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Abstract. An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that
G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the minimum
number k such that G has an acyclic coloring with k colors. In this paper, acyclic colorings of
Hamming graphs, products of complete graphs, are considered. Upper and lower bounds on the
acyclic chromatic number of Hamming graphs are given.
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1. Introduction

A k-coloring of a graph G with vertex set V (G) is a labeling f : V (G)→ {1, . . . , k}. Such
a coloring is said to be a proper coloring provided any two adjacent vertices have distinct
colors. The chromatic number of a graph G, denoted χ(G), is the minimum number k such
that G has a proper k-coloring. A more restrictive type of coloring is an acyclic coloring. A
proper coloring of G is called acyclic if and only if the subgraph of G induced by any two
color classes of G contains no cycles. The acyclic chromatic number of a graph G, denoted
AC(G), is the smallest number k such that G has an acyclic k-coloring. Acyclic colorings
are hereditary in the sense that the restriction of an acyclic coloring to a subgraph is an
acyclic coloring. Thus, the acyclic chromatic number is nondecreasing from subgraph to
supergraph. An even more restrictive type of coloring is a distance 2 coloring. A distance
2 coloring of a graph G is a coloring in which any two vertices at distance at most 2
apart get distinct colors. The distance 2 chromatic number of G, denoted χ2(G), is the
minimum number k such that G has a distance 2 coloring with k colors. Note that a
distance 2 coloring is necessarily acyclic. Thus AC(G) ≤ χ2(G).

Acyclic colorings were first studied by Grünbaum [9] who proved that a graph with
maximum degree 3 has an acyclic 4-coloring. This was followed by work of Berman and
Albertson [1] and Borodin [5] on acyclic colorings for planar graphs. In [6], Burnstein
proved that a graph with maximum degree 4 has an acyclic 5-coloring. Later, the acyclic
chromatic number for graphs on certain surfaces [3] was considered. More recently, acyclic
colorings have been studied by Alon, McDiarmid, and Reed [2], Mohar [13], and Skulrat-
tanakulchai [18]. Nowakowski and Rall have investigated the behavior of several graph
parameters with respect to an array of different graph products [15].

∗ The work of this author is supported by NSA H-98230-06-1-0008.
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In this paper, we study the acyclic chromatic numbers of Hamming graphs, the prod-
ucts of complete graphs. The product we are taking is the usual Cartesian (or box) product.
The vertex set of G2H is the Cartesian product V (G)×V (H) of the vertex sets of G and
H. There is an edge between two vertices of the product if and only if they are adjacent
in exactly one coordinate and agree in the other. This is an extension of the work of Fer-
rin, Godard, and Raspaud [7] where acyclic colorings of certain grids (products of paths)
are studied, of the authors [10] and of the authors with Villalpando [12] where acyclic
colorings of products of trees and cycles are studied.

Since we consider only Hamming graphs in this paper, we will write H(s1, s2, s3, . . . , st)
to denote Ks12Ks22Ks32 . . .2Kst . The dimension of this Hamming graph is t, and
we always normalize by always assuming 2 ≤ s1 ≤ s2 ≤ s3 ≤ · · · ≤ st. The lower
bound is here is 2 ≤ s1 since s1 = 1 would effectively lower the dimension. To sim-
plify the potentially cumbersome notation for the acyclic and distance 2 chromatic num-
ber, we write AC(s1, s2, s3, . . . , st) for AC(H(s1, s2, s3, . . . , st)) and χ2(s1, s2, s3, . . . , st)
for χ2(H(s1, s2, s3, . . . , st)).

2. General bounds

In [10, Theorem 2.1], [7, Proposition 1], and [17, Lemma 10], it is shown that the acyclic
chromatic number of a product of graphs G1, . . . , Gt satisfies

AC(G12 · · ·2Gt) >
t∑
i=1

|E(Gi)|
|V (Gi)|

+ 1.

If the graph Gi is ri-regular, then |E(Gi)| = ri|V (Gi)|
2

. Hence, we have the following bound
on the acyclic chromatic number of a product of regular graphs.

Proposition 1. Consider the product G12 · · ·2Gt where Gi is ri-regular for 1 ≤ i ≤ t.
Then

AC(G12 · · ·2Gt) >
r1 + · · ·+ rt

2
+ 1.

