Turbulent Supersonic Jet Noise

a life-size paradigm for model reduction of transport-dominated phenomena

Jörn Sesterhenn

never without J.Fernandez R.Wilke M.Lemke

Institute for Fluid Dynamics and Acoustic Engineering Berlin Institute of Technology

Motivation

Motivation

Jörn Sesterhenn (ISTA)

Jörn Sesterhenn (ISTA)

Motivation

Jet Noise

Stromboli 2013

Stromboli 2013, Photo: Daniele Andronico INGV Catania

Acoustics of a Free Jet

- turbulent mixing noise
- broadband shock noise
- screech

Jörn Sesterhenn (ISTA)

Acoustics of a Free Jet

Shock Shear Layer Interaction

The Impinging Jet

Iso-surfaces at Ma = 0.2: pressure and at $Q = 10^5 m^2 s^{-4}$

The Impinging Jet

Wall shear stress and Nusselt number

The Impinging Jet

Nusselt number and turbulent heat flux

Acoustics of a supersonic impinging jet

Impinging tones

Possible mechanisms

- Screech for $h/D \ge 5$
- Standoff Shock oscillation
- Shear Layer Instability

Impinging Tones Sinibaldi et al., 2014

Details of the Numerical Simulation

- compressible Navier–Stokes equations
- 6. order in space (compact)
- 4. order Runge-Kutta / exponential Krylov in time
- Domain of free jet: $24D \times 12D \times 12D$
- Domain of impinging jet: $5D \times 12D \times 12D$

• Grid of impinging jet: $1024 \times 1024 \times 1024$

Goal of the talk

Jets are tremensously expensive to compute

- the main players are
 - jet modes
 - shocks
- Targets of interest
 - Sound pressure level
 - Particle Load
 - Mass Flow
 - Heat Transfer
- Target seems to depend on those "simple" structures
 - model dependency of targets by Ma, Re
 - identify parameters by simple measurements

Vortex ring

Radiated noise

Interaction shear layer - shock-wave - vortex ring

straight shock

Interaction shear layer - shock-wave - vortex ring

Interaction shear layer - shock-wave - vortex ring

Interaction shear layer - shock-wave - vortex ring

Jörn Sesterhenn (ISTA)

radiated shock

Interaction shear layer - shock-wave - vortex ring

Acoustics of a Free Jet

Modal Structure

Acoustics of a Free Jet

associated Sound Radiation

Particle flow

Jet noise modification due to Particles

Figure: Vortical Modes, without and with particles

Jörn Sesterhenn	(ISTA)
-----------------	--------

Particle flow Jet noise modification due to Particles

Figure: Vortical Modes, without and with particles

Particle flow

Jet noise modification due to Particles

Figure: Vortical Modes, without and with particles

Acoustics of a Free Jet

Sound pressure level at different observation angles

Modal Decomposition of a supersonic Free Jet

Distribution of Eigenvalues

Modal Decomposition of a supersonic Free Jet Dynamic Mode at Sr = 0.37

Flow field of a supersonic Impinging Jet

left: Q middle: p right: div(u)

Acoustics of a supersonic impinging jet

Sound pressure level at different observation angles

Modal decomposition of a supersonic impinging jet Distribution of Eigenvalues

Modal decomposition of a supersonic impinging jet Dynamic Mode at Sr = 0.35 (0.70)

Difference between computed and measured states is to be minimized

Adjoint equations

Objective function

$$J = \frac{1}{2} \int_{\Omega} \int_{t_0}^{t_{end}} (q - q_{tar})^2 d\Omega$$
$$J = \int_{\Omega} \int_{\Omega} \underbrace{(q - q_{tar})}_{g} \delta q d\Omega$$

Constrained optimisation

Linearised Navier-Stokes equations

 δ

$$N\delta q = \delta f$$

Adjoint equations

Objective function

$$J = \frac{1}{2} \int_{\Omega} \int_{t_0}^{t_{\text{end}}} (q - q_{\text{tar}})^2 \, \mathrm{d}\Omega$$
$$J = \int_{\Omega} \int \underbrace{(q - q_{\text{tar}})}_{g} \delta q \, \mathrm{d}\Omega$$

Constrained optimisation

Linearised Navier-Stokes equations

 δ

$$N\delta q = \delta f$$

Jörn	Sester	henn (ISTA)

Adjoint equations Introductory example

Lagrangian approach

$$\delta J = g^{T} \delta q - (q^{*})^{T} \underbrace{(N \delta q - \delta f)}_{=0}$$
$$= \delta q^{T} \underbrace{(g - N^{T} q^{*})}_{=0} + (q^{*})^{T} \delta f$$

