
WHAT SHOULD STUDENTS GET FROM CALCULUS?
(AND HOW CAN WE PROVIDE IT?)

FRANK QUINN

In his September Doceamus column [1], Keith Stroyan takes on this question
and reports success with extended exploration of applications. Experiences with
a different population of students have led me in rather different directions on
practical levels, but with important commonalities.

I back up a bit for perspective. The actual title of Stroyan’s column is Why do
so many students take calculus?. But the honest answer to this is “because it is
required in the curriculum”, and the real problem is that traditional calculus courses
do not serve students particularly well. Stroyan actually addresses a variation:
“We’ve got them here; what is the best use we can make of this opportunity?” I
think his answer is a good one for many circumstances. A more pointed variation is
“Calculus is emphasized at least partly for historical reasons; would a different topic
work better?” Stroyan’s explicit comment is that calculus is good because it gives
quick access to rich and varied applications. His approach addresses this concern
in other ways: it has less emphasis on lectures and the nitty-gritty of calculus, and
exploring applications often brings in methods from other areas.

Nearly all of my students are in science and engineering, and this has led me
to a more mission-oriented version of the question. Namely, “What do students
need, and what are the most valuable things they get?” My main concern is with
course design. Scientists and engineers do still need a foundation in calculus, but I
see calculus as a setting rather than a goal, and even for this group I don’t think
“knowledge of calculus” is among the most valuable outcomes. The next three
sections describe other important goals.

Complex rules and accuracy. It is a vital skill in science and engineering to be
able to work accurately with complex rule-based systems. I feel that it is part of
our job to develop this: calculus is certainly the best training ground in the current
curriculum because the rules are realistically complicated, but are clear and concise
and feedback is quick and accurate. This skill is also transferrable to many more
domains than any specific content. But this is a skill that my students certainly
don’t have when they get here.

Most high-school programs have de-emphasized rule skills in favor of “under-
standing” and working intuitively. If you can “see” the problem it should be easy.
Calculator use has replaced a lot of rule-based work and attendant skills. AP cal-
culus is a partial exception, but it is test-driven with greatly simplified rules used
mechanically on short, routine problems. Low skill levels give mediocre results even
on simplified problems, but this has been compensated for by generous partial and
extra credit, and curved grades.
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Given all this, I feel that helping my students develop disciplined rule skills is
the most important service I can provide. An implication for course design—again,
for students in science and engineering—is that corners should not be cut. Do all
the standard techniques of integration, with the full set of elementary functions, to
provide enough complexity to require careful and systematic use. Finally I think
this is the time to get real about getting things right. High-tech employers don’t
give ‘A’s for work that is 90% right. I expect students to get up to speed, rather
than reducing the speed to their comfort zone. Their poor preparation makes this
is a serious challenge, but an important one and most of them rise to it.

Abstract and symbolic work. Technical challenges in science and engineering
are getting more difficult, while dealing with numbers is getting easier. A conse-
quence is that work on an abstract and symbolic level—even if only to organize
numerical work—is increasingly important. But these skills are also declining.
Some of my students have trouble with any problem whose answer is not a number:
they can handle circles of radius 3, but simple problems with circles of radius ‘r’
are foreign territory.

Again, I feel my students are better served if I can help develop these skills. My
examples and problems usually have symbolic parameters, and I emphasize what
these reveal about scaling, optimization, and error analysis. I usually use exact
arithmetic. This preserves structure (π and

√
2 don’t disappear into decimals), and

is half-way to symbolic work. Again this is a challenge, and quite a few students
need remediation before it is accessible, but it is reasonable to expect them to get
it before attempting a science and engineering curriculum.

Applications. Applications provide opportunities for students to exercise their
skills and see the methods in action. However applications do not have to be to
physical problems, and in fact I find most physical applications unsatisfactory.

• It is a good idea to plug in numbers from time to time but it destroys a lot of
functionality. Printing out web pages can also be a good thing, but it kills
the functionality of links. In particular, extended numerical applications
do not exercise the most important skills.
• Most of these students have specific interests. Applications that address

their interests will duplicate material done in more depth in other courses.
Applications that don’t address their interests don’t engage them.
• Superficial applications are usually little more than vocabulary (replace

‘velocity’ with the first derivative, etc.). These are worth mentioning, but
as testable material are not a good use of their time.

On the other hand working a bit more abstractly and symbolically opens up math-
ematical topics to explore. These are, in effect, applications that are both mission-
related and quickly accessible because techniques and terminology are already in
place. I also find that laying groundwork for mathematical applications helps or-
ganize and sharpen presentations.

Resource constraints. Unfortunately, one more version should be addressed:
“Even if we do figure out what students need, can we afford to provide it?” I indi-
vidually, and the department at Virginia Tech collectively, have tried many things
that improved learning but that had to be abandoned because they required un-
sustainable levels of faculty overtime. These include group projects along the lines
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described in [1]. My suggestions here are also problematic. They don’t directly cost
more, but increasing expectations increases failure rates unless individual help is
provided, and appropriate help would definitely be over-budget. I have also omitted
quite a few effective strategies because they are impossible without individual help.

We should remember that per-student resource levels were established at a time
when we only lectured and gave tests. In many places they have declined substan-
tially below this, and huge classes taught by adjuncts are increasingly common. In
this climate any innovation that costs more is a dead end. Real impact in first-
and second-year courses will require innovations whose resource requirements are
competitive with huge classes taught by adjuncts. So far an educational approach
has been taken: “discipline stifles creativity, so let a thousand flowers bloom”.
Unsurprisingly, we have gotten education-quality outcomes: the thousand flowers
bloomed and wilted, and very few students are better off. Maybe it is time to get
real about getting it right, perhaps with a science and engineering approach: “no
discipline, no results”.

The sticking point is that, as far as I can see, the only way to both innovate
and reduce costs is to give up traditional classrooms. This can work: we now have
more than 10,000 students per semester taking lower-level computer-based courses.
Moreover the unit costs are enough below the huge-class-with-adjuncts cutoff that
Stroyan’s group projects, or the individual help I feel is so important, would not
put it over-budget.

There is still a big challenge: developing high-quality courseware and tests that
would provide an environment for other innovations. Most courseware now follows
the classroom model, which is a bit like teaching calculus without regard to student
needs. We need materials much better adapted to individual use. Real success will
also require sophisticated adjustments in the content. My experience is that this is
a job for mathematicians, not educators1.

Summary. Stroyan suggests a kinder, gentler calculus with extended projects on
physical applications. I propose a more rigorous course with fewer physical appli-
cations. How can I see these as basically similar?

Both of us are concerned that traditional calculus courses do not serve students
particularly well. We both feel—for rather different reasons—that calculus is a
good setting, and the real problem is the traditional format. In particular, calculus
is not the main learning goal even in a calculus course. We both believe that better
goals depend on student needs; the differences in our specific approaches simply
reflect concern with different student populations. And we have both concluded
that serving students well will require activity—again different in detail—outside
traditional classroom settings.

A final similarity is that wide implementation of either approach is serously
limited by resource constraints. They might best be seen as examples of enrichments
and student-specific variations that would be possible with high-quality computer-
based courses.
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