Since the complete graph Ks is (s− 1)-regular, Proposition 1 gives

AC(s1, . . . , st) >
s1 + · · ·+ st − t

2
+ 1. (1)

Recall that si ≥ 2 for all i, which yields

AC(s1, . . . , st) >
2(t− 1) + st − t+ 2

2
=

t+ st
2

.

Another simple but useful lower bound arises from the fact that AC(G) ≥ χ(G). Since
Kst is a clique in H(s1, . . . , st), we get

AC(s1, . . . , st) ≥ st. (2)

Now let [s]t := (s, . . . , s) denote a string of t s’s. In this case, Inequality (1) becomes

AC([s]t) >
t(s− 1)

2
+ 1. (3)
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To obtain upper bounds on the acyclic chromatic number of a Hamming graph, we
turn to distance 2 colorings. Recall that the square G2 of a graph G has the same vertex
set as G but has two vertices adjacent if and only if they are at most distance two apart
in G. By definition, the distance 2 chromatic number is just the chromatic number of
the square G2, hence χ2(G) = χ(G2). The bounds obtained here are quite crude, and,
for simplicity’s sake, we will not bother working through minor improvements. More
significant improvements on these bounds will be given in Section 4. For any sequence
2 ≤ s1 ≤ · · · ≤ st, set

B(s1, . . . , st) :=
∑
i<j

sisj − (t− 2)

(
t∑
i=1

si

)
+
t(t− 3)

2
.

Lemma 1. The square H = H2(s1, . . . , st) of the Hamming graph H(s1, . . . , st) is regular
of degree B(s1, . . . , st).

Proof. Let v = (v1, . . . , vt) be a vertex of H. To find the degree of v in H, we determine
the vertices at distance at most two from v in H(s1, . . . , st). Changing vi to any one
of si − 1 possible other values yields a set Ai of si − 1 vectors at distance one from v.
Hence, there are exactly

∑t
i=1(si − 1) vertices at distance one from v in H(s1, . . . , st).

Now for each vector in Ai, changing that vector in the jth (j 6= i) coordinate to any one
of sj − 1 possible new values yields a set Ai,j of vectors at distance two from v. However,
Aj,i = Ai,j, so we count these sets once by taking i < j. Thus the number of vertices at
distance exactly two from v in H(s1, . . . , st) is∑

i<j

(si − 1)(sj − 1) =
∑
i<j

sisj − (t− 1)

(
t∑
i

si

)
+

(
t

2

)
.

Notice that on expanding
∑

i<j(si − 1)(sj − 1), each si will arise in a linear term from
(sk − 1)(si− 1) for i− 1 values of k < i and from (si− 1)(sj − 1) for t− i values of i < j,
making a total of t − 1 appearances for each i. The constant term 1 in each summand
appears

(
t
2

)
times. Therefore, the total number of vertices in H(s1, . . . , st) at distance at

most two from v is(
t∑
i=1

si

)
− t+

∑
i<j

sisj − (t− 1)

(
t∑
i=1

si

)
+

(
t

2

)
=

∑
i<j

sisj − (t− 2)

(
t∑
i=1

si

)
+
t(t− 3)

2
= B(s1, . . . , st).

It follows that H is regular of degree B(s1, . . . , st).

Theorem 1. For t ≥ 3, the acyclic chromatic number of the Hamming graph H(s1, . . . , st)
satisfies

AC(s1, s2, s3, . . . , st) ≤B(s1, . . . , st)

≤
(
t

2

)
s2
t .

Moreover,

AC([s]t) ≤
(
t

2

)
s2 − t(t− 2)

(
s− 1

2

)
provided t ≥ 3.
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Proof. First note that AC(s1, s2, s3, . . . , st) ≤ χ2(s1, s2, s3, . . . , st) since any distance 2
coloring is acyclic. The distance 2 chromatic number of a graph is simply the chromatic
number of its square. Let ∆(G) denote the maximum degree of a graph G. As is well-
known [19], ∆(G) + 1 is an upper bound on the chromatic number χ(G) of a graph G.
According to Lemma 1, this yields

AC(s1, s2, s3, . . . , st) ≤ B(s1, . . . , st) + 1.

Next, recall Brooks’ Theorem [19] which states that a connected graph G satisfies χ(G) =
∆(G) + 1 if and only if G is either complete or an odd cycle. A product of 3 or more
complete graphs never has a square that is an odd cycle or is complete. As a result, the
first inequality holds.

