Accelerating Arnoldi Eigenvalue Computations with Polynomial Preconditioning

Mark Embree • Virginia Tech
Jennifer Loe • Sandia National Labs
Ron Morgan • Baylor University

SIAM Applied Linear Algebra Conference • May 2021

Thanks to: US National Science Foundation DMS-1720257.
"Polynomial Preconditioned Arnoldi with Stability Control"
SIAM J. Sci. Comp. 43 A1-A25, 2021.

Setting

- Suppose A is large, nonsymmetric, $n \times n$ matrix, and we seek the smallest magnitude eigenvalues of A.
- Shift-invert. Apply (restarted) Arnoldi to A^{-1} :

$$
\begin{aligned}
& \text { eigenvalue } \lambda \in \sigma(A) \text { becomes } 1 / \lambda \in \sigma\left(A^{-1}\right) \\
& \text { The smallest }|\lambda| \text { becomes the largest }|1 / \lambda| \text {. }
\end{aligned}
$$

- Polynomial preconditioning gives an option when $A^{-1} v$ is too expensive, e.g., on distributed memory parallel machines.
- Polynomial preconditioning [Saad 84]. Apply (restarted) Arnoldi to $\pi(A)$:

$$
\text { eigenvalue } \lambda \in \sigma(A) \text { becomes } \pi(\lambda) \in \sigma(\pi(A))
$$

Design π so the smallest $|\lambda|$ is mapped to an "easy to find" $\pi(\lambda)$.

- $\pi(A) v$ requires only matrix-vector products (easy in parallel)but how do you design π, and apply it stably?

Polynomial Preconditioning and Krylov Subspaces

Standard Arnoldi (k steps) extracts eigenvector estimates from

$$
\mathcal{K}_{k}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{k-1} v\right\} .
$$

Preconditioned Arnoldi (k steps) extracts eigenvector estimates from

$$
\begin{aligned}
\mathcal{K}_{k}(\pi(A), v) & =\operatorname{span}\left\{v, \pi(A) v, \ldots, \pi(A)^{k-1} v\right\} \\
& \subseteq \operatorname{span}\left\{v, A v, \ldots, A^{d(k-1)} v\right\}=\mathcal{K}_{d k-d+1}(A, v) .
\end{aligned}
$$

Polynomial Preconditioning and Krylov Subspaces

Standard Arnoldi (k steps) extracts eigenvector estimates from

$$
\mathcal{K}_{k}(A, v)=\operatorname{span}\left\{v, A v, \ldots, A^{k-1} v\right\} .
$$

Preconditioned Arnoldi (k steps) extracts eigenvector estimates from

$$
\begin{aligned}
\mathcal{K}_{k}(\pi(A), v) & =\operatorname{span}\left\{v, \pi(A) v, \ldots, \pi(A)^{k-1} v\right\} \\
& \subseteq \operatorname{span}\left\{v, A v, \ldots, A^{d(k-1)} v\right\}=\mathcal{K}_{d k-d+1}(A, v) .
\end{aligned}
$$

- Polynomial preconditioning gives access to much higher powers of A, for a fixed subspace dimension k.
However, each single matvec $\pi(A) v$ requires d matvecs with A.
- Given a good bound for the unwanted eigenvalues in $\sigma(A)$, one could design π using best approximating polynomials: "Arnoldi-Chebyshev" approach [Saad 1984; Ho, Chatelin, Bennani 1990 ...]). Extensive literature for both polynomial filters for eigenvalue problems, and semi-iterative methods for linear systems.

GMRES-Based Polynomial Preconditioners

- "Hybrid GMRES" approach [Nachtigal, Reichel, Trefethen 1992].

At step d, GMRES solves the optimization problem

$$
\|\pi(A) b\|=\min _{\substack{p \in \mathcal{P}_{d} \\ p(0)=1}}\|p(A) b\| .
$$

Denote the optimal polynomial as $\pi \in \mathcal{P}_{d}, \pi(0)=1$:

$$
\pi(z)=\left(1-\frac{z}{\theta_{1}}\right) \cdots\left(1-\frac{z}{\theta_{d}}\right) .
$$

Here $\theta_{1}, \ldots, \theta_{d}$ denote the roots of GMRES residual polynomial (harmonic Ritz values). (These roots are easy to compute; order matters.)