Adjoint equations Introductory example

Lagrangian approach

$$\delta J = g^{T} \delta q - (q^{*})^{T} \underbrace{(N \delta q - \delta f)}_{=0}$$
$$= \delta q^{T} \underbrace{(g - N^{T} q^{*})}_{=0} + (q^{*})^{T} \delta f$$

Change of *J* becomes simply

$$\delta J = q^{*T} \delta f \rightarrow \frac{\delta J}{\delta f} = q^* \approx \nabla_f J$$

Adjoint equations

Lagrangian approach

$$\delta J = g^{T} \delta q - (q^{*})^{T} \underbrace{(N \delta q - \delta f)}_{=0}$$
$$= \delta q^{T} \underbrace{(g - N^{T} q^{*})}_{=0} + (q^{*})^{T} \delta f$$

Change of J becomes simply

$$\delta J = q^*{}^T \delta f \rightarrow \frac{\delta J}{\delta f} = q^* \approx \nabla_f J$$

Adjoint equations

Iterative procedure

Optimal change of f

$$f^{n+1} = f^n + \nabla_f J$$

Euler equations

$$\partial_t \begin{pmatrix} \varrho \\ \varrho u_j \\ \frac{p}{\gamma-1} \end{pmatrix} + \partial_{x_i} \begin{pmatrix} \varrho u_i \\ \varrho u_i u_j + p \delta_{ij} \\ \frac{u_i p \gamma}{\gamma-1} \end{pmatrix} - u_i \partial_{x_i} \begin{pmatrix} 0 \\ 0 \\ p \end{pmatrix} = f$$

$$\partial_t a + \partial_{x_i} b^i + C^i \partial_{x_i} c = f.$$

Linerisation

$$\partial_{t} \underbrace{\frac{\partial a_{\alpha}}{\partial q_{\beta}}}_{A} \delta q_{\beta} + \partial_{x_{i}} \underbrace{\frac{\partial b_{\alpha}}{\partial q_{\beta}}}_{B^{i}} \delta q_{\beta} + C^{i} \partial_{x_{i}} \delta q_{\beta} + \delta C^{i} \partial_{x_{i}} c_{\beta} = \delta f$$

 $q = [\varrho, u_j, p]$

Lagrangian approach

$$\iint \delta J d\Omega = \iint g^{T} \delta q d\Omega$$
$$- \iint q^{*T} \underbrace{\left(\partial_{t} A \delta q + \partial_{x_{i}} B^{i} \delta q + C^{i} \partial_{x_{i}} \delta q + \delta C^{i} \partial_{x_{i}} c - \delta f \right)}_{=0} d\Omega$$

 $d\Omega = dx_i dt$ is the space-time measure

Integration by parts

$$\begin{split} \iint \delta J d\Omega &= \iint \delta q^T g d\Omega \\ &+ \iint \delta q^T A^T \partial_t q^* d\Omega \qquad - \left[\int \delta q^T A^T q^* dx_i \right]_{t=t_0}^{t=t_{end}} \\ &+ \iint \delta q^T B^{iT} \partial_{x_j} q^* d\Omega \qquad - \left[\int \delta q^T B^{iT} q^* dt \right]_{x_i=x_{i,0}}^{x_i=t_i} \\ &+ \iint \delta q^T \partial_{x_i} C^{iT} q^* d\Omega \qquad - \left[\int \delta q^T C^{iT} q^* dt \right]_{x_i=x_{i,0}}^{x_i=t_i} \\ &- \iint \delta q^T \tilde{C}^i \partial_{x_i} c \qquad q_\alpha^* \delta C_{\alpha\beta}^i \partial_{x_i} c_\beta = q_\alpha^* \delta q_\alpha \frac{\partial C_{\alpha\beta}^i}{\partial q_\alpha} \partial_{x_i} c_\beta \\ &+ \iint q^* T \delta f d\Omega \qquad \delta q_\alpha \tilde{C}_{\alpha\beta}^i \partial_{x_i} c_\beta \end{split}$$

Adjoint equations Compressible Navier-Stokes

Factor out different variations

$$\iint \delta J d\Omega = \iint q^{*T} \delta f d\Omega$$

$$+ \iint \delta q^{T} \underbrace{\left(g + A^{T} \partial_{t} q^{*} + B^{iT} \partial_{x_{j}} q^{*} + \partial_{x_{l}} C^{iT} q^{*} - \tilde{C}^{i} \partial_{x_{l}} c\right)}_{I} d\Omega$$

$$- \underbrace{\left[\int \delta q^{T} A^{T} q^{*} dx_{i}\right]_{t=t_{0}}^{t=t_{end}}}_{II}$$

$$- \underbrace{\left[\int \delta q^{T} B^{iT} q^{*} dt\right]_{x_{l}=x_{l,0}}^{x_{l}=L_{l}} - \left[\int \delta q^{T} C^{iT} q^{*} dt\right]_{x_{l}=x_{l,0}}^{x_{l}=L_{l}}$$

$$III$$

Term I: Resulting adjoint equations

$$\partial_t q^* = -A^{T-1}B^{i}{}^T \partial_{x_i} q^* - A^{T-1}\partial_{x_i}C^{i}{}^T q^* + A^{T-1}\tilde{C}^i \partial_{x_i}c - A^{T-1}g$$

