, B = 1, C = 6 (loosely dotted), A = 0, B =
0, C = 8 (densely dotted).
(b) A = 4, B = 4, C = 0 (solid), A = 4, B = 1, C = 3
(dotted), A = 4, B = 0, C = 4 (dashed).

If B′′ 6= 0, we may continue to add systematic nodes for file
b by applying Lemma 3 Case 4. This raises the boundary
of the service capacity region by B′′µ in the λb direction,
giving the desired result.

VII. CONCLUDING REMARKS

Popular content files are generally replicated at multiple
nodes in order to support a larger volume of access requests.
For large files, it can be slow and expensive to dynamically
add replicas to adjust to changes in popularity.

In this paper, we consider a erasure coded system where
some nodes store coded combinations of multiple content
files. We determine the service capacity region, or the maxi-
mum rate of access requests that can be served by this system.
Our results indicate that for the same amount of redundancy,
adding coded nodes instead of replicas provides more ro-
bustness to changes in content popularity. We determine the
capacity region for commonly used codes like MDS and
Simplex codes. Comparison of the regions sheds light on
designing the erasure code to maximize service capacity.

To the best of our knowledge, this is the first work to
analyze the service capacity of coded storage systems. There
are many questions open for future research. While we have
studied the service capacity regions of commonly used codes,
developing a general theory to optimally split requests, and
design codes that maximize the capacity region remains an
open problem. Also, in this paper we consider sending a
request to one of the repair groups. Redundantly assigning
requests to multiple groups and waiting for any one copy may
increase service capacity, as shown in [18] for task replication
in computing.

ACKNOWLEDGMENTS

Part of this research is based upon work supported by the
National Science Foundation under Grants No. CIF-1717314,

and No. DMS-1439786 while some authors were in residence
at the Institute for Computational and Experimental Research
in Mathematics in Providence, RI, during the Women in Data
Science and Mathematics Research Collaboration Workshop
at ICERM in July 2017.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramachandran,
“Network Coding for Distributed Storage Systems,” vol. 56, no. 9, pp.
4539–4551, Sep. 2010.

[2] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A Survey on
Network Codes for Distributed Storage,” Proceedings of the IEEE,
vol. 99, no. 3, pp. 476–489, Mar. 2011.

[3] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” in
Network Computing and Applications, 2007. NCA 2007. Sixth IEEE
International Symposium on, July 2007, pp. 79–86.

[4] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” Information Theory, IEEE Transactions on,
vol. 58, no. 11, pp. 6925–6934, Nov 2012.

[5] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,”
in Communication, Control, and Computing (Allerton), 2012 50th
Annual Allerton Conference on. IEEE, 2012, pp. 326–333.

[6] N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Analysing
the latency performance of erasure codes,” in 2014 IEEE International
Symposium on Information Theory (ISIT’14), pp. 861–865.

[7] G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay
performance of cloud storage with coding,” Networking, IEEE/ACM
Transactions on, vol. 22, no. 6, pp. 2012–2025, 2014.

[8] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM
SIGMETRICS Performance Evaluation Review, vol. 43, no. 1, pp. 347–
360, 2015.

[9] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing download time
for availability codes,” in Information Theory Proceedings (ISIT), 2015
IEEE International Symposium on, July 2015.

[10] ——, “When do the availability codes make the stored data more avail-
able?” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Sept 2015, pp. 956–963.

[11] M. F. Aktas, E. Najm, and E. Soljanin, “Simplex queues for
hot-data download,” in Proceedings of the 2017 ACM SIGMET-
RICS/International Conference on Measurement and Modeling of
Computer Systems. ACM, 2017, pp. 35–36.

[12] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for
maximum service rate in distributed storage systems,” in 2016 IEEE
International Symposium on Information Theory (ISIT), July 2016, pp.
240–244.

[13] A. Wang and Z. Zhang, “Repair locality with multiple erasure toler-
ance,” Information Theory, IEEE Transactions on, vol. 60, no. 11, pp.
6979–6987, Nov 2014.

[14] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, “Locality
and availability in distributed storage,” in Information Theory (ISIT),
2014 IEEE International Symposium on, June 2014, pp. 681–685.

[15] I. Tamo and A. Barg, “Bounds on locally recoverable codes with
multiple recovering sets,” in Information Theory (ISIT), 2014 IEEE
International Symposium on, June 2014, pp. 691–695.

[16] V. Cadambe and A. Mazumdar, “Bounds on the size of locally
recoverable codes,” IEEE Transactions on Information Theory, vol. 61,
no. 11, pp. 5787–5794, Nov 2015.

[17] E. W. Weisstein, “Fano plane. From MathWorld—A Wolfram
Web Resource.” [Online]. Available: http://mathworld.wolfram.com/
FanoPlane.html

[18] G. Joshi, “Boosting service capacity via adaptive replication,” in
Proceedings of ACM/IFIP Performance, Nov. 2017.

http://mathworld.wolfram.com/FanoPlane.html
http://mathworld.wolfram.com/FanoPlane.html

