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Abstract

An acyclic coloring of a graph G is a proper coloring of the vertex set of G such that
G contains no bichromatic cycles. The acyclic chromatic number of a graph G is the
minimum number k such that G has an acyclic coloring with k colors. In this paper,
acyclic colorings of products of paths and cycles are considered. We determine the
acyclic chromatic numbers of three such products: grid graphs, cylinders, and toroids.

1 Introduction

A k-coloring of a graph G with vertex set V (G) is a labeling f : V (G) → {1, . . . , k}. A
k-coloring of a graph is a proper coloring provided any two adjacent vertices have distinct
colors. An acyclic coloring of a graph G is a proper coloring of G such that the subgraph
of G induced by any two color classes of G contains no cycles. The chromatic number of G,
denoted χ(G), is the minimum k such that G has a proper k-coloring; the acyclic chromatic
number of a graph G, denoted AC(G), is the minimum number k such that G has an acyclic
k-coloring.

Acyclic colorings were introduced by Grünbaum in [7] where he showed that a graph
with maximum degree 3 has an acyclic 4-coloring. In [5], Burnstein proved that a graph
with maximum degree 4 has an acyclic 5-coloring. In this paper, we determine the acyclic
chromatic numbers of certain graphs with maximum degree 4. In particular, we find the
acyclic chromatic numbers of products of paths and cycles. This is an extension of the work
of Ferrin, Godard, and Raspaud [6] where acyclic colorings of certain grids (products of
paths) are studied and of the authors and Villalpando [8] where acyclic colorings of products
of trees are considered. Additional references on acyclic colorings include papers by Berman
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and Albertson [1]; Borodin [4]; Alon, Mohar, and Sanders [3]; Alon, McDiarmid, and Reed
[2]; Mohar [9]; Skulrattanakulchai [12]; and Nowakowski and Rall [11].

The product we are taking is the usual Cartesian (or box) product. The vertex set of
G2H is the Cartesian product V (G) × V (H) of the vertex sets of G and H. There is an
edge between two vertices (a, b) and (x, y) of the product if and only if they are adjacent in
exactly one coordinate and agree in the other.

Acyclic colorings are hereditary in the sense that the restriction of an acyclic coloring to
a subgraph is an acyclic coloring. Thus, the acyclic chromatic number is nondecreasing from
subgraph to supergraph.

All of the graphs we consider will be simple (no loops or multiple edges). As usual, Pm

denotes the m-path, the path on m vertices; and Cn denotes the n-cycle, the cycle on n
vertices. All paths Pm considered have m ≥ 2. The product of two paths is a grid graph.
The product of a path and a cycle is a cylinder. The product of two cycles is a toroid.
Cylinders will generally be written as Pm2Cn and toroids as Cm2Cn.

In [8], it was shown that the acyclic chromatic number of the product of two (nonde-
generate) trees is 3. The grid graphs are a special case. When wrap-around is introduced,
the situation becomes more complex. In this paper, we focus on determining the acyclic
chomatic numbers of cyclinders and toroids. Our results are summarized in the table below.

type of graph graph acyclic chromatic number reference
grid graph Pm2Pn 3 [6], [8]
cylinder Pm2Cn 3 if n 6= 4 Theorem 4.5

4 if n = 4 Theorem 4.6
toroid Cm2Cn 4 if (m, n) 6= (3, 3) Theorem 3.1

C32C3 5 Theorem 3.2

Notation. Suppose ϕ is a k-coloring of a grid Pm2Pn, cylinder Pm2Cn, or toroid
Cm2Cn. Let c(i, j) denote the color assigned to the vertex (ui, vj) in the product. Then the
colors c(i, j) can be viewed as the entries of an m by n matrix M , called the color matrix of
ϕ. The first row and column of the color matrix are called the axes.

For any pair of colors a and b, let Ca,b denote the set of all vertices colored either a or
b. Being an acyclic coloring means Ca,b induces a forest for all pairs of colors a and b. The
classes Ca,b are called bichromate classes.