Finally, to obtain the second inequality, note that the expression B has three terms.
The first of these,

∑
i<j sisj, consists of

(
t
2

)
summands, each bounded by s2

t ; that is,

∑
i<j

sisj ≤ s2
t

t∑
i=1

(t− i) ≤ s2
t

t2 − t
2

.

Hence, to establish the second inequality, we need only show that the last two terms make
an overall negative contribution. Since t− 2 > t− 3 and si ≥ 2 for all i, it follows that

(t− 2)
t∑
i=1

si ≥ (t− 3)2t ≥ (t− 3)
t

2
,

showing the second term of B is larger than the third. Thus, neglecting the difference
leads to an upper bound for B.

Taking s1 = · · · = st = s in the previous argument and observing that the third term
of B is less than t(t−2)

2
produces the bound on AC([s]t).

We conclude this section by summarizing the bounds we have obtained for the acyclic
chromatic number of a Hamming graph.

Corollary 1. If t ≥ 3, then

max

(
st,

⌈
t+ st + 1

2

⌉)
≤ AC(s1, . . . , st) ≤

t(t− 1)

2
s2
t

and

max

(
s,

⌈
t+ s+ 1

2

⌉)
≤ AC([s]t) ≤ t(t− 1)

2
s2 − t(t− 2)

(
s− 1

2

)
.

3. Colorings of two-dimensional Hamming graphs by groups

In this section, we will study the 2-dimensional Hamming graphs H(m,n) where 2 ≤ m ≤
n. From the previous section, we see that

AC(m,n) ≥ n

from Inequality (2) and
AC(n, n) ≥ n+ 1
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from Inequality (3). The upper bounds given in Theorem 1 do not necessarily apply to
Hamming graphs of dimension two. Even when these do apply, they are quite bad.

Next, we obtain a constructive upper bound on the acyclic chromatic number of a
Hamming graph. The following notation will be useful in the theorem and its applications:

– ς(N), the smallest prime dividing N ;
– α(N) := N − N

ς(N)
;

– β(n) := min{N : n ≤ α(N)}; and
– NP (n), the smallest prime larger than n.

Certainly,
β(n) ≤ NP (n).

In fact, it may be the case that β(n) = NP (n). This has been verified computationally
for n ≤ 1, 000, 000. Since this is not the focus of this investigation, we will not comment
further on this. Instead, we return our attention to the task of obtaining an upper bound
on the acyclic chromatic number of a 2-dimensional Hamming graph.

Theorem 2. Suppose m,n, and N are positive integers. If m ≤ α(N) and n ≤ N , then
AC(m,n) ≤ N .

Proof. Suppose p is the smallest prime divisor of N . First we may assume that m = N−N
p

and n = N , for if we prove the result in this case, then it follows for all m′ ≤ m and
n′ ≤ n as AC(m′, n′) ≤ AC(m,n).

Consider the graph H(N,N) = KN2KN with vertices indexed by the elements of
ZN × ZN . Notice that Km2Kn may be viewed as the subgraph of KN2KN induced

by those vertices with indices in
(
ZN \

{
0, 1, . . . , N

p
− 1
})
× ZN . Color the vertices of

KN2KN by assigning the color i+ j mod N to the vertex (i, j). (In this proof, arithmetic
on colors is done modulo N .) This coloring is obviously proper. We now show that it is
acyclic when restricted to Km2Kn.

Suppose there is a bichromatic cycle C in Km2Kn. Let (s, t) be a vertex on the cycle
C. Then s+ t is one of the colors on the cycle. Let c be the other color on the cycle and
set a := c− (s+ t). Note that a 6= 0. Walking around the cycle corresponds to alternately
adding one of (a, 0) or (0, a) and then subtracting the other on the next step. Thus, the
cycle C is one of two types,

C1 : (s, t), (s+ a, t), (s+ a, t− a), (s+ 2a, t− a), (s+ 2a, t− 2a), (s+ 3a, t− 2a), . . .

or

C2 : (s, t), (s, t+ a), (s− a, t+ a), (s− 2a, t+ a), (s− 2a, t+ 2a), (s− 3a, t+ 2a), . . . .