- Contrast with the approach of Heidi Thornquist [2006]:
- Precondition with the iteration polynomial $q(z)$ from, e.g., GMRES:

$$
\pi(z)=1-z q(z) \quad \Longrightarrow \quad \pi(A)=I-A q(A) \quad \Longrightarrow \quad q(A) \approx A^{-1}
$$

GMRES Residual Polynomials: An Example

$d=1$ GMRES iteration
Linear transformation is no help (shift-invariance of Krylov spaces)

- $\lambda=$ eigenvalues of A

GMRES Residual Polynomials: An Example

$d=2$ GMRES iterations
Quadratic transformation separates small eigs, clusters larger eigs

- $\lambda=$ eigenvalues of A

GMRES Residual Polynomials: An Example

$d=4$ GMRES iterations
Quartic transformation further separates small eigenvalues

- $\lambda=$ eigenvalues of A

GMRES Residual Polynomials: An Example

$d=8$ GMRES iterations
Degree 8 transformation further separates small eigs, mixes up larger eigs

- $\lambda=$ eigenvalues of A

GMRES Residual Polynomials

$$
\pi(z)=\left(1-\frac{z}{\theta_{1}}\right) \cdots\left(1-\frac{z}{\theta_{d}}\right)
$$

- When taking π as the GMRES residual polynomials, we expect

$$
\pi(\lambda) \approx 1
$$

for the eigenvalues λ of A nearest to the origin. (Recall that $\pi(0)=1$ by construction.)

- Extreme case: if $\lambda=0$, consider GMRES behavior for a singular system.
- GMRES handles the nonnormality of A naturally.
- Semi-iterative methods would typically use Ritz information to estimate the spectrum. We use Ritz information to build π directly.
- One must order $\theta_{1}, \ldots, \theta_{d}$ to promote stability when computing $\pi(A) v$; [Nachtigal, Reichel, Trefethen 1992] recommend a modified Leja ordering.

Roots of π and Nonnormality

Bidiagonal "twisted Toeplitz" matrix, $N=100$, real eigenvalues in ($0,2 \pi$]. [Trefethen, Chapman 2004; Trefethen, E. 2005].

- eigenvalues of A

Roots of π and Nonnormality

Bidiagonal "twisted Toeplitz" matrix, $N=100$, real eigenvalues in ($0,2 \pi$]. [Trefethen, Chapman 2004; Trefethen, E. 2005].

- eigenvalues of $A \quad \times$ roots of π

Roots of π and Nonnormality

Bidiagonal "twisted Toeplitz" matrix, $N=100$, real eigenvalues in $(0,2 \pi]$. [Trefethen, Chapman 2004; Trefethen, E. 2005].

- eigenvalues of $\mathrm{A} \quad$ numerical range of A (gray)

Roots of π and Nonnormality

Bidiagonal "twisted Toeplitz" matrix, $N=100$, real eigenvalues in ($0,2 \pi$]. [Trefethen, Chapman 2004; Trefethen, E. 2005].

- eigenvalues of A

$$
\varepsilon \text {-pseudospectra }\left(\varepsilon=10^{-1}, 10^{-2}, \ldots, 10^{-14}\right)
$$

Roots of π and Nonnormality

Bidiagonal "twisted Toeplitz" matrix, $N=100$, real eigenvalues in ($0,2 \pi$]. [Trefethen, Chapman 2004; Trefethen, E. 2005].

- eigenvalues of $A \quad \times$ roots of π

How Does Restarted Arnoldi with π Perform?

Return to the simple example shown earlier.

- $\lambda=$ eigenvalues of A

How Well Does it Work?

Compute 5 smallest eigs of A using restarted Arnoldi with max subspace dimension $=10$: "Arnoldi(10,5)"

Increasing d can vastly reduce iterations.

How Well Does it Work?

Compute 5 smallest eigs of A using restarted Arnoldi with max subspace dimension $=10$: "Arnoldi(10,5)"

Increasing d can vastly reduce iterations.

