Accelerating Arnoldi Eigenvalue Computations with Polynomial Preconditioning

Mark Embree · Virginia Tech

Jennifer Loe · Sandia National Labs

Ron Morgan · Baylor University

SIAM Applied Linear Algebra Conference · May 2021

Thanks to: US National Science Foundation DMS-1720257.

"Polynomial Preconditioned Arnoldi with Stability Control" SIAM J. Sci. Comp. 43 A1-A25, 2021.

Setting

Suppose A is large, nonsymmetric, n × n matrix, and we seek the smallest magnitude eigenvalues of A.

• Shift-invert. Apply (restarted) Arnoldi to A^{-1} :

eigenvalue $\lambda \in \sigma(A)$ becomes $1/\lambda \in \sigma(A^{-1})$ The smallest $|\lambda|$ becomes the largest $|1/\lambda|$.

Polynomial preconditioning gives an option when A⁻¹v is too expensive, e.g., on distributed memory parallel machines.

▶ Polynomial preconditioning [Saad 84]. Apply (restarted) Arnoldi to $\pi(A)$:

eigenvalue $\lambda \in \sigma(A)$ becomes $\pi(\lambda) \in \sigma(\pi(A))$

Design π so the smallest $|\lambda|$ is mapped to an "easy to find" $\pi(\lambda)$.

• $\pi(A)v$ requires only matrix-vector products (easy in parallel) but how do you design π , and apply it stably?

Polynomial Preconditioning and Krylov Subspaces

Standard Arnoldi (k steps) extracts eigenvector estimates from $\mathcal{K}_k(A, v) = \operatorname{span}\{v, Av, \dots, A^{k-1}v\}.$

Preconditioned Arnoldi (k steps) extracts eigenvector estimates from $\mathcal{K}_{k}(\pi(A), \nu) = \operatorname{span}\{\nu, \pi(A)\nu, \dots, \pi(A)^{k-1}\nu\}$ $\subseteq \operatorname{span}\{\nu, A\nu, \dots, A^{d(k-1)}\nu\} = \mathcal{K}_{dk-d+1}(A, \nu).$

Polynomial Preconditioning and Krylov Subspaces

Standard Arnoldi (k steps) extracts eigenvector estimates from $\mathcal{K}_k(A, v) = \operatorname{span}\{v, Av, \dots, A^{k-1}v\}.$

Preconditioned Arnoldi (k steps) extracts eigenvector estimates from $\mathcal{K}_{k}(\pi(A), v) = \operatorname{span}\{v, \pi(A)v, \dots, \pi(A)^{k-1}v\}$ $\subseteq \operatorname{span}\{v, Av, \dots, A^{d(k-1)}v\} = \mathcal{K}_{dk-d+1}(A, v).$

Polynomial preconditioning gives access to much higher powers of A, for a fixed subspace dimension k.
 However, each single matvec π(A)ν requires d matvecs with A.

Given a good bound for the unwanted eigenvalues in σ(A), one could design π using best approximating polynomials:
 "Arnoldi–Chebyshev" approach [Saad 1984; Ho, Chatelin, Bennani 1990 ...]).
 Extensive literature for both polynomial filters for eigenvalue problems, and semi-iterative methods for linear systems.

GMRES-Based Polynomial Preconditioners

 "Hybrid GMRES" approach [Nachtigal, Reichel, Trefethen 1992]. At step d, GMRES solves the optimization problem

$$\|\pi(A)b\| = \min_{\substack{p \in \mathcal{P}_d \ p(0)=1}} \|p(A)b\|.$$

Denote the optimal polynomial as $\pi \in \mathcal{P}_d$, $\pi(0) = 1$:

$$\pi(z) = \left(1 - \frac{z}{\theta_1}\right) \cdots \left(1 - \frac{z}{\theta_d}\right).$$

Here $\theta_1, \ldots, \theta_d$ denote the roots of GMRES residual polynomial (*harmonic Ritz values*). (These roots are easy to compute; order matters.)

Contrast with the approach of Heidi Thornquist [2006]:
 Precondition with the *iteration polynomial q(z)* from, e.g., GMRES:

$$\pi(z) = 1 - zq(z) \implies \pi(A) = I - Aq(A) \implies q(A) \approx A^{-1}.$$

d = 1 GMRES iteration Linear transformation is no help (shift-invariance of Krylov spaces)

d = 2 GMRES iterations

Quadratic transformation separates small eigs, clusters larger eigs

d = 4 GMRES iterations

Quartic transformation further separates small eigenvalues

d = 8 GMRES iterations

Degree 8 transformation further separates small eigs, mixes up larger eigs

GMRES Residual Polynomials

$$\pi(z) = \left(1 - \frac{z}{\theta_1}\right) \cdots \left(1 - \frac{z}{\theta_d}\right).$$

• When taking π as the GMRES residual polynomials, we expect

 $\pi(\lambda) \approx 1$

for the eigenvalues λ of A nearest to the origin. (Recall that $\pi(0) = 1$ by construction.)