2 A lower bound on the acyclic chromatic number

We begin with a simple yet very useful lower bound on the acyclic chromatic number of an
arbitrary graph. This is a refinement of [6, Theorem 1] suggested by Mohar [10].

Theorem 2.1. The acyclic chromatic number of a graph G satisfies

AC(G) >
|E(G)|
|V (G)|

+ 1.
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Proof. Let G be a graph with |V (G)| = n and |E(G)| = m. Suppose that ϕ is an acyclic
coloring of G with k colors. Denote the color classes of ϕ by C1, . . . , Ck, and set |Ci| = ni.
Since G has no bichromatic cycles, the subgraph of G induced by any two color classes Ci

and Cj is a forest Tij. Clearly, |E(Tij)| ≤ ni + nj − 1. As a result,

m =
∑

1≤i<j≤k

|E(Tij)| ≤
∑

1≤i<j≤k

ni + nj − 1 = (k − 1)
k∑

i=1

ni −
(

k

2

)
= (k − 1)n−

(
k

2

)
.

Then m
n
≤ (k − 1)− (k

2)
n

and so

k ≥ m

n
+ 1 +

(
k
2

)
n

.

Since
(k
2)
n

> 0, we conclude that

AC(G) >
m

n
+ 1.

Corollary 2.2. Let G1, . . . , Gd be graphs. The acyclic chromatic number of the product
G12 · · ·2Gd satisfies

AC(G12 · · ·2Gd) >
d∑

i=1

|E(Gi)|
|V (Gi)|

+ 1.

Proof. Let G = G12 · · ·2Gd. Suppose that V (G1) = {u1, . . . , un}. Then (u1, v2, . . . , vd) ∈
V (G) is adjacent to deg u1|V (G2)| · · · |V (Gd)| vertices of the form (uj, v2, . . . , vd). Thus,
there are

1
2
(deg u1 + · · ·+ deg un)|V (G2)| · · · |V (Gd)| = 1

2
(2|E(G1)|) |V (G2)| · · · |V (Gd)|

= |E(G1)||V (G2)| . . . |V (Gd)|

edges of G of the form {(u1, v2, . . . , vd), (uj, v2, . . . , vd)} in G. Continuing in this manner, we
see that

|E(G)| =

(
d∏

j=1

|V (Gj)|

)
d∑

i=1

|E(Gi)|
|V (Gi)|

.

By Theorem 2.1,

AC(G) >
|E(G)|
|V (G)|

+ 1 =
d∑

i=1

|E(Gi)|
|V (Gi)|

+ 1.

As an immediate consequence, we obtain the following lower bounds on the acyclic chro-
matic numbers of a cylinder and a toroid.

Corollary 2.3. The acyclic chromatic numbers of a cylinder and a toroid satisfy

AC(Pm2Cn) ≥ 3 and AC(Cm2Cn) ≥ 4.
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Using the fact that cylinders and toroids both have maximum degree 4 and the main
result of [5], we conclude that

3 ≤ AC(Pm2Cn) ≤ 5 and 4 ≤ AC(Cm2Cn) ≤ 5.

Exact values for these quantities will be found in Sections 3 and 4.

3 Toroids

3.1 Toroids Cm2Cn have acyclic 4-colorings unless m = n = 3

In this subsection, we give an acyclic 4-coloring of a toroid Cm2Cn where (m, n) 6= (3, 3).
To prove that this coloring is indeed acyclic, we will use the notion of a regular vertex. A
vertex v is called regular if any two neighbors of v of the same color correspond to entries in
the same row or column of the color matrix; otherwise, v is said to be irregular.

Theorem 3.1. If (m, n) 6= (3, 3), then the acyclic chromatic number of the toroid Cm2Cn

is AC(Cm2Cn) = 4.

Proof. According to Corollary 2.3, AC(Cm2Cn) ≥ 4. Let M denote the (m − 2) × (n − 1)
matrix with alternating rows

M =


1 3 1 3 1 3 · · ·
0 2 0 2 0 2 · · ·
1 3 1 3 1 3 · · ·
0 2 0 2 0 2 · · ·
...