For restarted Arnoldi, preconditioning can even reduce matvecs significantly.

A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,

$$
0<\lambda_{1}<\lambda_{2}<\cdots \leq \lambda_{n} .
$$

Let $\pi(z)=\left(1-z / \theta_{1}\right)\left(1-z / \theta_{2}\right)$ be the GMRES polynomial of degree $d=2$. If

$$
\theta_{1}+\theta_{2}>\lambda_{2}+\lambda_{n},
$$

then the asymptotic convergence rate for $\operatorname{hull}\left(\left\{\pi\left(\lambda_{j}\right)\right\}_{j=2}^{n}\right)$ is faster than the asymptotic convergence rate for $\left[\lambda_{2}, \lambda_{n}\right]$.

A Simple Convergence Result

Proposition. Suppose A is symmetric positive definite,

$$
0<\lambda_{1}<\lambda_{2}<\cdots \leq \lambda_{n}
$$

Let $\pi(z)=\left(1-z / \theta_{1}\right)\left(1-z / \theta_{2}\right)$ be the GMRES polynomial of degree $d=2$. If

$$
\theta_{1}+\theta_{2}>\lambda_{2}+\lambda_{n}
$$

then the asymptotic convergence rate for hull $\left(\left\{\pi\left(\lambda_{j}\right)\right\}_{j=2}^{n}\right)$ is faster than the asymptotic convergence rate for $\left[\lambda_{2}, \lambda_{n}\right]$.

$$
\kappa=\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}-\lambda_{2}} \quad \text { rate }=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1} \quad \kappa=\frac{\pi\left(\lambda_{*}\right)-\pi\left(\lambda_{1}\right)}{\pi\left(\lambda_{*}\right)-\pi\left(\lambda_{2}\right)}
$$

Example: Convection-Diffusion Problem

2d Convection-diffusion problem, $n=160,000$; moderately nonnormal.
We seek 15 eigenvalues with a buffer of 5 eigenvalues for restarted Arnoldi, and a maximum subspace dimension of 50: $\operatorname{Arnoldi}(50,20)$.
Results averaged over 10 trial runs.

Three Ways to Improve Stability

The basic algorithm is very simple, but several minor adjustments can improve its applicability and reliability.

- Distant eigenvalues of A lead to isolated roots of π, which can complicate the evaluation of $\pi(A) v$.
- Polynomials that oscillate too much over the spectrum can mix up the desired and undesired eigenvalues of $\pi(A)$.
- A poor choice of b could have small components in the desired eigenvectors. (Easy fix: see the paper for details.)

Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi^{\prime}(\lambda)$ behavior.

- $\lambda=$ eigenvalues of A

Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi^{\prime}(\lambda)$ behavior. Remedy: Add an extra copy (or more) of the problematic root.

- $\lambda=$ eigenvalues of A

Handle Outlying Eigenvalues by Duplicating Roots

GMRES quickly puts roots very close to isolated "outlier" eigenvalues, but such roots can cause problems due to large $\pi^{\prime}(\lambda)$ behavior. Remedy: Add an extra copy (or more) of the problematic root.

- $\lambda=$ eigenvalues of A

Handle Outlying Eigenvalues by Duplicating Roots

When should you add extra roots, and how many should you add?
How large would $\pi\left(\theta_{j}\right)$ be, were it not for the $\left(1-z / \theta_{j}\right)$ term?
We define the product of other factors (pof) of the j th root:

$$
\operatorname{pof}(j):=\prod_{i=1, i \neq j}^{d}\left|1-\frac{\theta_{j}}{\theta_{i}}\right|=\left|\pi^{\prime}\left(\theta_{j}\right)\right| \cdot\left|\theta_{j}\right|
$$

Rule of thumb (for double precision computations):

$$
\text { Add }\left\lceil\frac{\log _{10}(\operatorname{pof}(j))-4}{14}\right\rceil \text { additional }\left(1-\frac{z}{\theta_{j}}\right) \text { factors to } \pi(z)
$$

Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give π that are "over-enthusiastic". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$.

Taming Over-Enthusiastic Polynomials with Damping

For some spectral distributions, larger d can give π that are "over-enthusiastic". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$.
Suppose A is diagonalizable, having eigenvectors v_{1}, \ldots, v_{n}.