Consider the cycle (C1). Let 〈a〉 denote the subgroup of ZN generated by a, and suppose
a has order r. Then 〈a〉 consists of all multiples of N

r
. Every coset of 〈a〉 has the form

k+ 〈a〉 where k ∈
{

0, 1, . . . , N
r
− 1
}

. It is clear that a will be added to the x-coordinate in
(C1) every second step. As (C1) is a cycle, every multiple of a will eventually occur added
to s in the x-coordinate of some vertex in (C1). That is, the x-coordinates of (C1) form
the coset s + 〈a〉. Thus this coset must contain a representative k with 0 ≤ k ≤ N

r
− 1.

Since p ≤ r, we have N
r
−1 ≤ N

p
−1. Thus k lies in the interval between 0 and N

p
−1, which

is impossible since these values were explicitly forbidden as x-values in our definition of
Km2Kn.

Similarly, the case of cycle (C2) leads to a contradiction.
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Table 1. AC(m, n) for small m and n

m\n 2 3 4 5 6 7 8 9 10 11 12
2 3 〈3〉 4 5 6 7 8 9 10 11 12
3 5 5 〈5〉 6 7 8 9 10 11 12
4 5 5 (6, 7) 〈7〉 8 9 10 11 12
5 (6, 7) (6, 7) 7 (8, 9) 〈9〉 10 11 12
6 7 7 (8, 9) 9 (10, 11) 〈11〉 12
7 (8, 11) (8, 11) (9, 11) (10, 11) 11 12
8 (9, 11) (9, 11) (10, 11) 11 (12, 13)

Theorem 2 immediately yields the following bounds on the acyclic chromatic number
of a 2-dimensional Hamming graph.

Corollary 2. For any positive integer n,

n+ 1 ≤ AC(n, n) ≤ β(n).

If m ≤ α(n), then
AC(m,n) = n.

Notice that Corollary 2 implies

n+ 1 ≤ AC(n, n) ≤ NP (n).

We also see that if p is prime and m < p, then

AC(m, p) = p.

Another particularly useful consequence of Corollary 2 is the following result.

Corollary 3. If n ≥ 2m− 1, then AC(m,n) = n.

Proof. Suppose n ≥ 2m− 1. Then

α(n) = n− n

ς(n)
≥ n− n

2
≥ n

2
≥ m− 1

2
.

Since both α(n) and m are integers, this implies α(n) ≥ m. Now, by Corollary 2,
AC(m,n) = n.

Corollary 3 shows that any integer n ≥ 3 is the acyclic chromatic number of some
2-dimensional Hamming graph. Table 1 displays what we know about small values of
AC(m,n). A single number gives an exact value of AC(m,n) when known. Otherwise,
the ordered pair gives upper and lower bounds. The notation 〈a〉means that AC(m,n) = a
and AC(m,n′) = n′ for all n′ ≥ n. Except for AC(3, 3) = 5, which was determined in [10,
Theorem 3.2], all values follow from results established here.

We conclude this section by considering the asymptotic behavior of the acyclic chro-
matic number of 2-dimensional Hamming graphs. As mentioned earlier, β(n) ≤ NP (n).
Applying Bertrand’s Postulate, we see that β(n) ≤ 2n. However, even more is true.
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Theorem 3. The limit limn→∞
β(n)
n

exists and equals 1.

Proof. Since β(n) ≥ n by definition, we only need to show that for each ε > 0, there is
an Lε such that if n > Lε, then β(n) ≤ (1 + ε)n.

Let q be a prime so large that 2
q−1

< ε. Let Q denote the product of all primes less

than q and set Lε = q(Q + 1). Suppose n > Lε. Let A :=
⌈
qn
q−1

⌉
. There is an integer N

between A and A+Q such that N ≡ 1 (mod Q). The congruence condition says N and Q
are relatively prime, so the smallest prime divisor p of N must be q or bigger. Therefore,

α(N) = N − N

p
≥ N − N

q
= N

(
1− 1

q

)
≥ A

(
1− 1

q

)
≥ qn

q − 1

(
q − 1

q

)
= n.

Thus by definition β(n) ≤ N . We now show that N ≤ (1 + ε)n. From n > Lε = q(Q+ 1),
we have

N ≤ A+Q ≤ qn

q − 1
+ 1 +Q <

qn

q − 1
+
n

q
< n

(
1 +

2

q − 1

)
< n (1 + ε) .

Hence, n ≤ β(n)(1 + ε)n for all n > Lε which establishes the result.

Corollary 4. The limit limn→∞
AC(n,n)

n
exists and equals 1. For each fixed m, the limit

limn→∞
AC(m,n)

n
exists and equals 1.