...
...

...
...

...

 .

We will use M to give a color matrix for Cm2Cn. There are three cases to consider, based
on the parities of m and n. The color matrix of each is as follows:

Case 1: m even, n odd
2
1
2

M 1

.

.

.
2
1

1 3 1 3 · · · 1 3 1 0 3
2 0 2 0 · · · 2 0 2 1 0

Case 2: m even, n even
2
3
2

M 3

.

.

.
2
1

1 3 1 3 · · · 1 3 2 3
2 0 2 0 · · · 2 0 3 0

Case 3: m odd, n odd, and (m, n) 6= (3, 3)
0
3
0

M 3

.

.

.
3
0

0 2 0 2 · · · 0 2 0 1 3
3 0 3 0 · · · 3 0 3 2 1

Note that each color matrix defines a proper coloring of the toroid Cm2Cn. We claim that
this coloring is acyclic. Suppose that a regular vertex is part of a bichromatic cycle. Then,
by definition of regular, that cycle must be a row or a column. However, there are no
bichromatic rows or columns. As a result, each vertex of a bichromatic cycle must irregular.
It is easy to check that there are no bichromatic cycles formed using only irregular vertices.
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Table 1: Canonical color matrices for C32C3.

M1 =

 0 1 2
3 2 1
? ? ?

 , M2 =

 0 1 2
3 0 1
2 3 0

 , M3 =

 0 1 2
3 0 1
1 ? 0

 , M4 =

 0 1 2
3 0 1
1 2 3

 .

Table 2: Bichromatic cycles for the canonical colorings of C32C3.

Matrix Class Bichromatic Cycle
M1 C1,2 (1, 2)− (1, 3)− (2, 3)− (2, 2)− (1, 2)
M2 C0,2 (1, 1)− (1, 3)− (3, 3)− (3, 1)− (1, 1)
M3 C1,3 (2, 1)− (2, 3)− (3, 3)− (3, 1)− (2, 1)
M4 C0,1 (1, 1)− (1, 2)− (2, 2)− (2, 3)− (3, 3)− (3, 1)− (1, 1)

3.2 An acyclic coloring of C32C3

Next, we address the case where (m, n) = (3, 3).

Theorem 3.2. The acyclic chromatic number of the toroid C32C3 is AC(C32C3) = 5.

Proof. The bulk of the proof is to show that every proper 4-coloring of G = C32C3 is equiva-
lent, via an automorphism of C32C3, to one of the colorings shown in Table 1. Table 2 shows
a bichromatic cycle for each of these four canonical colorings. Note that any permutation
of the rows and/or columns of the color matrix corresponds to an automorphism of C32C3

because of the completeness of the factors.

The color matrix of a proper 4-coloring has the following property:

(*) Each entry differs from its four neighbors vertically and horizontally, including wrap-
around.

In particular, the entries in each row are different. Since there are 4 colors used, it cannot
be that all rows have the same 3 colors. Hence a pair of consecutive rows have different color
sets. Let these be rows one and two. Rotate the columns so that the color in position (2,1)
is different from the three colors in row one. Thus the color matrix appears in the form of
A below where w, x, y, z are different and where ? denotes an unknown entry.

A B C M5 x y z
w ? ?
? ? ?

 ,

 0 1 2
3 0 ?
? ? ?

 ,

 0 1 2
3 0 1

{1, 2} {2, 3} {0, 3}

 ,

 0 1 2
3 0 1
2 3 4

 .