- Let v_{1}, \ldots, v_{n} be a basis of eigenvectors of A, and write

$$
b=\sum_{j=1}^{n}\left(c_{j}\right) v_{j}
$$

- Then

$$
A b=\sum_{j=1}^{n}\left(\lambda_{j} c_{j}\right) v_{j}
$$

Premultiplying by A damps the components of b associated with the smallest magnitude eigenvalues.

- Generate π by applying GMRES to $(A, A b)$ instead of (A, b).
- Compare to damping Gibbs phenomenon in Dirac filters in [Li, Xi, Vecharynski, Yang, Saad 2016]

Damping to Enhance Smallest Magnitude Eigenvalues

For some spectral distributions, larger d can give π that are "over-enthusiastic". Oscillations near the origin mix up the order of eigenvalues in $\sigma(\pi(A))$.

- $\lambda=$ eigenvalues of A

Damping to Enhance Smallest Magnitude Eigenvalues

An example from SuiteSparse:

$$
\text { S1rmq4m1 (} n=5489, \text { symmetric positive definite })
$$

Degree $d=30$ polynomial is over-enthusiastic (red +).
Damping (generating π with GMRES on $(A, A b)$) fixes the problem (black \times).

Double Polynomial Preconditioning

For large d, the GMRES run to form π can incur many dot products.

Here is a strategy to leverage very high powers of A with fewer dot products.

- Form the GMRES polynomial π_{1} of degree d_{1} for (A, b). The desired eigenvalues of $\pi(A)$ should be near 1 .
- Define the matrix $\tau(A)=I-\pi(A)$. The desired eigenvalues of $\tau(A)$ should be near 0 .
- Form the GMRES polynomial π_{2} of degree d_{2} for $(\tau(A), b)$. The desired eigenvalues of $\pi_{2}(\tau(A))$ should be near 1 .
- Run restarted Arnoldi on $\pi_{2}(\tau(A))=\pi_{2}\left(I-\pi_{1}(A)\right)$. Notice that $\pi_{2}\left(1-\pi_{1}(z)\right)$ is a degree $d_{1} d_{2}$ polynomial.

Double Polynomial Preconditioning: Example

2d Convection-Diffusion problem, $n=640,000$.

degree d or $d_{1} \times d_{2}$	cycles	matvecs (thousands)	time (minutes)	dot products (thousands)

Polynomial Preconditioned Arnoldi

0	6924.5	207.8	243.4	15999.9
10	253.2	76.6	19.4	561.9
25	82.7	63.0	11.3	185.1
50	41.2	63.6	9.7	95.4
100	20.6	64.8	9.2	57.8
125	16.5	65.3	8.8	56.3
150	14.0	67.0	9.1	60.4

Double Polynomial Preconditioning

$15 \times 20=300$	3.8	41.0	1.4	9.7
$15 \times 40=600$	2.0	48.9	1.6	6.9
$15 \times 50=750$	2.0	61.2	2.0	7.9
$25 \times 40=1000$	1.0	51.0	1.6	5.2
$25 \times 60=1500$	1.0	76.5	2.4	8.0

Double Polynomial Preconditioning: Example

2d Convection-Diffusion problem, $n=640,000$.
Run Arnoldi $(50,20)$ to compute the smallest 15 eigenvalues.

degree d or $d_{1} \times d_{2}$	cycles	matvecs (thousands)	time (minutes)	dot products (thousands)
Polynomial Preconditioned Arnoldi				

Summary

Polynomial Preconditioning for Eigenvalue Computations Using the GMRES Residual Polynomial

- The GMRES residual polynomial can be an appealing choice of precondition for Arnoldi eigenvalue computations.
- This choice of π adapts naturally to nonnormality and does not require an initial estimate of the spectrum.
- Good choices of π can reduce the matrix-vector products, dot products, Arnoldi iterations, and computation time.
- Simple modifications can address stability considerations: duplicating tricky roots, damping b, using multiple b.
- Double polynomial preconditioning gives access to very high powers of A, and can be especially helpful for minimizing dot products.