Proof. Note that n+1 ≤ AC(n, n) ≤ β(n). Thus, AC(n,n)
n

is trapped between two sequences
converging to 1. Since we are taking a limit, we may as well suppose m < n. Then we have
n ≤ AC(m,n) ≤ β(n). Hence, AC(m,n)

n
is also trapped between two sequences converging

to 1.

It is interesting to note that a statement analogous to that of Corollary 4 holds for the
distance 2 chromatic number of hypercubes and is the main result of [16].

4. Applications of two-dimensional results to Hamming graphs of higher
dimension

To obtain improved upper bounds on the acyclic chromatic number of certain Hamming
graphs, the following result is helpful.

Theorem 4. For two graphs G and H,

AC(G2H) ≤ AC(χ2(G), χ2(H)).

Proof. For convenience, let m := χ2(G), n := χ2(H), and N := AC(m,n). Let g : V (G)→
{1, 2, 3, . . . ,m} be a distance 2 coloring of G, and let h : V (H) → {1, 2, 3, . . . , n} be a
distance 2 coloring of H. Let f : V (G2H) → {1, 2, 3, . . . , N} be an acyclic coloring of
Km2Kn. We now define a coloring ϕ of G2H by setting

ϕ(x, y) := f(g(x), h(y))

for (x, y) ∈ V (G2H).
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First, we claim that ϕ is a proper coloring of G2H. Consider two adjacent vertices,
say (a, y) and (a, z), in G2H. Since h is proper, h(y) 6= h(z). Thus (g(a), h(y)) and
(g(a), h(z)) are different points in Km2Kn, so f assigns them different colors. Thus

ϕ(x, y) = f(g(x), h(y)) 6= f(g(x), h(z)) = ϕ(x, z).

The same argument holds for adjacent vertices of the form (a, y) and (b, y). Hence, ϕ is
proper.

Now we show that ϕ is acyclic. Suppose

Γ : (x1, y1), (x2, y2), (x3, y3), . . . , (xk, yk)

is a bichromatic cycle in G2H. Then

Γ ∗ : (g(x1), h(y1)), (g(x2), h(y2)), (g(x3), h(y3)), . . . , (g(xk), h(yk))

is a bichromatic closed walk in Km2Kn. We say walk because it is conceivable that
both vertices and edges are repeated in Γ ∗. If Γ ∗ has no repeated vertices, then it is a
bichromatic cycle in Km2Kn, contrary to f being an acyclic coloring of Km2Kn.

If Γ ∗ has repeated vertices, let s 6= t be the cyclically closest indices with

(g(xs), h(ys)) = (g(xt), h(yt)).

We can assume that s = 1 (by a rotation of Γ ∗ if necessary). We can also assume that
the arc of the cycle s to t is no longer than the opposite arc (running the cycle backwards
if necessary). These standardizations together with minimal choice of s and t imply that
between s = 1 to t, there are no other coincidences; that is, as i goes from 1 to t, the
points (g(xi), h(yi)) in Km2Kn are distinct. We must show that t ≥ 4 in order to have a
legitimate bichromatic cycle, and hence a contradiction.

By an argument similar to that above showing ϕ is proper,

(g(x1), h(y1)) 6= (g(x2), h(y2)).

Thus, t > 2. Now consider (g(x1), h(y1)) and (g(x3), h(y3)). The path from (x1, y1) to
(x3, y3) in G2H can take four possible forms:

Type A: (x1, y1) to (x1, y2) to (x1, y3)
Type B: (x1, y1) to (x2, y1) to (x3, y1)
Type C: (x1, y1) to (x1, y2) to (x2, y2)
Type D: (x1, y1) to (x2, y1) to (x2, y2).

In Type A, y1 and y3 are distance 2 apart. Since h is a distance 2 coloring, h(y1) 6= h(y3).
Thus, (g(x1), h(y1)) 6= (g(x3), h(y3)). The same applies to Type B. In Types C and D, y1

is adjacent to y2. Since h is proper, h(y1) 6= h(y3). Thus, (g(x1), h(y1)) 6= (g(x3), h(y3)).
Hence, t ≥ 4.