There a two possibilities at this point: either x appears in the second row or it does not. If x
is not in the second row, then the coloring is of type M1 shown in Table 1. If x does appear
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in the second row, then the colors can be chosen and the last two columns can be permuted
if necessary to obtain the matrix B. Now c(2, 2) = 0 implies c(2, 3) = 1 by (*). Hence we
have the first two rows of matrix C. The last row shows the two color options available for
that entry according to (*). By (*), these options lead to four possible colorings as shown
below. The matrix type is shown with each:

[2, 3, 0] → (M2); [1, 3, 0] → (M3); [1, 2, 0] → (M3); [1, 2, 3] → (M4)

Therefore, G does not have an acyclic 4-coloring. By [5], G has an acyclic 5-coloring as
G is 4-valent. It is also easy to see that color matrix M5 above defines an explicit acyclic
5-coloring of G.

Notice that since C32C3 is vertex-transitive, the coloring in M5 shows that C32C3 is
AC-critical, meaning that the removal of any vertex reduces the acyclic chromatic number.

3.3 A nearly acyclic 3-coloring

To conclude this section, we consider a 3-coloring of certain toroids which is nearly acyclic.
Consider G = Cm2Cn where gcd(m, n) = 3 and at least one of m or n is greater than 3.
According to Corollary 2.3, G does not have an acyclic 3-coloring. However, G almost has
such a coloring. We will demonstrate this now.

Define a coloring of G by assigning the color ϕ(i, j) := i + j mod 3 to the vertex in
position (i, j). The coloring ϕ is a proper coloring since 3|m and 3|n. Through any vertex
there are exactly 2 bichromatic “zig-zag paths”. To see that each closes and is actually a
cycle, note that

ϕ(1, j) = j + 1 = ϕ(m, j + 1) and ϕ(i, n) = i = ϕ(i− 1, 1)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Now suppose such a cycle contains h horizontal edges and v
vertical edges. Since horizontal and vertical edges alternate, h = v. Because the cycle closes
horizontally, m|h; because the cycle closes vertically, m|v. It follows that m|h and n|h, and
so lcm(m,n)|h. Note that lcm(m, n) = mn

gcd(m,n)
= mn

3
. This forces h + v = 2h = 2

3
mnt for

some integer t. Since G has mn vertices, t = 1 and so h + v = 2
3
mn. Hence each of these

cycles contains 2
3

of the vertices of G. Therefore, there is exactly one bichromatic cycle for
each pair of colors.

Finally, choose any two vertices v1 and v2 which are of different colors and are not
adjacent. The removal of v1 and v2 leaves a graph with an acyclic 3-coloring. Alternatively,
recoloring these two vertices gives an acyclic 4-coloring of G. Hence, G almost has an acyclic
3-coloring.
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4 Cylinders

4.1 Conformal colorings

A k-coloring ϕ is said to be conformal if and only if

c(s, t) ≡ c(s, 1) + c(1, t)− c(1, 1) mod k. (1)

for all 1 ≤ s ≤ m and 0 ≤ t ≤ n. Note that a conformal coloring is completely determined
by the colors on the axes of the color matrix. In this section, we show that any proper
3-coloring of a grid graph, cylinder, or toroid without bichromatic 4-cycles is conformal. To
do this, the following uniformity result is useful.

Lemma 4.1. Suppose that ϕ is a proper 3-coloring of a grid graph Pm2Pn or cylinder
Pm2Cn with no bichromatic 4-cycles. Let 1 ≤ i ≤ i + s ≤ m and 1 ≤ j ≤ j + t ≤ n. Then

c(i + s, j + t)− c(i, j + t) ≡ c(i + s, j)− c(i, j) mod 3.

Proof. We proceed by double induction on s and t. If s = t = 1, then the three colors used
lie on a 4-cycle, and all three available colors must be used. There are four cases as shown
below, each of which satisfies the desired condition.

a a+1
a+1 a+2

a a+2
a+1 a

a a+1
a+2 a

a a+2
a+2 a+1

We now establish the case s = 1 for all t. We have, modulo 3, the following equalities:

c(i + 1, j + t)− c(i, j + t) ≡ c(i + 1, j + t− 1)− c(i, j + t− 1) ≡ c(i + 1, j)− c(i, j).