- Extreme case: if $\lambda = 0$, consider GMRES behavior for a singular system.
- GMRES handles the nonnormality of A naturally.
- Semi-iterative methods would typically use Ritz information to estimate the spectrum. We use Ritz information to build π directly.
- One must order $\theta_1, \ldots, \theta_d$ to promote stability when computing $\pi(A)v$; [Nachtigal, Reichel, Trefethen 1992] recommend a *modified Leja ordering*.

Bidiagonal "twisted Toeplitz" matrix, N = 100, real eigenvalues in $(0, 2\pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

• eigenvalues of A

Bidiagonal "twisted Toeplitz" matrix, N = 100, real eigenvalues in $(0, 2\pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

• eigenvalues of A \times roots of π

Bidiagonal "twisted Toeplitz" matrix, N = 100, real eigenvalues in $(0, 2\pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

eigenvalues of A

numerical range of A (gray)

Bidiagonal "twisted Toeplitz" matrix, N = 100, real eigenvalues in $(0, 2\pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

eigenvalues of A

 ε -pseudospectra ($\varepsilon = 10^{-1}, 10^{-2}, \ldots, 10^{-14}$)

Bidiagonal "twisted Toeplitz" matrix, N = 100, real eigenvalues in $(0, 2\pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

• eigenvalues of A \times roots of π

How Does Restarted Arnoldi with π Perform?

Return to the simple example shown earlier.

How Well Does it Work?

Compute 5 smallest eigs of *A* using *restarted* Arnoldi with max subspace dimension = 10: "Arnoldi(10,5)"

Increasing d can vastly reduce iterations.

How Well Does it Work?

Compute 5 smallest eigs of *A* using *restarted* Arnoldi with max subspace dimension = 10: "Arnoldi(10,5)"

Increasing d can vastly reduce iterations.

For restarted Arnoldi, preconditioning can even reduce matvecs significantly.

A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,

 $0 < \lambda_1 < \lambda_2 < \cdots \leq \lambda_n.$

Let $\pi(z) = (1 - z/\theta_1)(1 - z/\theta_2)$ be the GMRES polynomial of degree d = 2. If

$$\theta_1 + \theta_2 > \lambda_2 + \lambda_n,$$

then the asymptotic convergence rate for hull $(\{\pi(\lambda_j)\}_{j=2}^n)$ is faster than the asymptotic convergence rate for $[\lambda_2, \lambda_n]$.

A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,

 $0 < \lambda_1 < \lambda_2 < \cdots \leq \lambda_n$.

Let $\pi(z) = (1 - z/\theta_1)(1 - z/\theta_2)$ be the GMRES polynomial of degree d = 2. If

 $\theta_1 + \theta_2 > \lambda_2 + \lambda_n,$

then the asymptotic convergence rate for hull($\{\pi(\lambda_j)\}_{j=2}^n$) is faster than the asymptotic convergence rate for $[\lambda_2, \lambda_n]$.

Example: Convection–Diffusion Problem

2d Convection-diffusion problem, n = 160,000; moderately nonnormal.

We seek 15 eigenvalues with a buffer of 5 eigenvalues for restarted Arnoldi, and a maximum subspace dimension of 50: Arnoldi(50,20).

Results averaged over 10 trial runs.

The basic algorithm is very simple, but several minor adjustments can improve its applicability and reliability.

- Distant eigenvalues of A lead to isolated roots of π, which can complicate the evaluation of π(A)v.
- Polynomials that oscillate too much over the spectrum can mix up the desired and undesired eigenvalues of $\pi(A)$.
- A poor choice of b could have small components in the desired eigenvectors. (Easy fix: see the paper for details.)

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi'(\lambda)$ behavior.

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi'(\lambda)$ behavior. Remedy: Add an extra copy (or more) of the problematic root.

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi'(\lambda)$ behavior. Remedy: Add an extra copy (or more) of the problematic root.

When should you add extra roots, and how many should you add?

How large would $\pi(\theta_j)$ be, were it not for the $(1 - z/\theta_j)$ term? We define the *product of other factors (pof)* of the *j*th root:

$$\mathsf{pof}(j) := \prod_{i=1, i
eq j}^d \left| 1 - rac{ heta_j}{ heta_i} \right| = |\pi'(heta_j)| \cdot | heta_j|.$$

Rule of thumb (for double precision computations):

Add
$$\left\lceil \frac{\log_{10}(\operatorname{pof}(j)) - 4}{14} \right\rceil$$
 additional $\left(1 - \frac{z}{\theta_j}\right)$ factors to $\pi(z)$.

Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give π that are "over-enthusiastic". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$.

Taming Over-Enthusiastic Polynomials with Damping

For some spectral distributions, larger *d* can give π that are "*over-enthusiastic*". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$. Suppose *A* is diagonalizable, having eigenvectors v_1, \ldots, v_n .

• Let v_1, \ldots, v_n be a basis of eigenvectors of A, and write

$$b=\sum_{j=1}^n (c_j) v_j.$$

Then

$$Ab = \sum_{j=1}^{n} (\lambda_j c_j) v_j.$$

Premultiplying by A *damps* the components of b associated with the smallest magnitude eigenvalues.

• Generate π by applying GMRES to (A, Ab) instead of (A, b).

 Compare to damping Gibbs phenomenon in Dirac filters in [Li, Xi, Vecharynski, Yang, Saad 2016]

Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give π that are "over-enthusiastic". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$.

An example from SuiteSparse:

S1rmq4m1 (n = 5489, symmetric positive definite)

Degree d = 30 polynomial is *over-enthusiastic* (red +).

Damping (generating π with GMRES on (A, Ab)) fixes the problem (black \times).

For large *d*, the GMRES run to form π can incur many dot products.

Here is a strategy to leverage very high powers of A with fewer dot products.

- Form the GMRES polynomial π_1 of degree d_1 for (A, b). The desired eigenvalues of $\pi(A)$ should be near 1.
- Define the matrix $\tau(A) = I \pi(A)$. The desired eigenvalues of $\tau(A)$ should be near 0.
- Form the GMRES polynomial π₂ of degree d₂ for (τ(A), b). The desired eigenvalues of π₂(τ(A)) should be near 1.
- ▶ Run restarted Arnoldi on $\pi_2(\tau(A)) = \pi_2(I \pi_1(A))$. Notice that $\pi_2(1 - \pi_1(z))$ is a degree d_1d_2 polynomial.

2d Convection–Diffusion problem, n = 640,000.

degree	cycles	matvecs	time	dot products		
d or $d_1 \times d_2$		(thousands)	(minutes)	(thousands)		
Polynomial Preconditioned Arnoldi						
0	6924.5	207.8	243.4	15999.9		
10	253.2	76.6	19.4	561.9		
25	82.7	63.0	11.3	185.1		
50	41.2	63.6	9.7	95.4		
100	20.6	64.8	9.2	57.8		
125	16.5	65.3	8.8	56.3		
150	14.0	67.0	9.1	60.4		

Double Polynomial Preconditioning

$15 \times 20 = 300$	3.8	41.0	1.4	9.7
$15\times 40=600$	2.0	48.9	1.6	6.9
$15 \times 50 = 750$	2.0	61.2	2.0	7.9
$25 \times 40 = 1000$	1.0	51.0	1.6	5.2
$25 \times 60 = 1500$	1.0	76.5	2.4	8.0

Double Polynomial Preconditioning: Example

2d Convection–Diffusion problem, n = 640,000. Run Arnoldi(50,20) to compute the smallest 15 eigenvalues.

degre d or d ₁	e cycles $\times d_2$	s matvec (thousan	s time ds) (minute	dot products s) (thousands)	
Polynomial Preconditioned Arnoldi					
0	6924.5	5 207.8	243.4	15999.9	
10) 253.2	76.6	19.4	561.9	
25	82.7	63.0	11.3	185.1	
50	41.2	63.6	9.7	95.4	
100	20.6	64.8	9.2	57.8	
125	16.5	65.3	8.8	56.3	
150	14.0	67.0	9.1	60.4	

Double Polynomial Preconditioning

$15\times 20=300$	3.8	41.0	1.4	9.7
$15 \times 40 = 600$	2.0	48.9	1.6	6.9
$15 \times 50 = 750$	2.0	61.2	2.0	7.9
$25 \times 40 = 1000$	1.0	51.0	1.6	5.2
$25 \times 60 = 1500$	1.0	76.5	2.4	8.0

Summary

Polynomial Preconditioning for Eigenvalue Computations Using the GMRES Residual Polynomial

- The GMRES residual polynomial can be an appealing choice of precondition for Arnoldi eigenvalue computations.
- This choice of π adapts naturally to nonnormality and does not require an initial estimate of the spectrum.
- Good choices of π can reduce the matrix-vector products, dot products, Arnoldi iterations, and computation time.
- Simple modifications can address stability considerations: duplicating tricky roots, damping b, using multiple b.
- Double polynomial preconditioning gives access to very high powers of A, and can be especially helpful for minimizing dot products.