We have shown that if ϕ has a bichromatic cycle in G2H, then f has a bichromatic
cycle in Km2Kn, contrary to f being acyclic. Thus ϕ must be acyclic on G2H. The set
of colors used by ϕ is a subset of the set of colors used by f . It follows that ϕ is an acyclic
coloring of G2H with at most N colors, thereby establishing the result.
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Theorem 4 may be combined with results on perfect codes to give a better upper bound
on the acyclic chromatic number of a number of Hamming graphs. For details on the use
of perfect codes in distance 2 colorings, see [8], [11], [14], [16], and [20]. For any prime

power q and any positive integer r, there exists a
[
qr−1
q−1

, q
r−1
q−1
− r, 3

]
q

Hamming code; that

is, there exists a Hamming code of length qr−1
q−1

with q
qr−1
q−1
−r words, any two of which differ

in at least three coordinates. As a consequence, the distance 2 chromatic number of the

Hamming graph H
(

[q]
qr−1
q−1

)
is

χ2

(
K

qr−1
q−1
q

)
= qr

as shown in [11, Theorem 4.1]. This, together with Theorem 4, gives the following result.

Theorem 5. Let q be a power of a prime number and a ≤ b. Then

1

2

(
qa + qb

)
+ 1 ≤ AC

(
K

qa+qb−2
q−1

q

)
≤

{
qb if a < b

β(qb) if a = b.

Proof. Recall the notation H ([q]t) = Kt
q and AC ([q]t) = AC

(
Kt
q

)
introduced in Section

2. By Proposition 1,

AC

(
[q]

qa+qb−2
q−1

)
≥ 1

2

(
qa + qb

)
+ 1.

To obtain the upper bound, take G = H
(

[q]
qa−1
q−1

)
and H = H

(
[q]

qb−1
q−1

)
in Theorem 4.

This gives

AC

(
[q]

qa+qb−2
q−1

)
= AC

(
H
(

[q]
qa−1
q−1

)
2H

(
[q]

qb−1
q−1

))
≤ AC

(
χ2

(
H
(

[q]
qa−1
q−1

))
, χ2

(
H
(

[q]
qb−1
q−1

)))
= AC

(
qa, qb

)
.

Applying Theorem 2 now gives the desired upper bound.

5. Acyclic chromatic numbers of some hypercubes

In this section, we consider the t-dimensional hypercube Qt := K22 · · ·2K2. Determining
the acyclic chromatic number of the hypercube is mentioned as an open problem in [7]
where it is shown that ⌊

t

2

⌋
+ 2 ≤ AC(Qt) ≤ t+ 1

(see [7, Theorem 4] and [12, Theorem 2.1]). There the authors state that the exact value
may be equal to the lower bound. Here, we show that this is indeed the case if t + 3 is
a Fermat prime. In addition, we obtain an improved upper bound in a number of other
cases.

First, note that taking q = 2 in Theorem 5 allows one to derive bounds on the acyclic
chromatic number of certain hypercubes. To widen the class of hypercubes to which this



10 Robert E. Jamison, Gretchen L. Matthews

Table 2. Acyclic chromatic numbers of some hypercubes related to Fermat primes

t AC(Qt)
6 5
30 17
510 257

131070 65537

Table 3. Bounds on acyclic chromatic numbers of hypercubes of small dimension

t AC(Qt)
2 3

3, 4 4
6 5
7 (5, 8)

8, 9 (6, 8)
10 (7, 8)
11 (7, 11)

12, 13 (8, 11)
14 (9, 11)

result applies, we rely on the work of Ostergard [16] in which a result of Best and Brouwer
[4] on shortened Hamming codes is used to prove that

χ2(Q2r−i) = 2r

for 1 ≤ i ≤ 4. Using the same ideas as in the proof of Theorem 5 yields the following fact.

Theorem 6. Assume a ≤ b and 1 ≤ c, d ≤ 4. Then

AC (Q2a+2b−c−d) ≤

{
2b if a < b

β(2b) if a = b.

Next, we apply Theorem 6 to obtain the exact acyclic chromatic numbers for hyper-
cubes of dimensions related to Fermat primes.

Corollary 5. The acyclic chromatic number of the hypercube of dimension t := 2r+1 − 2
satisfies

2r + 1 ≤ AC (Q2r+1−2) ≤ NP (2r).

In particular, if 2r + 1 is a Fermat prime, then

(Q2r+1−2) = 2r + 1.

Finally, we close this section with two tables. The acyclic chromatic numbers found
using Corollary 5 are found in Table 2. Table 3 illustrates the bounds obtained here for
hypercubes of small dimension.
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