Navier-Stokes:

$$-A^{T}\partial_{t}q^{*}-B^{i}{}^{T}\partial_{x_{i}}q^{*}-\partial_{x_{i}}C^{i}{}^{T}q^{*}+\tilde{C}^{i}\partial_{x_{i}}c =$$

+ $\partial_{x_{j}}D^{T}\partial_{x_{i}}q^{*}-E^{i}{}^{T}\partial_{x_{i}}q^{*}+F^{II}{}^{T}\partial_{x_{i}}F^{I}{}^{T}\partial_{x_{i}}q^{*}-\partial_{x_{i}}G^{i}{}^{T}q^{*}+H^{T}q^{*}+g$

Simplified derivation

Adjoint equations

Lagrangian approach

$$\delta J = \boldsymbol{g}^{T} \delta \boldsymbol{q} - \boldsymbol{q}^{*T} \left(\partial_{t} \boldsymbol{A} \delta \boldsymbol{q} + \partial_{x} \boldsymbol{B} \delta \boldsymbol{q} - \delta f \right)$$
$$- \boldsymbol{I}^{*T} \left(\delta \boldsymbol{q}(0, t) - \delta \boldsymbol{I}(t) \right) \quad \text{(left boundary)}$$
$$- \boldsymbol{r}^{*T} \left(\delta \boldsymbol{q}(L, t) - \delta \boldsymbol{r}(t) \right) \quad \text{(right boundary)}$$

Inclusion of boundary conditions (1D simplification)

$$q(x = 0, t) = l(t)$$
$$q(x = L, t) = r(t)$$

Simplified derivation

Adjoint equations

$$\delta J = \delta q^{T} \underbrace{\left(g + A^{T} \partial_{t} q^{*} + B^{T} \partial_{x} q^{*}\right)}_{=0} + q^{*T} \delta f$$

$$- \left[\delta q^{T} A^{T} q^{*}\right]_{t=0}^{t=T} \quad \text{(adjoint initial condition)}$$

$$- \left[\delta q^{T} B^{T} q^{*}\right]_{x=0}^{x=L} \quad \text{(adjoint boundary condition)}$$

$$- \delta q(0, t)^{T} l^{*} + l^{*T} \delta l(t)$$

$$- \delta q(L, t)^{T} r^{*} + r^{*T} \delta r(t)$$

Simplified derivation

Simplified derivation

$$\delta J = \delta q^{T} \underbrace{\left(g + A^{T} \partial_{t} q^{*} + B^{T} \partial_{x} q^{*}\right)}_{=0} + q^{*T} \delta f$$

+ $\delta q(0, t)^{T} \underbrace{\left(+B^{T} q^{*}(0, t) - I^{*}\right)}_{=0} + l^{*T} \delta l(t)$
+ $\delta q(L, t)^{T} \underbrace{\left(-B^{T} q^{*}(L, t) - r^{*}\right)}_{=0} + r^{*T} \delta r(t)$

Simplified derivation

Resulting sensitivities

$$\frac{\delta J}{\delta I} = I^* = -B^T q^*(0, t) \approx \nabla_I J$$
$$\frac{\delta J}{\delta r} = r^* = +B^T q^*(L, t) \approx \nabla_r J$$

Optimal change of the boundaries is defined by the adjoint solution

- Euler equations (2D)
- Non-reflecting bounds
- Slip wall on the right
- Target: formation of a pressure pulse @ t=T
- Control: Non-reflecting bounds

Example: results

Example: results

Boundary optimisation

Boundary optimisation

Adjoint based assimilation of NSCBC Results

Adjoint based assimilation of NSCBC Results

Computation time 5h (single core MatLab)

Experiment Facility

Buildup

High sub-sonic range

Conclusion

Done

- J.Fernandez, R.Wilke, & M.Lemke did a good job so far
- Jet Noise characteristics can be traced back to simple mode interaction
- modes can be identified from real experiments

To do

- Describe Mode dependency on
 - Re
 - Ma,
- capture bifurcations
- charactersize flow state from measurements

The simulations were performed on the national supercomputers Cray XE6 and Cray XC40 at the High Performance Computing Centre Stuttgart (HLRS) under the grant number GCS-ARSI/44027. Typically 8192 cores were used.