The first equality follows from the base case s = t = 1; the other follows by induction.
Hence, for all t, c(i + 1, j + t)− c(i, j + t) ≡ c(i + 1, j)− c(i, j) mod 3.

It remains to establish the equality for all s. Suppose that

c(i + s− 1, j + t)− c(i, j + t) ≡ c(i + s− 1, j)− c(i, j) mod 3;

that is, suppose c(i + s − 1, j + t) − c(i + s − 1, j) ≡ c(i, j + t) − c(i, j) mod 3. The result
follows immediately since c(i + 1, j + t)− c(i + 1, j) ≡ c(i, j + t)− c(i, j) mod 3.

Theorem 4.2. Suppose that ϕ is a proper 3-coloring of a grid graph or cylinder with no
bichromatic 4-cycles. Then the color matrix of ϕ is determined by the entries on its axes.
In fact, ϕ is conformal.

Proof. Taking i = j = 1 in Lemma 4.1 shows that

c(s, t) ≡ c(s, 1) + c(1, t)− c(1, 1) mod 3.

Remark 4.3. Lemma 4.1 and Theorem 4.2 also hold for a toroid Cm2Cn.
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4.2 Cylinders have acyclic 3-colorings if n 6= 4

Consider the cylinder Pm2Cn where n 6= 4. We wish to describe an acyclic 3-coloring ϕ of
Pm2Cn. According to Theorem 4.2, to define such a coloring, we only need to give the colors
of the axes; the formula in Theorem 4.2 can be used to extend the coloring on the axes to
the full color matrix.

The strategy is the following. First, we specify a coloring ϕ via an appropriate coloring
of the axes. We then show that the last row of the color matrix cannot be involved in any
bichromatic cycle. The last row can then be removed and m reduced. We proceed again to
show that the new last row is not involved in any bichromatic cycle. In this way, we show
by induction that Pm2Cn contains no bichromatic cycles and ϕ is acyclic.

To facilitate the reduction argument, we say that a position in the last row standard if
and only if it has color a and the distribution of colors in the six positions indicated around
it are as shown below. The designations a, b, c indicate distinct colors.

c b
c b a c

or
b c

c a b c

In the course of an argument about bichromatic cycles, an element is called excluded provided
it has already been shown that that vertex cannot lie in a bichromatic cycle. A vertex that
is not excluded is usable. The status of vertices will shift from usable to excluded.

The next result is an observation concerning usable and excluded vertices.

Lemma 4.4. 1. If a vertex v colored a is usable, then at least two usable neighbors of v
must have the same color b different from a.

2. A standard vertex is excluded.

Proof. 1) If v is on a bichromatic cycle, the color of its two neighbors on the cycle are such
a color. If not, v can be excluded.

2) Suppose that v is a standard vertex with color a. Then, by definition, v is on the last
row and has a neighbor w on the last row with color b, and v and w have all their neighbors
shown in the diagrams. In each of the two cases, v has exactly two neighbors colored b. Thus
if v is on a bichromatic cycle, the other color on the cycle must be b. Hence, w must be on
the cycle. It follows that w must have at least two neighbors colored a, which it does not.
Hence v is not usable and so is excluded.

Theorem 4.5. If n 6= 4, then AC(Pm2Cn) = 3.

Proof. According to Theorem 4.2, to prescribe an acyclic 3-coloring of the cylinder Pm2Cn,
it suffices to assign colors to the axes; i.e., it suffices to specify the first row and the first
column of the color matrix M . Use the cyclic sequence 012012 . . . 012 to color the first
column of M . Since there is no vertical wrap-around, this sequence can stop on 0, 1 or
2 (so there is no parity condition on m). To specify the first row of the color matrix, we
distinguish three cases based on the residue of n mod 3.
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Case 1. n ≡ 0 mod 3.
Color first row 012012 . . . 012012. Because the coloring is cyclic horizontally, all positions

on the bottom row are standard. By Lemma 4.4, each vertex on the bottom row is excluded
from bichromatic cycles.
Case 2. n ≡ 1 mod 3.

Since n 6= 4, the case hypothesis implies n ≥ 7. Color the first row 012012 . . . 0120121.
There is now a hill triad 121 at the end and a valley triad 101 over the wrap-around.

For (m, j) to be standard, we must have 3 ≤ j ≤ m − 2. In particular, (m, 3) and
(m,n− 2) are both standard and hence are excluded from bichromatic cycles.

The following table shows the bottom four rows of the color matrix. The double vertical
line indicates where the wrap-around occurs. We may assume that the last row starts with
2. In fact, it could start with 1 or 0, but these other alternatives (which depend on m mod
3) are all equivalent via a cyclic shift in the colors to the case that c(m, 1) = 2. Thus, the
bichromate classes are the same. The standard positions are marked by x.

n ≡ 1 mod 3
2 0 1 · · · 2 0 1 0 2 0 1
0 1 2 · · · 0 1 2 1 0 1 2
1 2 0 · · · 1 2 0 2 1 2 0
2 0 x · · · x x 1 0 2 0 x

Consider the 1 in position (m,n− 1). Its only two usable neighbors are both colored 0,
and neither is adjacent to another 1. Hence this 1 cannot be used in a bichromatic cycle and
hence is excluded.

Now consider the 0 in position (m, n). Its only two usable neighbors are both colored 2.
However, if we trace the pathway determined by the 2 in position (m− 1, n), we see that it
terminates in deadends (shown by underlining). Hence the 0 in (m, n) cannot be used, so it
is excluded.

Now the 2 in position (m, 1) has only two potentially usuable neighbors (since the 0 in
the (m, n) position is excluded) and they are of opposite colors. Hence the 2 in position
(m, 1) is excluded. At this point, the 0 in the (m, 2) position has only one usable neighbor,
and it is excluded. Therefore, the entire last row is excluded from bichromatic cycles.

Note that the standard positions play a crucial role in the argument by ruling out certain
options for viable neighbors initially. If this coloring is tried when n = 4, it is easy to find
bichromatic 6-cycles in any two consecutive rows. (cf. [8]).
Case 3. n ≡ 2 mod 3.

Color the first row 012012 . . . 01201.
For (m, j) to be standard, we must have 3 ≤ j ≤ n−1. In particular, (m, 3) and (m,n−1)

are both standard and hence cannot be used in a bichromatic cycle.
As in the previous case, the following table shows the bottom four rows of the color
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matrix with the standard positions marked by an x.

n ≡ 2 mod 3
2 0 1 · · · 2 0 1 2 0 2 0 1
0 1 2 · · · 0 1 2 0 1 0 1 2
1 2 0 · · · 1 2 0 1 2 1 2 0
2 0 x · · · x x x x 0 2 0 x

The 0 in position (m, n) has only 2’s as usuable neighbors. However, the 2 above has
only one 0 as neighbor, so it cannot lie in a 0,2-bichromatic cycle. Hence position (m, n) is
excluded.

The 2 in position (m, 1) has only two usable neighbors and they have different colors.
Hence (m, 1) is also excluded. This leaves the 0 in position (m, 2) with only one potentially
usable neighbor (above), so it cannot be in a bichromatic cycle either. Thus the entire
bottom row has been shown to not lie in any bichromatic cycle.

In each of the three cases, the last row cannot be involved in any bichromatic cycles. By
induction, we see that the specified colorings are indeed acyclic. As a result, AC(Pm2Cn) = 3
provided n 6= 4.

4.3 Cylinders with n = 4

We conclude this section by giving the acyclic chromatic number of cylinders which have C4

as a factor.

Corollary 4.6. The acyclic chromatic number of a cylinder Pm2C4 is AC(Pm2C4) = 4.

Proof. In [8], it is shown that AC(Pm2C4) ≥ 4. Now Theorem 3.1 gives

AC(Pm2C4) ≤ AC(Cm+12C4) ≤ 4

since Pm2C4 is a subgraph of Cm+12C4.
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